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Optimum detection for extracting maximum information from symmetric qubit sets
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We demonstrate a class of optimum detection strategies for extracting the maximum information
from sets of equiprobable real symmetric qubit states of a single photon. These optimum strategies
have been predicted by Sasaki et al. [24]. The peculiar aspect is that the detections with at least three
outputs suffice for optimum extraction of information regardless of the number of signal elements.
The cases of ternary (or trine), quinary, and septenary polarization signals are studied where a
standard von Neumann detection (a projection onto a binary orthogonal basis) fails to access the
maximum information. Our experiments demonstrate that it is possible with present technologies
to attain about 96 % of the theoretical limit.

PACS numbers: 03.67.Hk, 03.65.Ta, 42.50.–p

I. INTRODUCTION

In communications systems a sender, Alice, represents
messages, for example the alphabet {a, b, . . . , z}, by a
given set of letters {xi} such as {0, 1}. She transmits se-
quences of the letters, in the form of codewords, through
a communication channel. A receiver, Bob, detects code-
words and thereby retrieves the message. To design an
optimum communication system, one should first know
basic properties of distinguishing the letter set {xi} over
a channel. These are specified by conditional probabili-
ties P (yj |xi) that Bob finds the outcome yj when Alice
selected the letter xi. The matrix of these conditional
probabilities, [P (yj|xi)], is called the channel matrix. All
the physical properties of the channel and of the detector
are modeled through this channel matrix.

When a communication system operates in quanta, the
channel matrix will be determined by the rules of quan-
tum mechanics. The physical carrier conveying a letter xi

should explicitly be described by a quantum state |ψi〉,
which we refer to as the letter state. For example, if
the letters {0, 1} are conveyed by weak pulses of laser
light, the corresponding quantum states { |ψi〉} are usu-
ally nonorthogonal coherent states. Such nonorthogonal
states can never be distinguished perfectly, even in prin-
ciple. Therefore even if a channel and a detector are
completely noiseless, quantum mechanics imposes an in-
evitable source of error or ambiguity in signal detection.

A detection process is represented mathematically by
the probability operator measure (POM), which consists
of nonnegative (generally not normalized) Hermitian op-
erators satisfying the resolution of the identity [1, 2, 3]:

Π̂†
j = Π̂j , Π̂j ≥ 0 ∀j,

∑

j

Π̂j = Î . (1)

Each element Π̂j is associated with the measurement
outcome j and hence implies the output letter yj. If
a channel is noiseless and hence quantum limited, then

the channel matrix is given by

P (yj |xi) = 〈ψi| Π̂j |ψi〉 . (2)

The primary concern in quantum communication is to

determine the optimum detection strategy {Π̂j} to dis-
tinguish among the letter states { |ψi〉}. Each state |ψi〉
encodes the classical information embodied in the classi-
cal letter xi, which is selected with known prior proba-
bility {P (xi)}.

The meaning of ‘optimum’ depends on a task that
we are going to do. The simplest requirement is that
Bob wants to decide which letter state he has received
among the set { |ψi〉} with the smallest error. This usu-
ally means minimizing the average error probability, or
bit error rate Pe [4, 5]. A second possibility is for Bob to
eliminate all errors by allowing the possibility of incon-
clusive results by means of unambiguous state discrimi-
nation [6, 7, 8, 9, 10, 11, 12, 13]. The optimum strategy
in this case will be the one that minimizes the probabil-
ity Pi of inconclusive outcomes. This type of detection
has been proposed for quantum key distribution [14].

For the communication of messages, however, Bob does
best by devising a detection strategy so as to retrieve Al-
ice’s message with the greatest probability. This does not
necessarily mean minimizing either Pe or Pi, but instead
means reducing the uncertainty in some random variable

X = {xi, P (xi)}. Such a detection strategy is directly
related to reliable communication by coding technique
and is actually used as a basic building block for effec-
tive decoding procedures of codeword states formed from
the letter states { |ψi〉}. (A more detailed explanation of
this point is given in Appendix.)

The reduction of the uncertainty caused by a detec-
tion is quantified by the Shannon mutual information
I(X :Y ) between the input (Alice’s) and output (Bob’s)
random variables, X = {xi, P (xi)} and Y = {yj , P (yj)}.
This mutual information I(X :Y ) can be regarded as the
amount of information extracted fromX . Bob’s optimum
strategy will be the one that maximizes I(X :Y ). Other
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figures of merit have also been considered and these in-
clude the fidelity [15, 16].

