研 究

UDC 621.396.677

多重モードを利用する新しい自動追尾方式

中橋信弘* 柿沼淑彦*

A NEW AUTOTRACK SYSTEM UTILIZING MULTI-MODE

By

Nobuhiro NAKAHASHI and Yoshihiko KAKINUMA

Recently, the multi-mode automatic tracking antenna system has been employed at several ground stations for satellite communications. This system utilizes the radiation pattern of the TM_{01} mode of the circular waveguide, and operates normally when the polarization of received signals is circular. But, with the elliptically polarized signals, cross-coupling occurs between the two axes of the antenna. When the polarization is linear, this system cannot in principle detect the angle error orthogonal to the plane of polarization.

An idea is presented in this paper to overcome the defect of the above-mentioned system. The proposed system utilizes the TE_{21} mode of the circular waveguide instead of the TM_{01} mode. Some examples of angle-detection method for the TE_{21} mode are provided, and it is shown that the two-channel tracking system of the TE_{11} and TE_{21} modes is optimum for the received signals of random polarization.

1. 序 言

人工衛星のような、動く目標物から発射あるいは反射 されてくる電波を利用して、アンテナ・ビームをその目 標物の方向に指向させる、いわゆる自動追尾方式には、 従来のコニカル・スキャンあるいは4給電による追尾方 式のほか、最近、アンテナ給電用導波管の多重モードの ふく射特性を利用する方式が使用されてきた。⁽¹⁾⁽²⁾⁽³⁾ すなわち、円形導波管の最も次数の低い二つのモード TE_{11} モードおよび TM_{01} モード(第1図参照)を利 用する方式である。

この方式は到来波が円偏波のとき完全な追尾性能をも っており,初期の通信衛星リレーあるいはテルスターの ように円偏波アンテナを使用する衛星に対しては,良好 な特性を示した。しかしこの方式は,到来波の偏波が楕 円になるとクロス,カップリング**を生じ,直線偏波に なると,偏波面と直角な方向に追尾誤差が存在した場合,

^{**}方位角,仰角の2次元において自動追尾する場合,例えば方位 角成分のみに追尾誤差があるとき,角度誤差検出器の出力に,仰 角誤差電圧が現われる現象で,クロス・カップリングが大きいと 追尾動作が不調になる。

*鹿島支所

Vol.11 No.56 September 1965

原理的に誤差信号 TM_{01} モードが励起されず、この方向に沿って目標物がアンテナ・ビームからはずれてしまい、自動追尾が不可能になる。

シンコム衛星あるいは将来打上げを予定されているA TS (Applications Technology Satellite)は、直 線偏波アンテナを使用していることを考えると、任意の 偏波特性をもつ到来波に対して自動追尾できる方式が必 要となってくる。

筆者は、この問題を解決する方法の一つとして、円形 導波管の TE_{21} モード(第1図参照)を利用する方式を 考案したので、ここに報告する。本文では、 TE_{21} モー ドのふく射パターンが、放射成分(radial component) および円周成分(circumferential component)と も、角度誤差検出に必要な双峰特性をもっていることを 示し、 TE_{21} モードを基本モード TE_{11} と組合わせて、 角度誤差を検出する方法を数例述べる。これらの方法を 従来の方式をも含めて相互に比較、検討し、任意の偏波 特性をもつ到来波に対しては、 TE_{11} および TE_{21} モー ドを利用する2チャンネル方式が最適な自動追尾方式で あることを示す。このほか、本報告の中では、モード結 合器の構造、および本方式を円形ホーン以外のアンテナ 型式に応用した場合の問題について考察した結果を述べ てある。

2. 動作原理

2.1. 概 説

一般に多重モードを利用する自動追尾方式というのは, 第2図に示すように,アンテナ給電用の導波管の基本モ ードのふく射パターンが単峰特性であること,および適

当な高次モードのふ く射パターンが双峰 特性(極性を考えれ ばS字特性)である ことを利用する方式 である。目標物がふ く射パターン最大の 方向(ボアサイトと 呼ばれる)にあれば, 導波管には基本モー ドだけが励起される が,ボアサイトから

離れると基本モード

第2図 ふく射パターン説明図

のほかに、高次モードが励起される。これら二つのモー ドは第3回に示すようにモード結合器で給電導波管の外 部に別々にとり出す。通常、これらの信号は、4給電自 動追尾方式との相似性によって、基本モードからの結合

第3図 多重モードを利用する自動追尾方式原理図(1次元)

出力は和信号,高次モードからの結合出力は差信号と呼 ばれる。

軸からの角度 θ が小さいときは、和信号の振幅は θ に よらず一定、差信号の振幅は θ に比例する。これらの信 号の角周波数を ω とし、第3図に示すように、乗算器 (位相検波器)に加えれば、二つの信号の積に比例する 出力、すなわち、ωの2倍高調波成分と直流成分が得ら れる。前者はフィルタで除去し、直流分だけがアンテナ の駆動制御系に加えられて、アンテナ・ビームは目標物 の方向に指向する。

