2023 THE 6th INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND INFORMATION MANAGEMENT ICSIM 2023

Massey University, Palmerston North, New Zealand | Jan. 31-Feb. 2, 2023

IM2-046: Artificial Intelligence of Things (AIoT) for Disaster Monitoring using Wireless Mesh Network

Presenter: Mau-Luen THAM

I. Introduction

Background

- The inherent characteristics of Internet of things (IoT) such as low computation power of IoT nodes and transmission reliability of IoT links demand a new paradigm for efficient data processing and dissemination.
- This is especially true for disaster situations with high possibility of communication breakdowns.
- In the traditional IoT framework, these data are transmitted to a remote central cloud platform through the Internet to be processed.
- **Drawback**: There is an issue where the big data transmission process consumes enormous energy, time, cost, and bandwidth.

I. Introduction

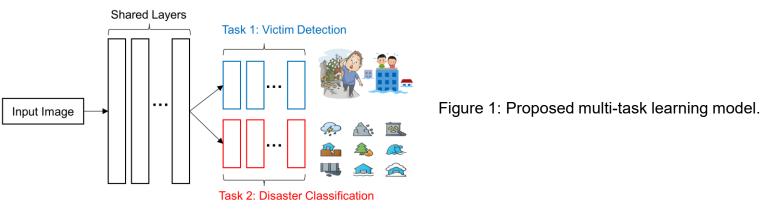
Problem Statement

- Edge computing is introduced to process and analyze the valuable information from the raw sensor data at the network edge in real-time.
- The evolution of edge computing technology has driven the smart applications towards the use of artificial intelligence (AI).
- The fusion technology of AI and IoT is referred to as artificial intelligence of things (AIoT).
- **Drawback**: The limited processing capacity constraints of IoT devices present a challenge to integrate AI into AIoT applications.

Artificial Intelligence of Things (AloT)

- Several existing works [8]–[10] explored the potential of AIoT for situational awareness and disaster recovery operations.
- The authors in [11] demonstrated how sequence model could predict the flow rates in downstream gauging station based on the flow rate in upstream station.
- The study in [12] utilized signals from fire detection system to predict the potential of house fire and alert the appropriate authorities using IoT networks.
- **Drawback**: These works utilized only machine learning. When using more advanced deep learning (DL) algorithms such as convolutional neural networks (CNN), the computational power of IoT device could become a burden.

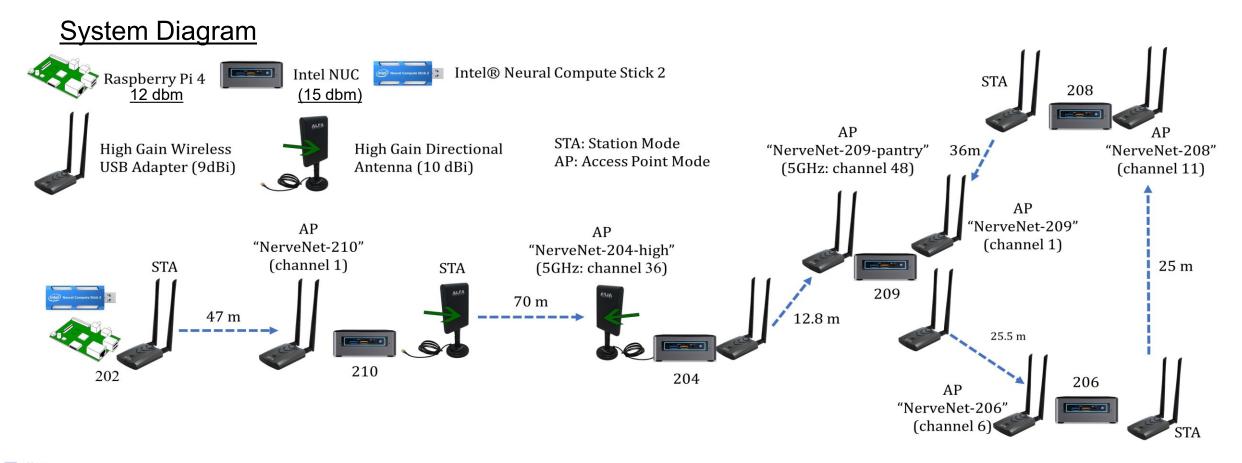
Disaster Classification and Victim Detection


- When disaster events happen, an efficient rescue operation requires the detected disaster type and number of victims.
- Literature on disaster classification often surrounds the dataset since the robustness of disaster monitoring is tightly correlated with the quality and quantity of training data.
- There are five major datasets for disaster classification, which are Artificial Intelligence for Disaster Response (AIDR) [20], Damage Multimodal Dataset (DMD) [21], Damage Assessment Dataset (DAD) [22], CrisisMMD [23] dataset, and Crisis Image Benchmark Datasets (CrisisIBD) [24].
- **Drawback**: For victim detection task, there is a lack of a proper benchmark dataset possibly due to privacy concerns.

