

Using of GNSS and Field Data to Evaluate Working Performance of Mechanical Sugarcane Harvesters

Vasu Udompetaikul

Apidul Kaewkabthong

Dept. of Agricultural Engineering KMITL

> **ASEAN IVO Forum 2017** Nov. 23, 2017 Bandar Seri Begawan, Brunei Darussalam

National Institute of Information and Communications Technology

Sugarcane Production

• Thailand is a major sugarcane producer of the world

- >1.4 M Ha
- >100 M tons
 - Sugar
 - Ethanol & biomass fuel (<1%)

Sugarcane Harvesters

Efficiency=Actual Capacity
Theoretical Maximum CapacityField Efficiency =Total Area / Actual Time
Row Spacing × Optimum SpeedTime Efficiency = $\frac{Time with no loss}{Total Time} = \frac{Active Time}{Total Time}$

FACTORS AFFECTING FIELD EFFICIENCY

Machine maneuverability

Field shape & size

Soil & crop conditions

Field traffic patterns

Operator skills

System limitations

Field Efficiency Determination

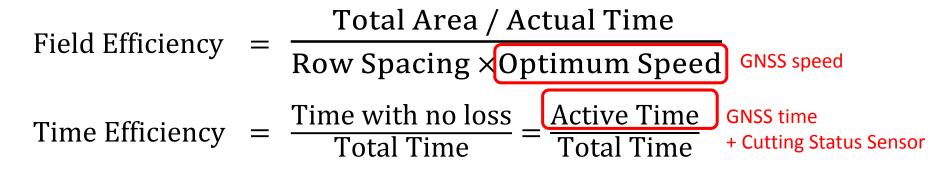
• Small sampling size

Human errors (time recording & note taking)

Laborious & tedious

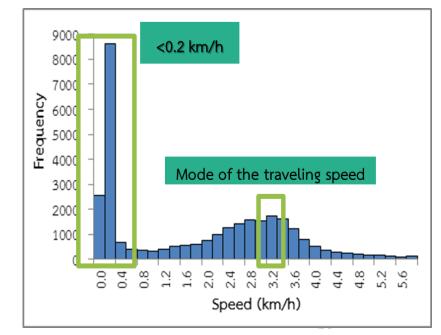
Time consuming (whole day / multiple days)

Hard to collect all working conditions

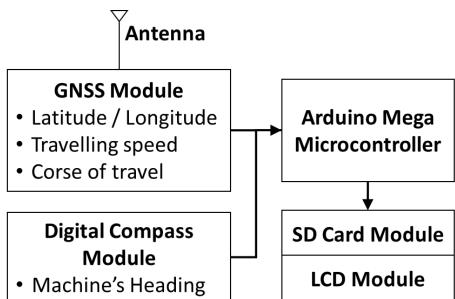

Only one number for a whole field

Inefficient for optimization of efficiency

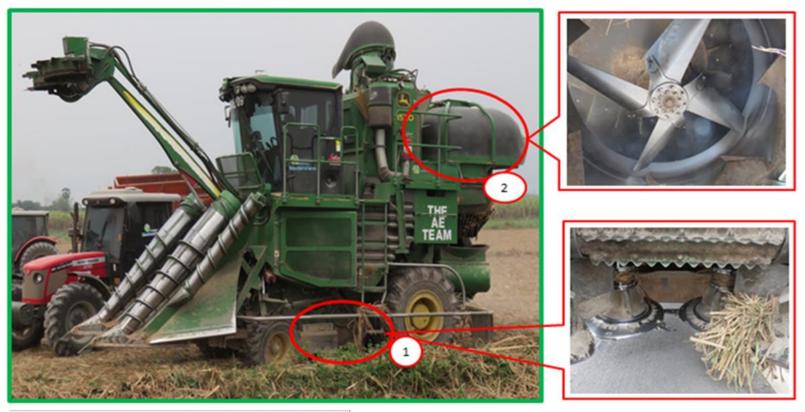
Objective

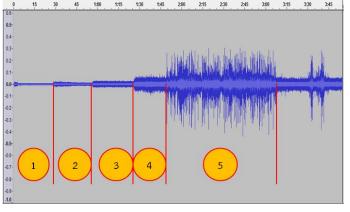

To develop an automatic field efficiency and time efficiency monitoring system for sugarcane harvesters.