以上の説明は1次元の自動追尾方式の場合であったが、 2次元の場合は、一般に基本モードのほか、二つの高次 モード、すなわち追尾誤差の水平成分だけによって励起 される高次モード、および垂直成分だけによって励起さ れる別の高次モード、合計三つのモードの信号が必要と なる。しかし、二つのモードだけでも差信号パターンの 振幅特性だけでなく、和信号と差信号との間の位相差の 特性あるいは同一モードの直交2成分を利用すれば、2 次元の自動追尾が可能となる場合があり、前述の TE_{11} および TM_{01} モードを利用する方式、あるいはこれか ら述べる TE_{11} および TE_{21} モードを利用する方式は、 これに該当する。

なお、本報告の中では第2図のθを追尾誤差と呼び、 第3図の位相検波出力を角度誤差電圧と呼ぶ。

2.2. TE21 モードのふく射特性

円形導波管の各モードの電磁界によるふく射電界の一 般式は、開口半径が波長に比べてじゅうぶん大きく、開 口面における電磁界分布が管内の分布と同じであると仮 定して、すでに求められている。⁽⁴⁾⁽⁵⁾すなわち第4図の ように、導波管開口と空間の点Pとの位置関係を規定す ると、点Pにおける電界強度は TE_{nm} モードについては、

第4図 電波源とその座標

 $TM_{nm} \in - ドについては,$ $\theta 成分: U_{\theta} = U_{0}, \frac{u \cdot J_{n}(u)}{1 - \left(\frac{u}{k_{m}a}\right)^{2}} \cos n\phi$ (2) $\phi 成分: U_{\phi} = 0$

である。ここに $u=2\pi a \sin \theta/\lambda$, a は開口半径, λ は 自由空間波長, ϕ は点Pとアンテナの軸を含む平面が水 平面となす角度, $J_n(u)$ は n次の第1種ベッセル関数, $k_m'a$ は $J_n'(x)=0$ の m 番目の根, $k_m a$ は $J_n(x)=0$ の n 番目の根,

$$U_{0} = \frac{j^{n+1} 2\pi a^{3} H_{0} \omega \mu J_{n}(k_{m}'a)}{\lambda R(k_{m}'a)^{2}} \cdot e^{-j k R},$$

$$U_{0}' = \frac{j^{n+1} 2\pi a^{3} E_{0} \beta J_{n}'(k_{m}a)}{\lambda R(k_{m}a)^{3}} \cdot e^{-j k R},$$

 H_0 は TE_{nm} モードの磁界の導波管の軸方向成分の大き さに比例する定数, ω は角周波数, μ は透磁率, R は点 P とアンテナとの間の距離, k は自由空間の位相定数, E_0 は TM_{nm} モードの電界の軸方向成分の大きさに比例 する定数, β は TM_{nm} モードの導波管内における位相 定数である。

(1) 式および (2) 式の $u \models 0$ における近似式を求める と、 $J_0(u) \models 1 - u^2/4$, $J_n(u) \models u^n/(2^n n!)$ を考慮して、 TE_{nm} モードについては、n=0 のとき、

$$\begin{array}{l} U_{\theta} = 0 \\ U_{\phi} = -U_{0} \times u/2 \end{array}$$
 (3.a)

$$U_{\theta} = U_{0} \frac{u^{n-1}}{2^{n}(n-1)!} \sin n\phi$$

$$U_{\phi} = U_{0} \frac{u^{n-1}}{2^{n}(n-1)!} \cos n\phi$$
(3.b)

$$TM_{nm} = -F(C) \nabla U C(t),$$

$$U_{\theta} = U_{0}' - \frac{u^{n+1}}{2^{n}n!} \cos n\phi$$

$$U_{\phi} = 0$$

$$(4)$$

となる。(3·a) 式, (3·b) 式および (4) 式からふく射電

界が $u \models 0$, すなわちアンテナのボアサイト近傍で uの 一次式で近似できるのは, $TE_{0m} = - \kappa$, $TE_{2m} = -\kappa$ および $TM_{0m} = -\kappa$ によるものであることがわかる。 そして $TE_{0m} = -\kappa$ によるものであることがわかる。 そして $TE_{0m} = -\kappa$ によるものは、 θ 成分が 0という欠点をも っているが, $TE_{2m} = -\kappa$ によるふく射電界は、一般に θ 成分および ϕ 成分とも 0 でなく、その中でも次数が最 低の $TE_{21} = -\kappa$ を任意の偏波特性をもつ電波源の自動 追尾に最適なものとして選んだ。

 TE_{21} モードのふく射電界は (1) 式において, m=1, $n=2, k_m'a=3.054$ を代入して,

となる。 第5 図に, TE_{21} モードのふく射パターンを TE_{11} モードおよび TM_{01} モードのパターンとともに 示す。同図はゅを次のようにとった場合である。すなわ ち, TE_{21} モードの θ 成分は $\phi=45^\circ$, ϕ 成分は $\phi=0^\circ$, TE_{11} モードの θ 成分は $\phi=90^\circ$, ϕ 成分は $\phi=0^\circ$, TM_{01} モードは ϕ が任意のときである。また,各パターンの相 対レベルは, 各モードの導波管内伝送電力が相等しいと いう条件を与えて求めた。

 TE_{21} モードのふく射パターンのボアサイト近傍にお ける近似式は、(3·b) 式に n=2 を代入して.