The optimum conditions are already known for min-
imizing the error probability [4, 5]. It is not an easy
task, however, to find the optimum detection strategies
from these conditions. In fact, optimum strategies are
only known for some special cases such as the set of bi-
nary states, sets of symmetric states [4, 5, 17, 18, 19]
and multiply symmetric states [20]. Unambiguous state
discrimination is possible if and only if the letter states
are linearly independent and an explicit method for con-
structing the optimum strategy has been given in this
case [12, 13]. Finding optimum solutions for I(X :Y )
is much more difficult than those for Pe and Pi due to
the nonlinearity of logarithmic function of I(X :Y ) with
respect to a POM. Optimum solutions are known only
for the set of binary pure states [21, 22] and for sets of
real symmetric qubit states with equal prior probabili-
ties [23, 24].

It seems intuitively reasonable that we might obtain
most information by minimizing either the average error
probability Pe or the probability of inconclusive outcomes
Pi. In fact, the maximum mutual information for binary
states is attained by the same strategy that realizes the
minimum average error probability. There are, however,
cases where the maximum information must be obtained
neither by minimizing Pe nor Pi [23, 24, 25].

Devices capable of demonstrating near optimum detec-
tion at the single photon level have been demonstrated
in the laboratory. The simplest of these is discrimination
between the set of binary photon polarization states with
the minimum allowed average error probability [26]. Un-
ambiguous discrimination between two non-orthogonal
polarization states has also been demonstrated [27, 28].
A set of more than three polarization states is linearly
dependent and hence it is not possible to carry out unam-
biguous state discrimination. Clarke et al. have demon-
strated state discrimination with near minimum error
probability for both the trine and tetrad polarization
states [29]. They have also demonstrated the ability to
extract more information than is possible by the best,
standard von Neumann measurement (a projection onto
binary orthogonal polarization states).

In this paper we describe our experimental implemen-
tation of a class of optimum strategies for maximizing
the mutual information, as predicted by Ref. [24]. One
of these is the ternary or trine set of states discussed
by Clarke et al. [29]. We have improved upon the in-
formation yield obtained by these authors and have also
measured the information obtained from signals formed
from five and seven possible polarizations. Our letter
states are implemented physically as single photon po-
larizations. The required equiprobable real symmetric
qubit states are then states of linear polarization. Such
sets of states have previously found application in quan-
tum key distribution [30, 31]. From the view point of
fundamental interests, they might be the simplest sys-
tem with which to test the peculiar effect predicted by

ψ1ψ2

ω1

ω0

ω2

ψ0

FIG. 1: The measurement state vectors for the optimum
strategy (solid line) and the signal state vectors in the case of
the ternary (trine) signals.

Davies’ theorem. According to the theorem, there must
exist at least one solution, that maximizes the mutual
information, which has N possible outputs, where N
is bounded by d ≤ N ≤ d2 with d being the dimen-
sion of the Hilbert space Hs supported by Alice’s set
[23]. For real state sets, this bounding inequality be-
comes d ≤ N ≤ d(d+1)/2 [24]. Thus for a single photon
polarization system, one can always optimize the mutual
information by constructing a device with just three pos-
sible outputs. This is true regardless of the number of
letter states. In the case of ternary or trine signals, the
optimum measurement consists of three symmetric state
vectors with the length less than the unity, and has been
demonstrated experimentally in Ref. [29]. In the cases
of quinary and septenary signals, the optimum strategies
consist of three nonorthogonal state vectors with differ-
ent lengths. In the septenary case, there are two different
configurations of measurement state vectors. We study
how each of these strategies work and the extent to which
they allow us to access the theoretical maximum amount
of mutual information.

II. REAL SYMMETRIC QUBIT SETS AND

OPTIMUM DETECTION

Let { |↔〉, | l 〉} be the orthogonal basis of linear polar-
ization states of a single photon. Then the real symmetric
qubit states are defined as

|ψi〉 = cos
iπ

M
|↔〉 + sin

iπ

M
| l 〉 (3)

(i = 0, . . . ,M−1).

We assume that each state is selected with equal prior
probability 1/M . This set is one of the few quantum
state sets for which optimum strategies for the accessible
information are explicitly known [21, 22, 23, 24].

For M > 2, the signal states cannot be distinguished
perfectly, thus Pi = 1. The minimum average error prob-
ability is

Pe = 1 − 2

M
, (4)
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|ψ0〉 |ψ1〉 |ψ2〉

|ω0〉 0 0.5 0.5

|ω1〉 0.5 0 0.5

|ω2〉 0.5 0.5 0

TABLE I: The channel matrix of the optimum POM for the
ternary signals.

which is attained by the POM {Π̂j} [1, 18]

Π̂j = |aj〉〈aj| with (5)

|aj〉 =

√
2

M

(
cos

jπ

M
|↔〉 + sin

jπ

M
| l 〉

)
(6)

(j = 0, . . . ,M−1) .

This POM is unique in leading to the minimum error
probability and has the same number of POM elements,
corresponding to the measurement outcomes, as the let-
ter states.

