

脳活動可視化技術の最先端 ~複数の脳計測データ統合による解決~

(株) 国際電気通信基礎技術研究所 脳情報解析研究所 佐藤雅昭

目次

- 研究背景
 - 脳活動計測とブレイン・マシン・インタフェース
 - 非侵襲脳活動計測の現状
 - 委託研究プロジェクトの概要
- 複数の脳計測データ統合による脳活動推定とその応用
 - 階層変分ベイズ推定 VBMEG
 - 脳活動から指先の動きを再構成
 - リアルタイムMEGシステム
 - フライトシミュレーターによる複雑な認知運動課題
- NIRS 拡散光トモグラフィによる高精度3次元推定
- ・ 今後の課題

脳活動計測の必要性

脳の仕組みを知るための脳研究や
 脳活動を利用するブレイン・マシン・インタフェース研究には、
 脳活動を正確に計測することが出発点

ヒトの一次運動野における体部位局在地図 (Rasmussen and Penfield, 1947より改変)

脳活動=神経細胞の電気信号(皮質電流) 入れ

脳

神経細胞

<u>http://www.scholarpedia.org/article</u> /Pyramidal_neuron より転用

ヒトの脳活動を手術無しで非侵襲的に計測する 非侵襲脳活動計測装置はこの20年間で飛躍的に進歩した

非侵襲脳活動計測手法

脳内神経活動の機能部位毎(ミリm)の 速い時間的変化(ミリ秒)を直接計測できる 非侵襲計測手法は存在しない

fMRI(機能的MRI)

提供ATR-Promotions

NIRS(近赤外分光計測)

MEG(脳磁計)

提供ATR-Promotions

BMIへの応用・展開

 安全性の高い、利用者の負担の少ない、いつでも、 どこでも、誰にでも利用可能な非侵襲型脳活動計測 に基づくBMI開発に資する基礎技術を開発

複数の脳計測データ統合による 脳活動推定とその応用

神経電流が発生する微弱な磁場を頭の外に設置したセンサで計測

提供ATR-Promotions

○ 神経活動の速い時間変化 (ミリ秒) を計測可能

× 脳内における活動源は直接にはわからない。

観測磁場から神経活動源(電流源)の分布を推定する問題 MEG逆問題は解くのが困難な不良設定問題になっている。

地震源の推定

複数の震源が同時多発的に発生し 震源の数も分からない時の震源推定

脳活動計測実験(視覚刺激)

スクリーン上の像の位置が 0.4秒毎 に変化(右上、右下、左下、左上)

刺激位置に応じて変化する視覚野の脳活動

視野と大脳視覚野の 対応関係(レチノトピー)

視野の左右と上下が 視覚野に反転して表現されている

VBMEGによる脳活動の可視化(視覚実験)

•人間の脳活動情報から四肢の運動を再構成する技術として、指 先の素早い運動(運動時間約0.4秒)を滑らかな動きでコンピュー タ上に再構成することに成功

脳活動の計測 解析 「実際に手を動かす」 「オフライン」 指名

指先の動きを再構成

NICTバイオICTグループ(今水 寛グループリーダー) との共同研究として報道発表(平成22年10月20日)

AR

特徴抽出 顔予測を例に(1)

誰でしょう?

特徴抽出 顔予測を例に(2)

誰でしょう?

データの特徴的な部分を抜き出せば 正しく推定することができる

Albert Einstein (1879–1955)

顔は目元やロ元が 特徴量として有効

Albert Einstein (1879–1955)

MEG脳活動で手先軌道予測

自動選択された電流位置

リアルタイムMEGシステム

- ・実際の飛行操縦に近いフライトシミュレータ環境
- 400チャネルMEGデータを1000Hzで転送(1ミリ秒の精度)
- 解読した脳情報を10msの時間遅れでフィードバック

Real-Time MEG system

実生活に近い複雑な認知運動課題

Callan et al, PLoS One, 2012 Callan et al, NeuroImage, 2013

- ・従来の実験
 - 複雑な認知課題を単純な実験課題に分解
 - 単純な実験課題における脳活動の解析
- 問題点
 - 複雑な認知課題:単純な脳活動の和?
 - 被験者が退屈して長時間耐えられない
- •フライトシミュレーターによる複雑な認知運動課題
- 高精度非侵襲計測装置の中で実行可能
 - 実環境に近い形で実験をコントロール出来る
 - 被験者が興味を持って長時間、課題に集中できる

飛行機の左右旋回タスク

・パイロンゲートを通過後、飛行機を左右に旋回
 条件指示: 左(<) 右(>)静止(=)

脳活動による飛行操縦

- ・飛行機操縦中の脳活動からVBMEGで脳活動推定し、
 飛行機の昇降蛇(上下)、補助翼(回転)制御信号を再構成
 2 msec毎に脳活動から(時間窓500 msec)
 200 msec 後の制御信号を予測
 - -運動野(Motor)の脳活動による再構成
 - -運動に無関係な領野(SFG)の脳活動による再構成

Motor

SFG

NIRSとEEGの同時測定による リアルタイムシステム

NIRS情報を用いたEEG脳活動推定

Aihara et al, NeuroImage, 2012

AR

NIRS 拡散光トモグラフィによる 高精度3次元推定

拡散光トモグラフィ(DOT)

・我々は、逆問題解法を改良することで精度を向上させた。

ファントム実験による検証

大脳皮質と似た光学特性 吸収係数μ_a=0.019mm⁻¹, 散乱係数μ_s'=1.1mm⁻¹

10mm離れたの2吸光体を、プローブ間隔18mm計測で識別可能

今後の主な課題

1.脳活動推定手法の拡張

脳機能と脳ダイナミクスの関係を明らかにするために、開発 した脳活動推定手法を用いて脳ネットワークダイナミクスのモ デル化を進めるとともに、ダイナミクスを考慮した脳活動推定 手法の拡張を行う。

2.脳活動推定手法の応用

ミリ秒オーダのMEG・EEG脳活動推定手法や、NIRS脳機能計 測の信頼性を大幅に向上する光拡散トモグラフィを、ブレイン ・マシン・インタフェース・リハビリや精神疾患診断など応用分 野へ適用していく。