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Abstract Remote flood forecasting has exponentially grown over the past decade 
together with the unprecedented expansion of Internet of Things (IoT) network. This 
is feasible with the use of long-range wireless communication technology such as 
LoRa. Ideally, each LoRa device shall process the sensor data locally and trigger 
warnings to the remote server based on prediction results. However, conventional 
prediction methods rely on highly computational artificial intelligence 
(AI) algorithms, which are not suitable for low-powered LoRa network. In this 
paper, the LoRa device is integrated with an edge AI model, which is based on 
long short-term memory (LSTM) neural network. OpenVINO is adopted to optimize 
the LSTM model before executing the solution on a Raspberry Pi 4 in combination 
with Intel Movidius Neural Computing Stick 2 (NCS2). Experimental results dem-
onstrate the feasibility of deployment of the customized model on low-cost and 
power-efficient embedded hardware. 
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7.1 Introduction 

Flood forecasting models have been researched in the hydrological engineering area 
for many years. Recently, there has been increased research interest in river flood 
prediction and modeling, defined as data-driven approaches. The artificial neural 
network (ANN) model is the most famous usual data-driven approach. Most
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conventional statistical methods require a lot of data for their models, and they can 
generate no assumptions for both linear and nonlinear systems. Hence, the data-
driven approach, ANN, is an alternative to hydrological flood forecasting instead of 
the existing methods [1].
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Artificial intelligence (AI) has made essential development in modeling hydro-
logical forecasting and dynamic hydrological issues. With the advancement of 
information technology, the application of ANN models in many aspects of science 
and engineering is increasingly becoming common due to its simplicity of structure. 
Diverse neural network modeling approaches have been applied, like implementing 
the model approaches individually or combining process-based approaches to min-
imize mistakes and increase the models’ forecasting accuracy. The study in [2] 
applied AI model to forecast river flow for 15 years starting from 2000. 

However, there are some limitations of the ANN model. One of them is lacking 
understanding of watershed processes. Furthermore, the limitation of memory in 
calculating sequential data exposes the disadvantages of the ANN model. The 
breakthrough in computational science has recently increased the interest in deep 
neural network (DNN) approaches. In addition, the most recent DNN applications, 
such as the long short-term memory (LSTM) [3] and gated recurrent unit (GRU) [4] 
neural networks, have been efficiently implemented in diverse areas and fields, such 
as time sequence problems. Those models can apply to machine translation, speech 
recognition, tourism field, language modeling, rainfall-runoff simulation, stock 
prediction, and river flow forecasting. 

On 11th March 2011, around 29,000 cellular towers were damaged in the East 
Japan Great Earthquake. These damages have restricted the broadcast of evacuation 
notices and the collection of historical information for disaster forecasting. Hence, it 
can be known that the resilience of a network remains an open issue in the 
deployment of the fault-tolerant network during an emergency disaster. Fortunately, 
a disaster-resilient mesh-topological network called NerveNet was developed by 
Japan NICT. Each NerveNet node is independent and tolerant to system failure and 
link disconnection due to its mesh structure. 

In this paper, a flood forecasting model is proposed. In the study area, rainfall and 
river water levels collected at hydrological stations serve as dataset for the training 
and testing process of the AI models. Then, the forecasted flood water level will be 
processed to generate the flood warning message. It will be sent through the 
NerveNet LoRa mesh network. Note that the proposed solution facilitates edge 
computing, which is one of goals of the ASEAN IVO project titled “Context-
Aware Disaster Mitigation using Mobile Edge Computing and Wireless Mesh 
Network.” 

The rest of the paper is organized as follows. Section II discusses the related 
works. Section III describes the system architecture. Section IV presents the exper-
imental results and discussions. Section V concludes the article.
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7.2 Related Work 

7.2.1 Edge AI 

Several existing works [5, 6] explored the potential of edge AI for various applica-
tions. The authors in [5] focused on real-time apple detection with the implementa-
tion of YOLOv3-tiny algorithm on various embedded platforms. However, they did 
not consider the communication aspects. Recognizing the importance of LoRa, the 
authors in [6] proposed an edge AI in LoRa-based fall detection system with fog 
computing and LSTM. The processing burden is placed on a LoRa-based edge 
gateway, where the collected sensor information is transmitted from an edge node 
via Bluetooth Low Energy (BLE). Differently, our solution integrates both edge AI 
and LoRa functionalities into one single device, which simplifies the deployment 
effort. 