Multi-task Learning

- **Drawback**: There are limited works in disaster response domain that address multiple tasks together.
- Research work in [28] was the first to address the need of MTL model for (i) disaster classification, (ii) informativeness, (iii) humanitarian categories, and (iv) damage severity assessment on a given input image.
- On the other hand, our previous work [6] is the first to propose a MTL model for joint disaster classification and victim detection, as shown in Figure 1.

<u>NerveNet</u>


- NerveNet is a resilient network developed by Japan's National Institute of Information and Communications Technology (NICT).
- NerveNet is a specially developed mesh network for the regional area to provide reliable network access and a stable, resilient information-sharing platform in emergencies, even if the base station is destroyed in a disaster.
- NerveNet has the feature of database synchronisation. It uses a hearsay daemon to synchronize the database of every node within the NerveNet network.
- We utilize NerveNet to increase the transmission reliability of AloT.

2023 the 6th International Conference on Big Data and Smart Computing (ICBDSC 2023)

III. AIOT IMPLEMENTATION

2023 the 6th International Conference on Big Data and Smart Computing (ICBDSC 2023)

III. AIOT IMPLEMENTATION

Testbed

(b)

(c)

(d)

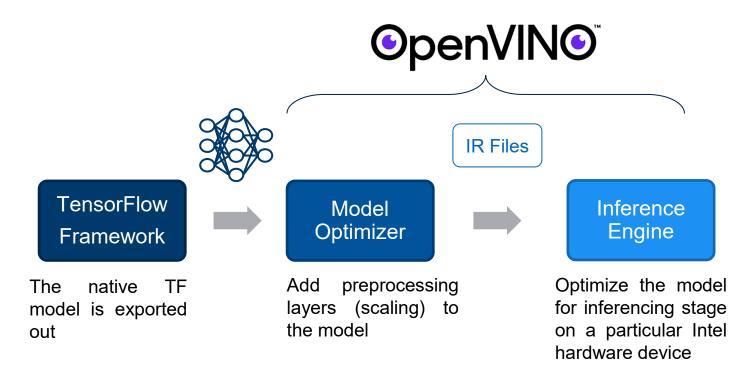
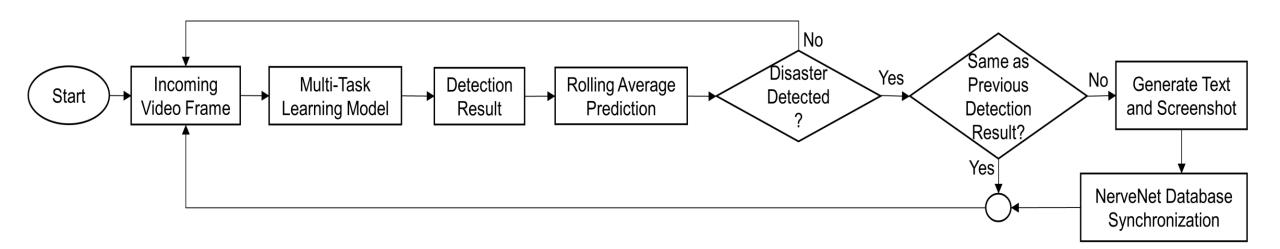


Figure 2: (b) NerveNet monitoring node (front view). (c) NerveNet monitoring node (rear view). (d) NerveNet base station node.

III. AIOT IMPLEMENTATION

Open Visual Inference and Neural Network Optimization (OpenVINO)


Massey University, Palmerston North, New Zealand Jan. 31-Feb. 2, 2023

2023 the 6th International Conference on Big Data and Smart Computing (ICBDSC 2023)