In contrast, maximizing the mutual information re-
quires a POM with three rank-one elements at most,
corresponding to just three measurement outcomes [24].
Although it is also possible to construct optimum POMs
with elements more than three, a strategy with minimum
outputs is often the one desired in practice.

If M is even, a von Neumann measurement, i.e. a pair
of orthogonal projectors, can be the optimum strategy
with minimum outputs. If M is odd, then at least three
outputs are required and a standard von Neumann mea-
surement fails in maximizing the mutual information.
The three rank-one elements required for the optimum

POM {Π̂j} are specified as follows:

Π̂j = |ωj〉〈ωj| (7)

with






|ω0〉 = − sin γ
2 | l 〉

|ω1〉 = 1√
2

(
−|↔〉 + cos γ

2 | l 〉
)

|ω2〉 = 1√
2

(
|↔〉 + cos γ

2 | l 〉
) (8)

where γ is determined from

cos
γ

2
≡ cot

mπ

M
, sin

γ

2
≡ −

√
1 − cot2

mπ

M
(9)

for an integer parameter m within the range M
4 < m <

M
2 . We will refer to the unnormalized vectors given in

Eq. (8) as measurement state-vectors.
In the case of M = 3 (ternary or trine), the optimum

POM is given by m = 1 which results in the set of three
measurement state-vectors with equal norms. The signal
and measurement state-vectors are schematically shown
in Fig. 1. In this figure, each arrow represents the po-
larization direction where the horizontal and the vertical
directions correspond to the two unit bases |↔〉 and | l 〉,
respectively. The length of each arrow represents the
norm of the associated state vector, e.g. |ψi〉 or |ωj〉.

ψ0

ψ1

ψ2ψ3

ψ4

ω1

ω0

ω2

FIG. 2: The measurement state vectors for the optimum
strategy (solid line) and the signal state vectors in the case of
the quinary signals (M = 5).

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉

|ω0〉 0 0.309 0.809 0.809 0.309

|ω1〉 0.5 0.191 0 0.191 0.5

|ω2〉 0.5 0.5 0.191 0 0.191

TABLE II: The channel matrix of the optimum POM for the
quinary signals.

The optimum measurement in this case means that the
state vectors |ψj〉 and |ωj〉 are orthogonal, and thus

P (yj |xj) = 〈ψj | Π̂j |ψj〉 = 0 . (10)

The other two possible measurement outcomes occur
with equal probabilities. This situation is summarized
in Table I.

In the cases of M = 5 (quinary) and M = 7 (septe-
nary), Eq. (8) results in the three measurement state-
vector with two distinct norms. The relationship be-
tween the quinary letter states and the three measure-
ment state-vectors (with m = 2) is depicted in Fig. 2.
The channel matrix in this case is summarized in Table II.
In the septenary case, there are two different POMs with
three elements given by Eq. (8), with m = 2 and m = 3
in Eq. (9) respectively. They are depicted in Fig. 3 and
summarized in Tables III and IV. In either case, there are
combinations of (i, j) that give P (yj |xi) = 0, although j
is not necessarily equal to i (a difference from the ternary
case).

The method to implement the optimum POM with
minimum outputs, as given in Eq. (8), is prescribed in
detail in Ref. [24]. In short, the nonorthogonal mea-
surement basis { |ωj〉} is considered as the projection
of a three-dimensional orthonormal basis in an enlarged
space. Such an enlarged space is achieved by introducing
another independent binary basis.

In practice, the concept described above is realized
as the polarization Mach–Zehnder interferometer shown
in Fig. 4. The four-dimensional space is composed of
{ |↔〉a, | l 〉a, |↔〉b, | l 〉b}, where subscripts represent the
optical paths (a, b) indicated in Fig. 4. Our letter states
present in the subspace spanned by the first two of these
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ψ0

ψ1

ψ2

ω1

ω0

ω2

ψ6

ψ5

ψ0

ψ1

ψ2

ω1

ω0

ω2

ψ6

ψ5

FIG. 3: The two optimum strategies in the case of the septe-
nary signals (M = 7). The left figure corresponds to the
choice m = 2, while the right one corresponds to the other
choice m = 3.

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉 |ψ5〉 |ψ6〉

|ω0〉 0 0.069 0.223 0.346 0.346 0.223 0.069

|ω1〉 0.5 0.154 0 0.154 0.5 0.777 0.777

|ω2〉 0.5 0.777 0.777 0.5 0.154 0 0.154

TABLE III: The channel matrix of the optimum POM with
m=2 (see Eq. (9) ) for the septenary signals.

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉 |ψ5〉 |ψ6〉

|ω0〉 0 0.178 0.579 0.901 0.901 0.579 0.178

|ω1〉 0.5 0.322 0.099 0 0.099 0.322 0.5

|ω2〉 0.5 0.5 0.322 0.099 0 0.099 0.322

TABLE IV: The channel matrix of the optimum POM with
m=3 (see Eq. (9) ) for the septenary signals.

vectors. The additional port (at b in Fig. 4) with an input
of vacuum state |0〉 enlarges the space.