$$\theta$$
成分: $U_{\theta} = K\theta \sin 2\phi$
 ϕ 成分: $U_{\phi} = K\theta \cos 2\phi$

(6)

となる。ここに、 $u = 2\pi a \theta / \lambda$ の近似式 を 用いてあり、 $K = U_0 \times \pi a / (2\lambda)$ である。

 U_{θ} および U_{ϕ} の大きさは ϕ によって変化するが、これ らを合成した電界ベクトル U_{s} の大きさは $\sqrt{U_{\theta}^{2}+U_{\phi}^{2}}$ = K_{θ} であるから、 θ が一定のとき、 ϕ によって変化し ない。

一方電界ベクトル U_s は水平成分 U_H および垂直成分 U_V に分解することもでき,(6) 式からこれを求めると,

$$U_{H} = U_{\theta} \cos \phi - U_{\phi} \sin \phi$$

$$= K_{\theta} \sin \phi$$

$$U_{V} = U_{\theta} \sin \phi + U_{\phi} \cos \phi$$

$$= K_{\theta} \cos \phi$$
(7)

となる。追尾誤差 θ を 2 次元ベクトルと考えて、その水 平成分を ε_{H} , 垂直成分を ε_{V} とすれば、第 4 図からわか るように、 θ が小さいときは、

となる。(7) 式と(8) 式を比較してみると, TE_{21} モードのふく射電界の水平成分は追尾誤差の垂直成分に比例 し、ふく射電界の重直成分は追尾誤差の水平成分に比例 しており、しかもその比例定数は相等しいこと がわか る。なお、(5) 式および(6) 式は第8 図に 示してある TE_{21} モードの2成分のうち、(b) によるふく射電界で あることに注意されたい。(a) によるふく射電界はこの あと説明する励起電圧を求めるときと同様に、座標を 45° 回転して考えれば容易に求められる。

2.3. 励起電圧

次に第4図のように、点Pに電波源があり、その偏波 が一般に楕円であるときアンテナ給電用の導波管に励起 される TE_{21} モードを、アンテナの可逆性を考慮して求 める。第4図に示す電波源の電界ベクトルを E_s とし、 これを複素表示すると、このペクトルが互いに逆方向に 旋回する二つの円偏波成分の合成であると考えて、

 $E_s = E_0(e^{j\omega t} + b \cdot e^{-j\omega t})e^{j\tau}$ (9) となる。ここで(9) 式の実数部が電界ベクトルの水平成 分, 虚数部が垂直成分であり, E_0 はアンテナから電波 源を見て,反時計方向に旋回する円偏波成分(右旋成分) の大きさ, $b \cdot E_0$ は時計方向に旋回する円偏波成分(左 旋成分)の大きさ,r は楕円の長軸が,水平面となす角 度であり,また時間 t の原点を両円偏波成分の電界ベクトルが一致したときにとってある。

一方、電波源の電界ベクトルを水平成分 E_H , 垂直成分 E_V に分解して考え, これらを追尾誤差ベクトルととも に説明の便宜上,同一平面上に表わしたのが第6回であ る。図の点Oはアンテナのボアサイトの方向を示し,点 Pはボアサイトから離れて存在する電波源の位置を示す。

第6図 追尾誤差ベクトルと電 波源の電界ベクトル

第6図に示したベクトル成分 (スカラー量) E_H , E_V , ε_H および ε_V を用いて,導波管に励起される TE_{11} モー ドおよび TE_{21} モードを求めてみる。いまの場合,円形 ホーンに接続されている給電導波管の内径を TE_{21} モー ドより高次のモードの電磁界が管内を伝送しないように 選んであるものとする。

まず TE_{11} モードについては E_H および E_V によっ て、それぞれ第7 図の (a) および (b) に示すような互に 直交する2成分が励起される。それぞれの電圧(管内伝 送電力の平方根に比例する量,以下同様)を e_H および e_V とすれば、 θ が小さいときは、第5 図に示す TE_{11} モ ードによるふく射パターンを考慮して、

$$e_V = \frac{c_1 E_V}{R} \tag{10 \cdot b}$$

のように, θに無関係な値として近似できる。ここに c₁ は定数である。

次に TE_{21} モードを考える。これは一般に第8図 (a) および (b) に示すような互に直交する2成分から成って おり, (a) の成分の電圧を e_{D1} , (b) の成分の電圧を e_{D2} とする。 e_{D2} は2.2節の中で説明した TE_{21} モードのふ く射電界の式 (7) および (8) からアンテナの可逆性を考

慮して、 $E_V \times \varepsilon_H \ge E_H \times \varepsilon_V \ge 0$ 和に比例することが容 易にわかり、(12・b) 式が求められる。

ep1 を求めるには第9図に示すように座標を45°回転 して新しい座標軸 OH' および OV' をつくる。追尾誤差 ベクトルおよび電波源の電界ベクトルを H' 成分および V'成分に分解し、これらを $\varepsilon_{H'}$ 、 $\varepsilon_{V'}$ 、 $E_{H'}$ および $E_{V'}$ とすれば,

$$\varepsilon_{H'} = \frac{1}{\sqrt{2}} (\varepsilon_{H} - \varepsilon_{V})$$

$$\varepsilon_{V'} = \frac{1}{\sqrt{2}} (\varepsilon_{H} + \varepsilon_{V})$$

$$E_{H'} = \frac{1}{\sqrt{2}} (E_{H} - E_{V})$$

$$E_{V'} = \frac{1}{\sqrt{2}} (E_{H} + E_{V})$$
(1)