7.2.2 NerveNet 

NerveNet is a resilient network developed by Japan National Institute of Information 
and Communications Technology (NICT) [7]. NerveNet is a specially developed 
network for the regional area to provide reliable network access and a stable, resilient 
information-sharing platform in emergencies, even if the base station is destroyed in 
a disaster. The base stations of NerveNet are interconnected by the Ethernet-based 
wired or wireless transmission systems such as satellite, Wi-Fi, LoRa, and so 
on. They will form a mesh-topological network. 

Nowadays, the current trend of the common network infrastructures uses the tree 
topology. As compared to it, NerveNet has the characteristic that it is more tolerant 
to the faults such as node failures, disconnections, destruction of the base station, and 
so on. Since the base station in the NerveNet supports basic services such as SIP 
proxy, DNS, and DHCP, the NerveNet can also continuously provide connectivity 
services to the devices. 

7.3 System Architecture 

7.3.1 Dataset 

The dataset we employ is the Abashiri River watershed [8], located northeast of 
Hokkaido, Japan. The area of the watershed is around 1380 km2 . It has a 115 km 
long main river to the North Pacific and a range of elevation from 0 to 978 m [9]. All 
AI models are trained and tested using the datasets observed at the downstream



stations called “Hongou.” The used datasets are hourly datasets with the water level 
and rainfall variables from first January 2019 to 31st December 2020. 
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Table 7.1 Training and testing period for the dataset 

Dataset Training Test 

Hongou (Jan 2019 to Dec 2020) Jan 2019 to May 2020 Jun 2020 to Dec 2020 

Table 7.2 Hyperparameter 
settings for LSTM model 

Hyperparameter Value 

Sequence length 24 
Optimization algorithm Root mean squared propagation 
Epoch 50 
Batch size 64 

During data preprocessing, the rainfall and water level data undergo a train-test 
split, separated into 70% of the data as training dataset and 30% as a testing dataset, 
as listed in Table 7.1. The training data calculates the training process error and 
estimates the AI models’ parameters. The testing data provides an independent 
performance evaluation of the AI models after training. 

Next, the hydrological dataset has also undergone data standardization where the 
values’ distribution is rescaled to a mean value of 0 and a standard deviation value of 
1. Data scaling is essential to fasten the training process of the AI model because the 
AI models can converge more rapidly if the dataset features are closer to the normal 
distribution. Prior to the AI model training, the time series dataset is converted into 
sequential data with 24-time steps as the sequence length. The model performs 
equally well when the sequence length is between 5 and 15 or more. Therefore, in 
this paper, the sequence length value of 24 is used in the model to represent 24 h in 
1 day. 

7.3.2 AI Model Training in Google Colab 

In this paper, four types of AI models, namely, Random Forest, SVM, LSTM, and 
GRU, are trained and tested on the dataset to benchmark the performance of the 
system in terms of flood water level forecasting. Trained in in Google Colab 
platform, the best AI model will be selected as the edge AI. 

For Random Forest, the parameter “max_depth” represents each tree’s depth in 
the forest. Here, we set the max_depth value to 2. There are several hyperparameters 
in the LSTM model-building process. Firstly, the optimization algorithm is the 
stochastic gradient descent procedure’s extension to update the weights iterative of 
the network according to the training dataset. Secondly, an epoch is defined as the 
whole dataset transferring forward and backward across the model’s neural network 
once. Thirdly, the batch size is the number of samples propagating throughout the 
entire neural network. Table 7.2 demonstrates the hyperparameter settings of the



LSTM model. For fair comparison, the same hyperparameters are adopted to train 
the GRU models. 
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7.3.3 AI Model Optimization Using OpenVINO 

The immediate output format of the LSTM model is .h5, which will be converted to 
pb format. The intention is to utilize the OpenVINO toolkit [10], which enables the 
faster running of the AI model in edge device. There are two main components in the 
OpenVINO toolkit, which are the model optimizer and inference engine. Firstly, 
when the trained model in pb format is fed into the model optimizer, it converts them 
to the IR format. At the same time, it optimizes the performance, space, and 
hardware-agnostic with conservative topology transformations. The outputs of the 
model optimizer are .xml and .bin. 