The unitary operation of the Mach–Zehnder part (in-

dicated as Û in Fig. 4) can be written as

A′
H|↔〉a+A′

V| l 〉a+B′
H|↔〉b+B′

V| l 〉b
= Û

(
AH|↔〉a +AV| l 〉a +BH|↔〉b +BV| l 〉b

)
(11)

with





A′
H

A′
V

B′
H

B′
V




=





1 0 0 0

0 cos γ/2 sin γ/2 0

0 − sinγ/2 cos γ/2 0

0 0 0 1









AH

AV

BH

BV





where γ/2 is twice the angle of HWP1. (This γ/2 rep-
resents the angle of one of the unit basis in the enlarged
space relative to the signal plane.) In our setup, the in-
puts are BH = BV = 0 and hence B′

V = 0. Thus the
apparatus of Fig. 4 actually couples a three-dimensional
state space.

PD0 detects |↔〉b components whose amplitude is
given by

B′
H = − sin(γ/2)AV . (12)

Its null result guarantees that the signal was not |ψ0〉. On
the other hand, |↔〉a and | l 〉a components are further

PBS1 PBS2

PBS3

HWP1

HWP2

PD2

PD1

PD0

θ = π/8

θ = γ /4

a

b

a

b

FIG. 4: Principle of the detector that realizes the optimum
POM. Here PBS stands for a polarizing beam splitter, HWP
for a half waveplate whose axis is rotated by θ, and PD for a
photodetector.

mixed at HWP2 and PBS3, resulting in amplitudes of

1√
2

(
A′

H ±A′
V

)
=

1√
2

[
AH ± cos

γ

2
AV

]
(13)

which are then detected at PD1 and PD2. By inspecting
Eqs. (12) and (13), it can be seen that |ωj〉 given in Eq. (8)
were reproduced. When the condition Eq. (9) is satisfied,
the null result at PD1 or PD2 excludes one of the possible
signals ( |ψk±〉 with k+ = M−m and k− = m).

III. EXPERIMENT

The principle described in the previous section is real-
ized in an actual setup to confirm the theoretical results.
In the experiment, the polarization basis { |↔〉, | l 〉} cor-
respond to P- (within the paper plane in Fig. 5) and S-
(perpendicular to the paper plane) polarizations, respec-
tively.

The light source is a He–Ne laser (Spectra–Physics,
model 117A) operating at the wavelength of 632.8 nm.
The laser light of 1 mW is first attenuated by the attenua-
tor ATN1 by a factor of 10−6, purified to the horizontally
polarized state by the polarizing beam splitter PBS0.
The half waveplate HWP0, driven by a stepping motor,
works as a modulator to produce the set { |ψi〉}. Then
the beam is further attenuated by ATN2 by a factor of
10−4. At the input of the Mach–Zehnder interferometer,
the light power is of order 10−4 fW (≈ 3 · 105 photon/sec).
In other words, the beam contains about 10−3 photons in
one meter, whereas our detecting circuit is shorter than
that.

The polarization Mach–Zehnder interferometer is com-
posed of two PBSs, PBS1 and PBS2. Each PBS is care-
fully mounted so as to operate with an extinction ratio
of 1 : 1000 (see below and Ref. [32]). Each path of the
Mach–Zehnder contains one half waveplate, HWP1 and
HWP1′. The angle of HWP1 is adjusted to a quarter of
γ in Eq. (9) so that the polarization of the light is ro-
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PZT

5 kHz demodulator

He-Ne 
laser

PBS1

PBS2

PBS3

HWP1’

HWP0
(motor-driven)

HWP1

HWP2

Port 0

mode matching
lenses

photo
detector

Port 2

Port 1

ATN2

ATN1 on a
mechanical 
shutter

PBS0

photo
detector

photo
detector

FIG. 5: Experimental configuration. The same symbols as
in Fig. 4 and ATN for an attenuator are used. Each of Ports
0, 1, and 2 contains an APD and a silicon photodiode with
a mechanical shutter to switch the beam between them. All
PBS are adjusted for the maximum separation of two polariza-
tion, resulting in a slightly (≈ 0.02 rad) slanted parallelogram
arrangement for the Mach–Zehnder.

tated by γ/2, whereas HWP1′ is inserted for symmetry
and thus adjusted not to affect the polarization state.

The beams from the two paths are superimposed at
PBS2, resulting in two output beams from the Mach–
Zehnder. The one corresponds to path b in Fig. 4 is de-
tected directly at Port 0. The beam in path a in Fig. 4 is
delivered to HWP2 at an angle of π/8 and then to PBS3,
in order to visualize the interference of the beams from
the two paths. The two outputs from PBS3 are detected
at Ports 1 and 2.