である。新しい座標系と第8図(a)に示す電界分布との 位置関係は、もとの座標系と第8図(b)に示す電界との 位置関係と全く同じになるから, epg を求めた場合と同 様に考えて、 e_{D1} の大きさは $E_{V}' \times \varepsilon_{H}' \geq E_{H}' \times \varepsilon_{V}'$ の和 に比例することが容易にわかり、これに(11)式の値を 入れて求めた結果をすでに求めた 002 とともに示すと,

$$e_{D1} = \frac{c_2}{R} (E_H \times \varepsilon_H - E_V \times \varepsilon_V) \qquad (12 \cdot a)$$

$$e_{D_2} = \frac{c_2}{R} (E_H \times \varepsilon_V + E_V \times \varepsilon_H) \qquad (12 \cdot b)$$

なお, 第8図(a)およ び(b)に示した直交2成 分を合成した場合の電 圧の大きさ eDsは, $\sqrt{e_{D1}^2 + e_{D2}^2}$ cb), これに (12·a) 式およ び (12・b) 式を代入す ると. $e_{Ds} = -\frac{c_2}{R} -$

となる。ここに c2 は定数である。

 $\times \sqrt{(E_H^2 + E_V^2)}$ $\times \overline{(\varepsilon_{H^2} + \varepsilon_{V^2})}$

麻翻系

笛 0 図

$$=\frac{c_2}{R}|E_S| \cdot \theta \tag{13}$$

が得られる。(13)式 は TE21 モードの励起電圧の大きさ が、電波源の電界ベクトルの大きさおよび追尾誤差ベク トルの大きさに比例することを示しており、個々のベク トル成分の大きさには無関係であることを示している。 これは電波源の偏波がどのようなものであっても、その 電力が一定であれば、そして追尾誤差がどのような方向 に存在してもその大きさが一定であれば、導波管内の励 起される TE21モードの合成電磁界の電圧の大きさは一 定であることを意味しており,TE21 モードが任意偏波 の到来波に対して、一定の角度誤差検出感度をもってい ることを示している。

3. 角度誤差検出方式

2.3 節の (10·a), (10·b), (12·a) および (12·b) の各式で与えられる四つの信号 eH, ev, eD1 および eD2 から追尾誤差ベクトルの水平成分に比例する直流電圧お よび垂直成分に比例する直流電圧を追尾受信機において とり出す方法、すなわち角度誤差検出方式について以下 に述べる。これには到来波の偏波の種類に応じていろい ろ考えられるが、ここでは任意偏波に対して適当と思わ れる方式を2例,直線偏波に対して適当と思われる方式 を1例述べてある。なお最後の方式では、TE11 モード および TE_{21} モードのほか、 TM_{01} モードをも利用して いる。

3.1. 任意偏波 4 チャンネル方式*

(12·a) 式および (12·b) 式を連立させて *EH* および ε_{v} について解き、(10) 式を代入すると、

$$\varepsilon_{H} = \frac{c_{1}(e_{H} \times e_{D1} + e_{V} \times e_{D2})}{c_{2}(e_{H}^{2} + e_{V}^{2})}$$

$$\varepsilon_{V} = \frac{c_{1}(e_{H} \times e_{D2} - e_{V} \times e_{D1})}{c_{2}(e_{H}^{2} + e_{V}^{2})}$$
(14)

が得られる。

上式の中の e_H , e_V , e_{D1} および e_{D2} は時間関数である が,(14) 式の演算によって与えられる ε_H および ε_V は 追尾誤差が一定のときは時間に無関係である。(14) 式 が意味していることは, e_H , e_V , e_{D1} および e_{D2} に対し て,追尾受信機において,式の中の加減算および乗除算 をほどこせば, ε_H に比例した電圧および ε_V に比例した 電圧が得られるということである。このような演算を行 わせる実際の回路構成は第10図のように増幅回路が 4 チ ャンネルとなり,その出力 v_H および v_V は,それぞれ追 尾誤差の水平成分 ε_H および垂直成分 ε_V に比例する。図 中に示した AGC による正規化とは,(14) 式の除算を 行うことを意味し,AGC電圧によって受信機の利得を 制御して,角度誤差電圧が和信号の受信レベルに左右さ れないようにしてある。

モード結合器としては、各モードの電磁界分布の対称 性を利用して、例えば、第11図のようなものが考えられ る。すなわち導波管の周囲に等間隔にあけられた8個の 結合孔からの出力 e_1 ないし e_8 に対して、ハイブリッド (例えばマジックT)を用いて、図中に示す加減算をほ どこすと、 e_H , e_V , e_{D1} および e_{D2} が別々にとり出され る*。結合孔の構造は第12図に示すように、管軸に平行 なスリットとすれば、結合は磁界の軸方向成分によって 行われるから、このような成分をもたない不要な TM_{01} モードは結合器出力に現われない。またたとえ現われて も、ハイブリッドの加減算によって互に打消しあって上 記4信号は混入しない。