Secondly, the AI inferencing process is performed at the edge device by setting 
the inference engine to Intel Neural Compute Stick 2 (NCS2), which is a hardware 
accelerator. Before feeding to the inference engine, the data is scaled using the 
scaler.gz exported from the training process. The scaled data is then reframed. The 
historical time series data representing the last 24 h is extracted from the scaled 
dataset by retrieving the top 24 values of the rainfall and water level data. After that, 
the sequence data and the trained model in IR format are fed into the inference 
engine to generate the water levels ahead of 1 hour in text form and the result graph 
in image form. 

7.3.4 Evaluation Metrics 

The mean absolute error (MAE) is the mean of the differences between the original 
value with the forecasted value. On an excellent flood forecast, the MAE should be 
smaller. Mathematically, it can be expressed as: 

MAE= 
1 
n 

n 

i= 1 

eij j ð7:1Þ 

The mean absolute percentage error (MAPE) is the percentage of the mean of the 
total error. On an excellent flood forecast, the MAPE should be smaller. It is 
written as: 

MAPE= 
1 
n 

n 

i= 1 

ei 
yi 

× 100 ð7:2Þ
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The root mean squared error (RMSE) is the square root of the mean of the squared 
deviation of the forecasted flood water level value. On an excellent flood forecast, 
the RMSE should be smaller. It is written as: 

RMSE= 
1 
n 

n 

i= 1 

ei 2 ð7:3Þ 

R2 is the coefficient of determination and goodness of fit. With an excellent flood 
forecast, the R2 should be larger. 

R2 = 1-
sum squared regression SSRð Þ  
total sum of squares SSTð Þ ð7:4Þ 

The NerveNet LoRa data transmission performance is evaluated by calculating 
the packet delivery ratio (PDR) of LoRa packets. 

PDR= 
number of packets received 
number of packets sent

ð7:5Þ 

7.4 Results and Discussions 

Table 7.3 compares the water level forecasting performance of the aforementioned 
five AI model types on the testing dataset. Theoretically, the deep learning methods 
outperform the conventional machine learning methods when the big data comes 
into its input. This is consistent with the result, where the LSTM and GRU models 
have a lower value of MAE, MAPE, and RMSE than the random forest and SVM 
models. This indicates that the deep learning models have a lower deviation of the 
forecasted results from the ground truth and a lower error percentage. A higher R2 

value indicates a more excellent time series forecasting performance from the deep 
learning models. 

From the table, it can be observed that the LSTM model has more excellent 
performance than the GRU model, since it has lower MAE, MAPE, RMSE, and

Table 7.3 Benchmarking 
performance for prediction 

AI model MAE RMSE MAPE R2 

Random forest 0.0656 0.078 0.0972 0.7807 

SVM 0.0541 0.0632 0.0763 0.8562 

GRU 0.0138 0.0154 0.0217 0.9915 

LSTM (Keras) 0.0088 0.0092 0.0126 0.997 
LSTM (OpenVINO) 0.0593 0.0907 0.0899 0.704



higher R2 . This finding is consistent with the findings in [11], where the LSTM 
model performs better than the GRU model in the case of short text processing and 
large-size datasets. In this paper, there is a huge amount of rainfall and water level 
dataset where both types of variables are short integers. They act as the inputs to the 
LSTM and GRU models. Therefore, it can be seen that the LSTM is more appro-
priate than the GRU models in these scenarios.
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All in all, the LSTM has the best performance in the AI water level forecasting, 
since it has the lowest MAE, MAPE, and RMSE while the highest R2 among all the 
proposed AI models. Therefore, LSTM is chosen as the AI water level forecasting 
model. Specifically, OpenVINO is used to convert the .h5 model to .xml and .bin 
format. It can be seen that there is a performance degradation of the converted model 
in all aspects. 