The relative path length of the Mach–Zehnder is ad-
justed to be a proper operating point (which is the mini-
mum at either of Port 1 or 2) by a PZT actuator through
a feedback system utilizing the modulation-demodulation
method. Once the relative path length is adjusted, a
sample-and-hold circuit keeps the mirror position fixed
during a measurement sequence (see below) which lasts
typically 20–30 seconds.

There are two photodetectors at each port, a silicon
photodiode and an APD (avalanche photodiode, EG &
G, SPCM–AQ–141–FC) guided through a multimode op-
tical fiber. The former is for alignment purpose (with in-
creased light) and the photon counting process is carried
out with the latter, by mechanically switching the beam
between them. The coupling efficiency of the fiber is
measured to be 0.75–0.8, including the coupling lens and
the connectors before the APD. The output from each
APD is sent to a pulse counter (EG & G ORTEC, model

ω1

ω0 ω2
θ0

ψ0

ψ1

ψ2ψ3

ψ4

FIG. 6: The relation between the measurement state vectors
(left, quinary case M = 5 in this example) and the signal
state vectors (right) with an initial offset angle θ0.

995) to count the number of photon-induced pulses.
The counters are activated simultaneously by a com-

mon trigger, typically of one-second duration and five-
time repetition. The numbers of counts in each duration
are read by a computer from all counters, so that we can
analyze statistical errors. This procedure is repeated for
each signal |ψi〉 with i = 0, . . . ,M−1, composing a full
sequence of measuring the mutual information. The ratio
of counts in the three APDs provides the channel matrix
P (yj |xi) from which the mutual information is derived.

As is discussed in Section II, in the optimum detection
scheme proposed, the mutual information is increased by
excluding one of the possible signals. Thus, realizing zero
probabilities at the output ports is essential in achieving a
high mutual information. In practice, however, there are
several causes that increase the probability at the output
where ideally zero is expected. Among them, the most
pronounced ones are the pulses from an APD without
any light (APD error), the finite extinction ratio of a
PBS (PBS error), and the finite contrast of interference
(interferometer error).

Without any light at all, the average dark counts
of the APDs were measured to be slightly less than
100 count/sec. Although the whole interferometer is en-
closed in a box, the environmental light increases the
number of counts to around 300 count/sec, even if no
laser light is injected. When the laser light is injected,
the leak light due to the imperfection of the interferom-
eter is added, and was measured to the average count of
around 1000 count/sec for the output port at which no
count is expected ideally (see Tables I–IV). The last
increment is considered as the contributions from the
PBS errors and the interferometer error. At the ports
for which finite counts are expected, we had the counts
of order 105 count/sec at most, which is within the linear
range of APDs.

In general, a PBS has an angular-dependent separation
of two polarization components. In our case, it turned
out to be possible to achieve the separation better than
1 : 1000 for both polarization components, by carefully
aligning the angle of incidence slightly (≈ 0.02 rad) dif-
ferent from the standard value π/4. Then the expected
contrast is ≈ 0.998, which we thought sufficient for our
experiment. We adopted this angle in our polarization
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Mach–Zehnder interferometer, resulting in a parallelo-
gram arrangement (see Fig. 5).

The actual contrast obtained with this interferometer
can be as high as

Pmax − Pmin

Pmax + Pmin
≈ 0.98 , (14)

though the typical values under normal experimental
conditions were slightly lower than this. Thus, this is
limited not by the PBS imperfection but by, e.g., the
spatial mode mismatch of the two beams.

In order to analyze the performance of our detecter
circuit, we measured not only the mutual information of
the optimum detection scheme but also its dependence on
the relative angle between the signal set { |ψi〉} and the
measurement state vectors { |ωj〉}. This is relevant to,
for example, the possible rotation of polarization in the
transmitting fiber. We measured the mutual information
against the signal set { |ψ′

i(θ0)〉} where

|ψ′
i(θ0)〉 =

cos

(
iπ

M
+ θ0

)
|↔〉 + sin

(
iπ

M
+ θ0

)
| l 〉 (15)

(i = 0, . . . ,M−1),

as a function of the initial offset angle θ0 (the optimum
detection corresponds to θ0 = 0). The relation between
|ψ′

i(θ0)〉 and |ωj〉 is depicted in Fig. 6 for the case of
quinary signals. In the experiment, θ0 was changed in
steps of π/90 radian (two degrees).

IV. RESULTS

We carried out the optimum measurements described
in Section II for the sources comprising the ternary
(trine), quinary and septenary states. For the septenary
signal states, both of the two optimum detection schemes
(with m = 2 and m = 3 in Eq. (9) ) were tested.

Fig. 7 shows the relative output counts at the three
detectors as the polarization of the input light is varied
in the ternary case. This relative power corresponds to
the probability for the measurement outcome to occur
for a single input photon.