この方式の特長は、到来波の偏波が任意でよく、また クロス・カップリングのないことである。欠点は、チャ ンネル数が多く、モード結合器の構造が複雑で、ハイブ リッドが6個も必要なことである。

3.2. 任意偏波チャンネル方式

前節の方式のチャンネル数を減らすことを考える。 (10・a),(10・b),(12・a)および(12・b)の各式を, (9)式を考慮して時間関数として表現すると,

 $e_{H} = c_{1}e_{0} \{\cos(\omega t + \gamma) + b\cos(\omega t - \gamma)\} \quad (15 \cdot a)$ $e_{V} = c_{1}e_{0} \{\sin(\omega t + \gamma) - b\sin(\omega t - \gamma)\} \quad (15 \cdot b)$ $e_{D1} = c_{2}e_{0} [\langle\cos(\omega t + \gamma) + b\cos(\omega t - \gamma)\rangle \varepsilon_{H} \\ - \{\sin(\omega t + \gamma) - b\sin(\omega t - \gamma)\} \varepsilon_{V}] \quad (16 \cdot a)$ $e_{D2} = c_{2}e_{0} [\langle\sin(\omega t + \gamma) - b\sin(\omega t - \gamma)\rangle \varepsilon_{H}$

+ $\{\cos(\omega t+\gamma)+b\cos(\omega t-\gamma)\}\varepsilon_{V}$ 〕(16・b) が得られる。ここに $e_{0}=|E_{S}|/R$ である。

これらの式からわかるように,各信号は電波源 の電界ベクトルの右旋円偏波成分に対応する電圧

*結合が第12図に示すように磁界の軸方向成分によって 行われることを考慮してある。

および左旋円偏波成分に対応する電圧からなりたってお り、このうち一方の旋回成分だけを利用することを考え る。例えば、右旋円偏波成分に対応する電圧成分を選ぶ には、第13図のように $\pi/2$ 移相器とハイブリッドによ って上記4信号を処理する。(詳細は付録 1.参照)。こ の結果

$$e_{S1} = 2c_{1}e_{0}\cos(\omega t + \gamma)$$

$$e_{D} = 2c_{2}e_{0}[(\cos(\omega t + \gamma))\varepsilon_{H} - (\sin(\omega t + \gamma))\varepsilon_{V}]$$
(17)

が得られる。ここに、 e_{S1} は電波源の右旋円偏波成分に よって励起された TE_{11} モードの電圧、 e_D は同じ成分に よって励起された TE_{21} モードの電圧である。(17) 式 および(18) 式にみるように、差信号 e_D は ε_H に比例す る項および ε_V に比例する項の和で、それぞれ和信号 e_{S1} と同相および $\pi/2$ の関係にあるので、これを第13図のよ うに $\pi/2$ 移相器を利用して検波すれば、 ε_H に比例する 電圧 v_H および ε_V に比例する電圧 v_V がとり出される。

第13図 任意偏波2チャンネル方式ブロック図

左旋円偏波成分を利用する場合も同様に行われる。 (詳細は付録1参照。)

なお第13図の切替スイッチは到来波の偏波の特性に応 じて操作するもので、図の位置では、右旋成分が左旋成 分より大きい場合である。これを逆に切替えても左旋成 分が0でない限り、自動追尾は行えるが、雑音による角 度の変動が大きくなって追尾精度が低下する。

この方式の特長は、到来波の偏波が任意(ただし、偏 波の旋回方向がわかっていることが望ましい)でよく、 クロス・カップリングがなく、しかも2チャンネルです むことである。欠点は、モード結合器の構造が複雑で、 ハイブリッドの数が前節の方式より2個増えて8個も必 要なことである。

3.3. 直線偏波2チャンネル方式

3.1 節および 3.2 節に述べた方式は, TE_{11} および TE_{21} の2重モードを利用しているが, 到来波が直線偏 波で偏波面の方向がわかっている場合には, モード結 合器の構造を簡単にするために, TE_{11} , TE_{21} および TM_{01} の3重モードを利用する方式が考えられる。

第14図のように、座標を φο 回転させて新しい座標系

第15図

TE11, TE21, および

TM01 モード用結合孔

の構造

第14図 直線偏波の場合の座標系およびモード結合器

H', V' をつくり, 偏波面の方向と新しい横 軸 OH'となす角度 γ' がほぼ 0になるように する。そしてモード結合器の結合孔を図のようにOH', OV' と 45° なす方向に設ける。結合孔の構造は, 今度は 第15図のように, 管軸に直角なスリットとしなければな らない。この結合でとり出されるのは, TE_{11} モード, TM_{01} モードおよび TE_{21} モードの e_{D2} 成分(第8図(b) 参照) であり, e_{D1} 成分は, この方式では不要モードで ある。第14図に示す結合器からの出力 e_1 ないし e_4 に対 して, 図中に示す加減算をハイブリッドでほどこすと, TE_{11} モードからの結合出力電圧 $e_{H'}$ は電波源の電界ベ クトルの H' 成分に比例し, TM_{01} モードからの電圧 e_{D3} は追尾誤差 θ と電波源の電界ベクトルの θ 成分の積に比