Figure 7.1a displays the prediction versus ground truth for test dataset by using 
LSTM variations. As expected, the prediction using Keras model is close to the 
actual values. To reveal more insights, Fig. 7.1b compares the inference time 
between these two LSTM models. It can be seen that the LSTM (OpenVINO) is 
28× slower than the Keras version. The reason is that the Keras model was using the 
Intel® Xeon® CPU at 2.20Ghz provided by the Google Colab. This hardware has 
more computational power than the NCS2, which consumes only around 1.5 W. 

Figure 7.2 shows the actual deployment of LoRa nodes. For the LoRa parameters, 
we adopted spreading factor of 12, transmission power of 20 mW, and bandwidth of 
500 kHz. Three NerveNet LoRa nodes serve as MQTT subscriber, whereas one 
NerveNet LoRa node acts as MQTT publisher. The publisher publishes the MQTT 
message at three different locations. At each location, a total of 11 LoRaMesh 
packets are transmitted. The quality of service (QoS) level is set to zero, which 
guarantees best-effort message delivery. In other words, the publisher only transmits 
each packet once, and LoRa message packets may be lost during the transmission 
process. Node 208 is located inside the building in such a way that nodes 203 and 
204 can act as relay node. We implement subscriber and publisher nodes using Intel 
next unit computing (NUC) and Raspberry Pi 4, respectively. The latter is chosen 
due to its high portability and low cost, which is suitable for massive deployment of 
flood monitoring. 

Figure 7.3 depicts the overall performance of NerveNet LoRaMesh. It can be 
observed from Fig. 7.3a that only extra hops are needed at location 3. This is 
reasonable since the distance between 204/208 and location 3 is at least 1200 m. 
In this case, node 203 which is closer to location 3 acts as relay node. For LoRaMesh 
packet to arrive at node 208, the packet initially sent by node 214 at location 3 is 
passed to 203, through 204 to 208. For other two locations, only one hop transmis-
sion is needed. This is because there are less obstacles, such as trees and buildings. 
The multi-hop transmission is affected by the received signal strength indicator 
(RSSI), as reported in Fig. 7.3b. All RSSI values are measured with respect to the 
publisher node 214, except the last two columns. Specially, 204 and 208 measure-
ments are based on their relay nodes 203 and 204, respectively.
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Fig. 7.1 LSTM performance benchmarking. (a) Prediction vs. ground truth. (b) Inference time
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Fig. 7.2 System deployment. (a) The location of three subscriber nodes (203, 204, and 208) and 
one publisher node (214). (b) Subscriber node (Intel NUC). (c) Publisher node (front view). (d) 
Publisher node (rear view) 

As shown in Fig. 7.3c, all LoRaMesh packets are received when the publisher 
transmits messages at locations 1 and 2. For location 3, 2 out of 11 packets are lost 
during the transmission for nodes 204 and 208. Specifically, when node 204 does not 
receive the packets from 203, it could not forward them to 208. Figure 7.3d 
compares the time on air. In LoRaMesh, time on air defines the elapsed time on 
air for a LoRaMesh packet between publisher and subscriber. As expected, the 
further the distance, the longer time needed to transmit the LoRaMesh packets.
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Fig. 7.3 Performance of NerveNet LoRaMesh. (a) Hop count. (b) RSSI. (c) PDR. (d) Time on air 

7.5 Conclusion 

In this paper, we have proposed an edge AI solution that forecasts flood water level 
and transmits the packet via LoRa mesh network. The AI model training and the 
testing dataset are obtained from Japan’s organization. Hence, the AI results may not 
apply to the local area since the weather, season, humidity, and geographical 
condition of Malaysia are different from Japan. The local dataset can be requested 
from the local government to build an AI model that can fit the situation in 
Malaysia’s local area so that a better understanding of the feasibility of the AI 
model in disaster detection in Malaysia. 
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