For the polarization angles {−π/6, π/6, π/2} we are
performing the state discrimination with the minimum
error probability, while for the angles {−π/3, 0, π/3}
we are realizing a measurement that allows unambigu-
ous elimination of one possibility among the three let-
ter states. These measurements were referred to as the
trine and anti-trine measurements in Ref. [29]. These au-
thors found an rms deviation of 3.8 % from the theoret-
ical value given in Table I. Our results indicate a lower
value of 1.1 %. The reason for our lower value is that we
have been able to achieve a smaller PBS error.

The data depicted in Fig. 7 leads to the mutual infor-
mation presented in Fig. 8. At the optimum operating

0
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polarization angle (radian)

Port 2
Port 1
Port 0

FIG. 7: The dependence of the relative outputs at the three
APDs on the polarization angle of the injected beam in the
ternary experiment.
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FIG. 8: The dependence of the mutual information on
the initial offset angle θ0 in the ternary experiment (“exper-
iment”, pluses). The ideal case (“ideal”, solid curve) and
the ideal von Neumann case (“Neumann”, dashed curve) are
shown for comparison. The values in an earlier experiment
[29] (“Clarke”, triangles at θ0 = 0 and −π/6) are also shown.

point, corresponding to the best detection strategy, we
clearly find that the mutual information exceeds that at-
tainable with the best von Neumann measurement. Our
value also exceeds that obtained earlier by Clarke et

al. [29] represented as triangles in our figure. The reason
for this is again the smaller PBS error. Our experimen-
tal value is slightly lower than the theoretical maximum
and this is due mainly to a residual PBS error of ap-
proximately 0.1 % and also to the imperfect contrast of
interference. It was found [32] that despite the PBS error
is not the limiting factor of the interference contrast, it
has non-negligible effects on the mutual information.

Fig. 9 shows the relative output counts at our three
detectors for the quinary case. These provide the data
with which to calculate the mutual information depicted
in Fig. 10. Our data show a marginal increase in the mu-
tual information beyond the value that may be attained
with the best von Neumann measurement. The differ-
ence between our experimental result and the theoretical
value is again principally attributable to the PBS error
and the imperfect contrast.
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FIG. 9: The dependence of the relative outputs at the three
APDs on the polarization angle of the injected beam in the
quinary experiment.
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FIG. 10: The dependence of the mutual information on the
initial offset angle θ0 in the quinary experiment. The symbols
are the same as in Fig. 8.

As mentioned earlier, the optimum detection scheme
increases the amount of the mutual information by ex-
cluding one of the possible signals. With three detectors,
only three signals can be excluded at most, and the re-
maining signals do not contribute the mutual information
very much. This fact reduces the maximum mutual in-
formation in quinary case (and in septenary case as well)
from that in ternary case. Although the absolute dif-
ference (of ≈ 0.02) between the experimental and ideal
values in the quinary case is similar to that in the ternary
case, the excess from the von Neumann measurement be-
came only marginal.

Fig. 11 shows the mutual informations derived with the
two possible optimum detection schemes for the septe-
nary case. Even in an ideal case, the increase in the
attainable mutual information over that found using the
best von Neumann measurement is quite small. In both
cases our experimental values failed to reach even the
value attainable by means of the best von Neumann mea-
surement.

The result with m = 3 shows a higher mutual infor-
mation than that with m = 2. This difference is not by
an experimental failure, but due to the difference in the
influences of inperfect contrast between the two cases.
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FIG. 11: The dependence of the mutual information on the
initial offset angle θ0 in the septenary experiment with m = 2
(crosses) and m = 3 (pluses). Other symbols are the same as
in Fig. 8.

The reduced contrast increases the light leaking towards
the port where ideally no light is expected, which in turn
reduces the mutual information. The absolute amount
of leak light is proportional to the amount of light in-
terfering. This qualitatively explains the difference of
experimental results with m = 2 and m = 3. In the for-
mer case the interfering light is greater than the latter,
thus the influence on the mutual information is larger.

V. DISCUSSION AND CONCLUDING

REMARKS

Our ability to communicate classical information by
means of a quantum channel is limited by the existence
of non-orthogonal quantum states and the associated re-
strictions in discriminating among them. These factors
are fundamental to quanta as distinct from classical infor-
mation theory and make quantum key distribution pos-
sible [30, 31].

The optimum use of a quantum communication chan-
nel is closely related to the maximization of mutual infor-
mation, as discussed in Appendix. The accessible infor-
mation is obtained by maximizing the mutual informa-
tion through the selection of the detection process. There
are only a very few examples of signal states for which
the accessible information is known [21, 22, 23, 24]. One
such example is that of the real symmetric qubit states
[24].