第16図 直線偏波2チャンネル方式ブロック図

例し, TE_{21} モードからの電圧 e_{D2} は, 追尾誤差の H'成分と電波源の V' 成分の積に比例する部分および追尾 誤差の V' 成分と電波源の H' 成分の積に比例する部分 との和であることを考慮して,

$$e_{H}' = c_1 e_0 \cos \gamma' \cdot \cos \omega t \tag{19}$$

 $e_{D3} = c_3 e_0 \cdot \theta \cdot \cos(\gamma' - \phi') \cdot \cos \omega t$

 $= c_{3}e_{0}(\cos \gamma' \cdot \varepsilon_{H}' + \sin \gamma' \cdot \varepsilon_{V}') \cdot \cos \omega t \quad (20)$ $e_{D2} = c_{2}e_{0}(\sin \gamma' \cdot \varepsilon_{H}' + \cos \gamma' \cdot \varepsilon_{V}') \cdot \cos \omega t \quad (21)$ が得られる。ここに $\gamma' = \gamma - \phi_{0}, \phi' = \phi - \phi_{0}, \varepsilon_{H}' = \theta \cdot \cos \phi'$ $\varepsilon_{V}' = \theta \cdot \sin \phi', c_{3} \ \text{it } TM_{01} \ \epsilon - \text{F} の検出感度に比例す$ る定数で一般に c_{2} とは等しくない*。

> これらの3信号から角度誤差を検出す る方法を第16図に示す。まず2チャンネ ルにするため、 e_{D2} の $\pi/2$ 位相の遅れた 信号と e_{D3} を加えて e_D をつくると、

 $e_{D} = c_{3}e_{0}(\cos\gamma' \cdot \varepsilon_{H}' + \sin\gamma' \cdot \varepsilon_{V}')\cos\omega t$ $+ c_{2}e_{0}(\sin\gamma' \cdot \varepsilon_{H}' + \cos\gamma' \cdot \varepsilon_{V}')\sin\omega t$ (2)

が得られる。 $e_D \ge e_H' の 2 信号から角度$ $誤差を検出するには、<math>e_H'$ を利用してA GC正規化を行い、 $\pi/2$ 移相器を用いて 乗算器で検波する。なお、 $c_2 \ge c_3$ の不 同は検波器のあとの利得定数を調整して 補償する。以上のようにして得られる出 力電圧は、

$$\left.\begin{array}{l} v_{H'} = A(\varepsilon_{H'} + \tan \gamma' \cdot \varepsilon_{V'}) \\ v_{V'} = A(\tan \gamma' \cdot \varepsilon_{H'} + \varepsilon_{V'}) \end{array}\right\} \tag{23}$$

となる。ここに $v_{H'}$ は (19) 式の $e_{H'}$ と (22) 式右辺の cos ωt の係数との積に比例する電圧, $v_{V'}$ は $e_{H'}$ と (22) 式の右辺の sin ωt の係数との積に比例する電圧, A は 定数である。(23) 式にみるように, $\gamma' \neq 0$ のときはクロ ス・カップリングを生じ, 付録2に示すように $|\gamma'| \ge 45^\circ$ のとき, 追尾誤差は発散し, 自動追尾が不可能になる。 (23) 式に追尾誤差の初期条件をいろいろ与え, アナロ

236

^{*}モード結合器の結合度が TE_{21} モードと TM_{01} モードとで相等 しいならば、 c_3 は c_2 より約 ldB 大きい。

グ計算機で解いたアンテナの収束運動の軌跡を tany' を パラメータにして第17図に示してある。図には示してな いが $\gamma'=0$ のときはクロス・カップリングがないので, 軌跡はすべて中心に向う直線となる。 $\gamma' \neq 0$ のときは図 にみるようにクロス・カップリングのために軌跡が彎曲 し, アンテナは 45° 右下りの直線に漸近しながら,電波 源に収束する。 γ' が負のときは同図を90°回転したよう な軌跡となり漸近線は 45° 右上りの直線となる。なおこ の計算では簡単のため,アンテナの慣性を無視してある。

(23) 式あるいは第17図にみられるクロス・カップリ ングは偏波検出器を用いて,モード結合器の部分の給電 導波管を回転させ,常に γ'=0 になるようにすれば除く ことができる。

(23) 式に示した誤差電圧は駆動制御系に加える前に 座標変換器によって、もとの座標(H, V) に変換しな ければならない。なおクロス・カップリングを除くため 偏波検出器を用いた場合は、座標変換器の変換式は、偏 波面の方向の変化に応じて変えるようにしなければなら ない。

この方式の特長は、チャンネル数が少いこと、結合器 の構造が簡単なこと、ハイブリッドの数が比較的少くて すむことである*。 欠点は到来波の偏波が直線偏波に限 られ**,偏波検出器を使用しない場合は、クロス・カッ プリングを生じ、偏波面の方向の変動が特定の方向から ±45°以内という制限が課せられること、および座標変 換器が必要なことである。