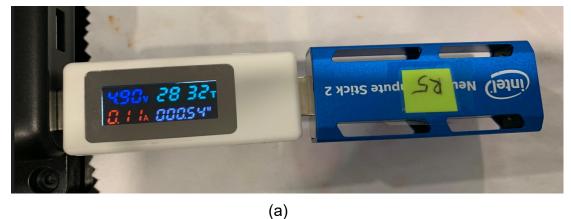
III. AIOT IMPLEMENTATION

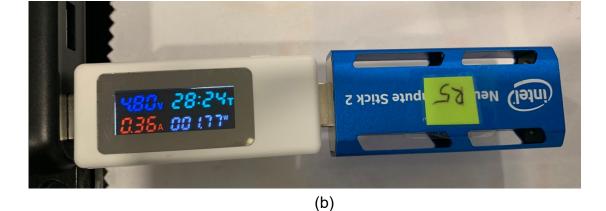
Working Flow

IV. PERFORMANCE EVALUATION

Disaster Monitoring (Frames per second)

		pi@raspberrypi: ~/Documer	nts/rpi_mtl_project	~ D
File Edit Tabs	Help			
Exception: Path pi@raspberrypi: ed_model.xmli [INFO] Creatin [INFO] Reading [INFO] Configu dict_keys(['Stat all/yolov3/yolo_ [INFO] Loading pi@raspberrypi: ed_model.xmli [INFO] Creatin	to the model m /Documents/rpi nput sample_im g Inference En the network: ring input and efulPartitione nms/Max', 'Sta the model to /Documents/rpi nput sample_im g Inference En	nodel/rpi_float/saved_mod _mtl_project \$ python3 d mages/demo_video.mp4de model/rpi_float16/saved_ d output blobs edCall/yolov3/disaster_he atefulPartitionedCall/yol the plugin t_mtl_project \$ python3 d mages/demo_video.mp4de mgine	model.xml ead/reshape_1/Reshape', 'Sta ov3/yolo_nms/Reshape_9']) letect_video.pymodel mode evice MYRIAD	's a directory el/rpi_float16/sa atefulPartitioned
[INFO] Configu dict_keys(['Stat	ring input and efulPartitione nms/Max', 'Sta	edCall/yolov3/disaster_he atefulPartitionedCall/yol	_model.xml ead/reshape_1/Reshape', 'Sta .ov3/yolo_nms/Reshape_9'])	atefulPartitioned
E: [global] [n an error: -1				





IV. PERFORMANCE EVALUATION

Disaster Monitoring (Power Consumption)

1.23 W

Figure 5: Power Measurement. (a) Idle time. (b) Execution time.

Massey University, Palmerston North, New Zealand Jan. 31-Feb. 2, 2023

IV. PERFORMANCE EVALUATION

NerveNet Database Synchronization (Text)

disaster_detected	flag_invalid	id_node_update	id_record	time_discard	time_update	timestamp_sync	victim_count
wildfire	-+ NULL	BS202	202- W -1	1671005184900	1670918784900	2022-12-13 08:23:44	(
flood	NULL	BS202	202-W-2	1671005252170	1670918852170	2022-12-13 08:23:44	(
earthquake	NULL	BS202	202-W-3	1671005312069	1670918912069	2022-12-13 08:23:44	.
flood	NULL	BS202	202-W-4	1671005313689	1670918913689	2022-12-13 08:23:44	.
vildfire	NULL	BS202	202-W-5	1671005322759	1670918922759	2022-12-13 08:23:44	[]
other	NULL	BS202	202-W-6	1671005399168	1670918999168	2022-12-13 08:23:44	1 :
vildfire	NULL	BS202	202-W-7	1671005406078	1670919006078	2022-12-13 08:23:44	
earthquake	NULL	BS202	202-W-8	1671005416478	1670919016478	2022-12-13 08:23:44	
landslide	NULL	BS202	202-W-9	1671005445368	1670919045368	2022-12-13 08:23:44	
other	NULL	BS202	202-W-10	1671005601817	1670919201817	2022-12-13 08:23:44	:
earthquake	NULL	BS202	202-W-11	1671005609557	1670919209557	2022-12-13 08:23:44	l
vildfire	NULL	BS202	202-W-12	1671005692526	1670919292526	2022-12-13 08:23:44	
earthquake	NULL	BS202	202-W-13	1671005694106	1670919294106	2022-12-13 08:23:44	I
wildfire	NULL	BS202	202-W-14	1671005696126	1670919296126	2022-12-13 08:23:44	

IV. PERFORMANCE EVALUATION

NerveNet Database Synchronization (Image)

MariaDB [db_donut]> select * from shbt_boxshare;