In this paper we have described our polarization Mach–
Zehnder interferometer that was designed to extract the
accessible information from signals formed from symmet-
ric polarization states. For the ternary (trine) states,
our results proved an amount of information close (96 %)
to the theoretical limit. Our value for the mutual in-
formation exceeds that reported in an earlier experi-
ment [29]. The difference between our measured value
for the mutual information and the theoretical limit is
due principally to the leakage of the ‘wrong’ polariza-
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tion through our polarizing beam splitters and also to
the imperfect contrast. The effect of this leakage is more
pronounced when we consider the quinary and septenary
signal states. Our experiments suggest that optimum
quantum communication based on the ternary (trine)
polarization states, for example the quantum key dis-
tribution by the Phoenix–Barnett–Chefles protocol [31],
should be feasible. Schemes based on the quinary and
septenary states will present a greater challenge.

In the light of fundamental interests, the quinary and
septenary states meet with the simplest cases where the
maximum amount of information can be extracted by
a detection in which the number of possible outputs is
less than that of input states. Davies’ theorem predicted
that a device with three possible outputs suffices for any
real polarization system of a single photon. In our ex-
periment, Davies’ theorem has been tested within the
PBS error. For the complete confirmation, further study
might be necessary, e.g. comparing the minimum-output
optimum detection with the one corresponding the group
covariant optimal solution which consists of the same
number of outputs as inputs.
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*

APPENDIX A: MUTUAL INFORMATION

In this Appendix we give the definition of the mutual
information and explain its functional meaning. Primary
concerns of information theory are how to represent mes-

sages as effectively as possible and how to transmit mes-

sages as precisely as possible. The mutual information is
related with the second problem.

A sender has a source of messages S and se-
lects one of a known set {a, b, . . . , z} with given
prior probabilities {P (a), P (b), . . . , P (z)}. This source
may be characterized by the random variable S =
{a, b, . . . , z;P (a), P (b), . . . , P (z)}. The sender represents
each of these messages by a sequence of a given set of
letters {xi} such as {0, 1}. These are the symbols run-
ning through the transmission channel. Each message is
then represented by a codeword formed from a sequence
of letters. This is source coding. Information theory tells
us that the effectiveness of source coding can be mea-
sured by the minimum of the average length required for

a codeword and that it is given by the Shannon entropy

H(S) = −
∑

A=a,b,...

P (A) log2 P (A) . (A1)

This is a measure of uncertainty in the random variable
S. It takes its maximum value when all elements appear
with equal probability, that is, when we know nothing
better than a random guess for each element. This mea-
sure of uncertainty is regarded as the amount of informa-
tion required to represent S.

A channel is usually subject to various types of noise
disturbances. Information theory provides means and
limits for reliable information transmission with such
noisy channels. The key idea is to introduce some redun-
dancy in the codeword representation prior to transmis-
sion so as to allow the correction of errors at the receiving
side. This entails adding some redundant letters to the
codewords and hence increases their length. This is chan-

nel coding. The mutual information quantifies how much
redundancy is required for error-free transmission.

The output from the source encoder is a sequence of
the letters forming the codewords representing the mes-
sages. For such sequences one can find the frequencies of
appearance P (xi) for each letter xi. Thus we can define
a random variable X = {xi;P (xi)} for the outputs from
the source encoder. This is the set of inputs to the chan-
nel. A mathematical model for the channel is specified
by the set of possible outputs {yj} and the conditional
probability P (yj |xi) for each input. Given X , {yj}, and
[P (yj |xi)], we can determine the existence or nonexis-
tence of encoders and decoders that achieve a given level
of transmission performance.

The mutual information is defined between the input
and output random variables X and Y = {yj ;P (yj)}.
Here

P (yj) ≡
∑

xi

P (yj |xi)P (xi) (A2)

is the probability of having yj. The uncertainty of the
input random variable X is measured by the Shannon
entropy

H(X) = −
∑

i

P (xi) logP (xi) (A3)

defined in a similar way to Eq. (A1).
If the receiver detects the output signal yj, then he is

now more certain about X . The new probability distri-
bution conditioned by yj is given as

P (xi|yj) =
P (yj|xi)P (xi)

P (yj)
. (A4)

One can then define the average conditional entropy by

H(X |Y ) = −
∑

yj

P (yj)
∑

xi

P (xi|yj) logP (xi|yj). (A5)
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This quantifies the remaining uncertainty of X after hav-
ing the knowledge on the conditioning variable Y . The
information extracted by the receiver is naturally defined
by the reduction of the uncertainty,

I(X :Y ) = H(X) −H(X |Y )

=
∑

xi,yj

P (xi)P (yj |xi) log

[
P (yj |xi)∑

xi

P (xi)P (yj |xi)

]
.(A6)

This I(X :Y ) is the mutual information between X
and Y .