4. 各方式の比較

前節に述べた各方式を、 従来の TE_{11} モードおよび TM_{01} モードを利用する方式をも含めて、第1表にまと めて示した。この表から各方式は、到来波の偏波特性の 種類に応じて、その特長を発揮することがわかる。すな

*第14図の中に示す加減算を行うためのハイブリッドが4個(ただ し, e_H'をe₁-e₃またはe₂-e₄ だけですませるなら3個)および 第16図の中で使用するハイブリッドが1個,合計5個(最低4個) 必要である。

^{**}円偏波の場合は、クロス・カップリングを生ずることが容易にわ かるが、ここではその解析を省略した。

角度誤差検出方式	円偏波 4 チャンネル方式	円偏波 2 チャンネル方式	任意偏波 4 チャンネル方式	任意偏波 2 チャンネル方式	直線偏波2チャンネル方式
使用モード	<i>TE</i> ₁₁ , <i>TM</i> ₀₁		TE_{11}, TE_{21}		TE_{11} , TM_{01} , TE_{21}
不要 モード	なし		<i>TM</i> ₀₁		TE 21 の一部
給電導波管最小半径	0. 383 <i>x</i>		0. 485 <i>\lambda</i>		0.485 <i>λ</i>
誤 差 パターンの 傾 斜	使用するアンテナによって違ってくるが,同一のアンテナなら TM_{01} の方が TE_{21} より約 ldB 大きく,同一のモードに対してはホーンレフレクターの方がパラボラアンテナより数 dB 大きい				
座標変換	ホーンレフレクターのとき必要				常に必要
到来波 偏 波 (追尾可能)	円(楕円)	円(楕円) ただし傷波の回転 方向のわかってい ること	 任 意	任意 ただし右旋 または左旋円偏波 成分の大きい方が わかっていること	直線 ただし偏波検出器を使用し ないときは偏波面の変動が土45° 以内のこと
クロス・カップリング	楕円偏波のとき生 ずる	楕円偏波のとき生 ずる	なし	なし	偏波面の変動により生ずるが偏波 検出器を使用すれば除くことがで きる
モード結合器構造	普 通	簡単	複 雑	複雜	普 通
ハイブリッド 所要数 (最少)	2	1	6	8	4

第1表 多重モード(円形導波管)を利用する自動追尾方式の比較

わち、TE11 およびTM01 を利用する2チャンネル方式 は、 偏波が円ないし円に近い楕円 (軸比が 5dB 程度以 下)の到来波に対して最適であり、偏波が任意に変化す る到来波に対しては TE11 および TE21 を利用する 2 チ ャンネル方式が適当である。ただしこの場合、偏波の旋 回方向に応じて第13図に示すように切替操作を行う。偏 波面の方向が余り変動しない(±45°以下)直線偏波に 対しては、 TE_{11} 、 TM_{01} および TE_{21} の3重モードを 利用する方式が適当である。偏波面の方向が大幅に変動 する直線偏波に対しては、 TE_{11} および TE_{21} を利用す る2チャンネル方式と, 偏波検出器を備えた TE11, TM01 および TE21 を利用する2チャンネル方式が考 **えられるが、いずれの方式がよいかはモード結合器の構** 浩, ハイブリッドの数, 偏波検出器, 座標変換器などを 考慮して、具体的に設計、製作する段階にまで検討しな ければならないので、ここでは結論を下せない。

5. 実際のアンテナへの応用

いままでの議論は、波長に比べてじゅうぶん大きい半 径をもつ円形導波管開ロのアンテナについて述べてきた わけであるが、他の型式のアンテナ、すなわちパラボラ ・アンテナおよびホーン・レフレクタに応用した場合に ついて、簡単に考慮してみる。定量的なことは、今後の 実験にまたなければならない。

5.1. パラボラ・アンテナ (カセグレン・アンテナ)

円形パラボラ面の前面から1次ふく射器で照射する普通のパラボラ・アンテナとカセグレン・アンテナとは、 アンテナ利得およびボアサイト付近におけるふく射パタ ーンが同様に考えられるので、まとめて取扱う。

これらのアンテナに使用する1次ふく射器は、いまの 場合円形ホーンであり、これは給電用の円形導波管に接 続される。アンテナの利得およびふく射パターンをきめ るのは、パラボラ面上の電界分布であるが、これは円形 導波管内の分布とは異るので、パラボラ・アンテナの利 得およびパターンは、当然いままで述べてきた円形導波 管開口の値とは違つてくる。しかしいまの場合、アンテ ナ系がボアサイトに関して対称な特性をもっているとす れば、鏡面上の電界分布は導波管開口面上の分布と同様 な対称性をそのまま保持していると考えられる。例えば TE_{11} モードおよび TE_{21} モードに対応するパラボラ面 上の電界分布⁽⁸⁾から類推すると、第18図のように、そ の対称性を保ったまま変化すると考えられる。