+			+ 	bodv		+-
+			+			+-
		e-attached-3230322d5 e-attached-3230322d5			2022–12–13–16:06:23 2–12–13–16:07:31.j	515 .
		-attached-3230322d5			ke2022-12-13-16:07:31.jp	2
		-attached-3230322d5		-	2–12–13–16:08:32.jp	515 .
		e-attached-3230322d5			2022-12-13-16:08:41	2
· · · · · · · · · · · · · · · · · · ·	· _	e-attached-3230322d5			2-12-13-16:09:58.jp	515
/var/tmp/fieldfile	/shbt boxshare	e-attached-3230322d5	72d37	wildfire2	2022-12-13-16:10:05	.jpg
<pre>/var/tmp/fieldfile</pre>	/shbt_boxshare	e-attached-3230322d5	72d38	earthqual	ke2022-12-13-16:10:	15.jpg
		e-attached-3230322d5			e2022-12-13-16:10:4	515 .
· · · · · · · · · · · · · · · · · · ·		e-attached-3230322d5			2-12-13-16:13:20.jp	2
		e-attached-3230322d5		-	ke2022-12-13-16:13:	525
· · · · · · · · · · · · · · · · · · ·		-attached-3230322d5			2022-12-13-16:14:51	515
		-attached-3230322d5		-	ke2022-12-13-16:14:	525
/ /var/tmp/ileidille	/snbt_boxsnare	e-attached-3230322d5	/203134	wildIire2	2022-12-13-16:14:55	+
id_node_update	id_record	time_calibrate	time_d	iscard	time_update	timestamp_sync
BS202	202-W-1	NULL	167100	5184290	1670918784290	2022-12-13 08:07:14
BS202	202-W-2	NULL	167100	5251650	1670918851650	2022-12-13 08:23:44
BS202	202-W-3	NULL	167100	5311529	1670918911529	2022-12-13 08:24:14
BS202	202-W-4	NULL	167100	5313139	1670918913139	2022-12-13 08:13:44
BS202	202-W-5	NULL	167100	5322159	1670918922159	2022-12-13 08:14:44
BS202	202-W-6	NULL	167100	5398618	1670918998618	2022-12-13 08:27:44
BS202	202-W-7	NULL	167100	5405488	1670919005488	2022-12-13 08:15:44
BS202	202-W-8	NULL	167100	5415898	1670919015898	2022-12-13 08:16:14
BS202	202-W-9	NULL	167100	5444838	1670919044838	2022-12-13 08:16:14
BS202	202-W-10	NULL	167100	5601267	1670919201267	2022-12-13 08:35:44
		NULL		5608977	1670919208977	2022-12-13 08:34:44
BS202	202-W-11				1 10/09192009//	2022-12-13 08:34:44
BS202 BS202	202-W-11 202-W-12	NULL			1670919291956	2022 - 12 - 13 08:34:44 2022 - 12 - 13 08:35:14
	,		167100	5691956 5693536		

IV. PERFORMANCE EVALUATION

NerveNet Synchronization Latency

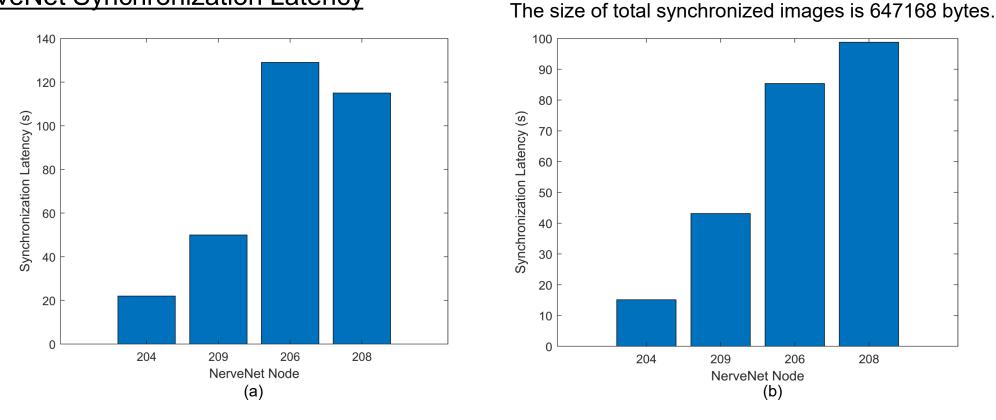


Figure 7: Synchronization Latency with respect to node 210. (a) Text. (b) Image.

V. Conclusions

- In this paper, we have proposed a AloT-based disaster monitoring using NerveNet wireless mesh network.
- To reduce the heavy workload of AI inference, we utilized OpenVINO to accelerate the process so that it can be executed on low-powered Raspberry Pi device.
- As for the data robustness, we invoked the feature of data synchronization to disseminate the data among NerveNet nodes.
- The effectiveness of the solution has been demonstrated via a testbed implementation.
- In future, we plan to test the framework in a LoRa based mesh network.