Now let us consider a block coding of length n. The
output from the source encoder is a letter sequence,
which is devided into blocks (message blocks) of length k
(<n). Each block is supplemented by an additional block
(correction block) of n−k letters to compose a transmis-
sion codeword {xp} :

x
p =

message block
︷ ︸︸ ︷
xp

1x
p
2 · · ·xp

k

correction block︷ ︸︸ ︷
xp

k+1x
p

k+2 · · ·xp
n (A7)

(for p = 1, 2, . . . , Lk) ,

where each xp
l (l = 1, · · · , n) is an element of possible

letters {xi; i = 0, 1, · · · , L−1}. Note that although there
are Ln possible sequences of length n in total, only part
of them, i.e. Lk sequences, are used as codewords. This
redundancy, together with appropriate choice of correc-
tion blocks, allows us to recover the possible errors in
transmission.

The input codeword x
p will be disturbed in the chan-

nel so as to come out as a different sequence y
q =

yq
1y

q
2 · · · yq

n. The channel decoder processes this out-
put codeword to assign an appropriate sequence which
should be the correct input codeword. The average error
in this decoding should be as small as possible, while the
redundancy n− k should also be as small as possible. In
other words, keeping the ratio R = k/n, so-called the
transmission rate, as large as possible, we wish to attain
a small error in decoding.

Let us suppose that encoding is made under the con-
straint that the frequency of xi’s occurring in the set of
codewords {xp} is P (xi). Information theory says that
by an appropriate design of the coding scheme it is pos-
sible to transmit the messages with an error probability
as small as desired if R < I(X :Y ) is satisfied. For the
fixed channel model [P (yj |xi)], one may further adjust
prior probabilities {P (xi)} to maximize the mutual in-
formation. The maximum value

Cc = max
{P (xi)}

I(X :Y ) (A8)

is called the channel capacity. Then the channel coding
theorem tells us [33, 34, 35] that if R < C holds there
exists a coding scheme which transmits messages with an
error probability as small as desired. Thus the mutual
information is related to the ultimate use of the channel.

The basic frameworks described above also apply to
a quantum limited channel. However a new ingredient

comes into play, which is a quantum effect in the detec-
tion process. Let us consider the simplest case where the
letter set {xi} is conveyed by a set of pure states { |ψi〉},
possibly a nonorthogonal set, through a noiseless channel.

Then the channel model is specified by a POM {Π̂j} and

the channel matrix P (yj |xi) = 〈ψi| Π̂j |ψi〉. The POM
describes the measurement process and gives it a quan-
tum prescription for generating the output letters {yj}.

In the conventional (classical) context, the channel ma-
trix [P (yj |xi)] is given and fixed. In quantum domain,
however, one may ask what is the best possible POM
for the given set of letter states { |ψi〉}. This is actually
a nontrivial problem as discussed in Introduction. The
problem can be decomposed into several steps. First we
can consider the maximization of the mutual informa-
tion with respect to a POM {Π̂j} for the fixed { |ψi〉}
and prior probabilities {P (xi)}. The maximum value

IAcc

(
{|ψi〉 ;P (xi)}

)
= max

{Π̂j}
I
(
{|ψi〉 ;P (xi)} :Y

)
(A9)

is called the accessible information of {|ψi〉 ;P (xi)}. We
can then consider the maximization of the accessible in-
formation over prior probabilities {P (xi)}, and may de-
fine the quantity C1 as

C1 = max
{P (xi)}

IAcc

(
{|ψi〉 ;P (xi) }

)
. (A10)

This would be a natural extension from the conventional
idea. However, this C1 is not in general the maximum
bound for the transmission rate for error-free communi-
cation, and hence it is not the channel capacity. In fact,
there is the peculiar quantum interference effect in quan-
tum detection of codeword states, which was not taken
into account in the conventional theory. The true ca-
pacity for a pure state channel is given by Hausladen et

al. [36]. The general theory for a mixed state channel is
given by Holevo [37] and by Schumacher and Westmore-
land [38].

To realize reliable transmission ensured by quantum
theory of the channel capacity, one may need quantum
computation for the decoding process [19, 39]. This is,
however, far beyond present technologies. If only a quan-
tum detection on each letter state is available, then IAcc

and C1 practically specify the limit of communication
ability. Let us suppose again that encoding is made such
that xi (i.e. |ψi〉) occurs in the set of codewords {xp} (i.e.
{ |ψi1〉⊗· · ·⊗ |ψin

〉}) with the probability P (xi). We fur-

ther suppose that {Π̂j} is the POM attaining the acces-
sible information for X = {|ψi〉 ;P (xi)} and the receiver
applies this detection separately on each letter states to
get output sequences {yj1yj2 · · · yjn

}. If R < IAcc holds,
then a reliable transmission of the letters with an arbi-
trarily small error is possible by an appropriate classical

coding. The optimum POM for the accessible informa-
tion is thus an important concern for devising a good
code for a quantum limited channel.
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