Operational Efficiency


Lost Time (Time without cutting operation)

- Turning
- Loading / unloading materials
- Obstructers & field conditions
- Adjustment, maintenance & breakdown
- Operator's personal time


Monitoring System


- Arduino MEGA Microcontroller
- GNSS module (U-blox NEO M8N, GPS+GLONASS L1) + Antenna
- 3-Axis Digital Compass Module (Honeywell HMC5883L)
- SD card Module
- In-cab Camera

Acoustic Cutting Status Detector

- However, noises from the other parts of the machine were much greater than the cutting sound, leading inconsistence of the detection
- This study used the recorded video for manually classifying of the operational status

Active Time 2:16:40 hr Total Time 5:04:00 hr → Time Efficiency = 45.0%

1st truck: 19.6 ton 2nd truck: 20.3 ton 3rd truck: 9.8 ton Total yield: 49.7 ton / 0.95 ha

Image © 2014 CNES / Astrium

0.95 ha

Case study

• Low efficiency in the beginning rows due to field accessibility

- 6 fields from 3 Harvesters with different size
- Comparing efficiencies
 - The whole field
 - Discarding data from the first loading truck (that facing low accessibility)

Result

Field Efficiency	240 Hp		290 Hp		340 Hp	
	Field 1	Field 2	Field 3	Field 4	Field 5	Field 6
Area (ha)	0.64	0.32	1.36	0.80	1.17	0.48
Actual Capacity (ha/h)						
- Whole Field	0.18	0.23	0.29	0.20	0.29	0.27
- Without beginning rows	0.29	0.27	0.35	0.39	0.34	0.31
Theoretical Capacity (ha/h)	0.49	0.45	0.67	0.53	0.50	0.48
Field Efficiency (%)						
- Whole Field	37.4	50.3	43.4	38.2	58.0	56.6
- Without beginning rows	59.4	60.1	52	72.8	67	80.2
The Improvement (%)	+22.0	+9.8	+8.6	+34.6	+9.0	+23.6

Time Efficiency	240 Hp		290 Hp		340 Hp	
	Field 1	Field 2	Field 3	Field 4	Field 5	Field 6
Area (ha)	0.64	0.32	1.36	0.80	1.17	0.48
Active Time (h)						
- Whole Field	1:37	0:44	2:24	1:45	2:04	1:04
- Without beginning rows	1:02	0:10	1:51	0:58	1:45	0:32
Total Time (h)						
- Whole Field	3:29	1:25	4:40	3:56	3:59	1:46
- Without beginning rows	1:55	0:17	2:31	1:39	3:04	0:50
Time Efficiency (%)						
- Whole Field	46.6	52.0	51.7	44.7	51.7	60.6
- Without beginning rows	53.9	57.9	73.5	59.5	56.9	64.7
The Improvement (%)	+7.3	+5.9	+21.8	+14.8	+5.2	+4.1

Conclusion

- A system to monitor sugarcane harvester activities was developed using a low-cost GNSS system
- Field Efficiency could be evaluated using GNSS velocity information
- Time Efficiency determination required additional cutting status detector for automatic monitoring
- Example showed the clear improvement of having good accessibility to the field. However, more field data is required for a robust conclusion

Future work

- Sensors
 - Cutting Status Sensors
 - Image processing to evaluate operator & field conditions
 - Yield sensing
 - Wireless data transfer
- Positioning Accuracy
 - Higher accuracy GNSS systems, Multi-GNSS
 - IMU for dynamics of the harvesters
- Synchronization with loading trucks
 - More GNSS unit
- Whole season data from many harvesters
 - Efficiency prediction models from field data
- Spatial-variability maps of field efficiency
 - Field-level optimization and advices for efficiency
- Practical computerized harvester scheduling system
 - Optimum time-fuel consumption
- Applying for other ag. machines

13

THANK YOU