上記の電界分布の変化のほか,スピール・オーバーの ため,パラボラ・アンテナの利得は同じ開口半径の円形

導波管開ロ*より若干下がり,誤差パターンの双峰のピ ーク値も数 dB 低下し,それにともなって,誤差パター ンのボアサイトにおける傾斜も小さくなる。ここにいう 傾斜とは,誤差パターンを無指向性アンテナの利得に対 する値 G_d で表わして, $(dG_d/d\theta)_{\theta=0}$ を求めたときの 値であり,この値はアンテナ系と追尾受信機を組合わせ た場合の角度誤差検出感度を左右するだけでなく,雑音 によるアンテナ指向方向のランダムな変動(ジッターと 呼ばれる)に影響するので,大きい方がよい⁽⁷⁾。

(6) 式に示したように、円形ホーンの場合は、 TE_{21} モードのふく射電界はボアサイト近傍で θ の1次式で近 似でき、その比例定数は θ 成分と ϕ 成分とで相等しかっ たが、パラボラ・アンテナの場合も、付録3に示すよう に同様なことがいわれる。ただし比例定数(傾斜)の大 きさは前に述べたように、同じ開口半径に対しては円形 ホーンよりパラボラ・アンテナの方が小さい。

結局,パラボラ・アンテナおよびカセクレン・アンテ ナでは,(10・a),(10・b),(12・a)および(12・b)の各 式の比例定数 c₁ および c₂が若干変るだけであるから, 3 節に述べた角度誤差検出方式がそのまま使用でき,誤 差パターンの傾斜が数 dB(5~6 dB 程度)低下するた め,雑音による角度のジッターが若干増加するほかは, 円形ホーンの場合と同様に自動追尾アンテナとして使用 できる。

5.2. ホーン・レフレクタ**の場合

このアンテナは、ベンドをもつ円形導波管閉口と考え られ、アンテナ利得および誤差パターンの双峰のピーク 値は同じ開口半径に対して、円形ホーンと余り変らない と思われる。実際アンドーバーの例⁽⁸⁾では、利得が約 0.6dB低下しているだけで、双峰のピーク値(ただしこ の場合、差信号は TE_{21} モードでなく TM_{01} モード) は変化していない。電界分布は第19図のように非対称に 変り、したがってふく射パターンもボアサイトに関して 非対称になるであろうが、アンドーバーの例から類推す ると、ボアサイト近傍ではその変化は無視できるほど小

^{*}計算によると,円形導波管開口アンテナの能率は84%である。 **正確にいうとコニカル・ホーン・レフレクタ・アンテナ。

さいと思われる。

結局,ホーン・レフレクタも円形導波管開口アンテナ とほとんど同じ追尾性能をもって使用でき,雑音による 角度ジッターは,同じ開口半径のパラボラ・アンテナよ り少いと思われる。

6. 結 言

円形導波管の TE_{21} モードを差信号とし利用する新し い自動追尾方式をここに提案した。この方式によると, 従来の TM_{01} モードを利用する方式にみられた到来波 の偏波特性に関する問題点が解決される。そして任意の 偏波特性の到来波に対しては, TE_{11} モードおよび TE_{21} モードの2重モードを利用する2チャンネル方式が最適 な自動追尾方式であることを見出した。今後の問題点と しては,以上の理論を実験によって確めること,円形ホ ーン以外のアンテナ型式に応用した場合の実際の特性, 結合器の実用的な構造などが残されている。

終りに,日ごろご指導をいただいている尾上支所長, 有益なご検討をいただいた宇田主任研究官および石沢研 究官に感謝する。

付録1. 任意偏波2チャンネル方式の角度誤 差検出の詳細

(15・a), (15・b), (16・a) および (16・b) 式に示 す e_H , e_V , e_{D1} および e_{D2} の4信号から追尾誤差 θ の 水平成分 ε_H に比例する電圧,および θ の垂直成分 ε_V に 比例する電圧を, 2チャンネルの増幅回路によってとり 出すのが,この方式の目標である。

3.2 に述べたように,電波源の電界ベクトルの左旋円 偏波成分および右旋円偏波成分に対応して,円形導波管 には、それぞれ左旋 $TE_{11} = - \vee$, 左旋 $TE_{21} = - \vee ×$ よび右旋 $TE_{11} = - \vee$, 右旋 $TE_{21} = - \vee ×$ 励起される。 これら四つの旋回するモードに対応して、導波管の外部 にとり出した信号を、左旋 TE_{11} 信号、左旋 TE_{21} 信号, 右旋 TE_{11} 信号および右旋 TE_{21} 信号と名づける。これ らを実際にとり出すには、 e_H , e_V , e_{D1} および e_{D2} の4 信号を $\pi/2$ 移相器とハイブリッドとによって処理する。

例えば、右旋信号をとり出すには、(15・b)の e_V の $\pi/2$ 位相のすすんだもの e_V' をつくる。すなわち

 $e_{V}'=c_{1}e_{0}\{\cos(\omega t+\gamma)-b\cos(\omega t-\gamma)\}$ (2) (16・b) 式の $e_{D_{2}}$ の $\pi/2$ すすんだものを $e_{D_{2}}'$ とすれば、

 $e_{D2}' = c_2 e_0 [\{ \cos(\omega t + \gamma) - b \cos(\omega t - \gamma) \} \varepsilon_H \\ - \{ \sin(\omega t + \gamma) + b \sin(\omega t - \gamma) \} \varepsilon_V]$

 $-\{\sin(\omega t+\gamma)+b\sin(\omega t-\gamma)\}\varepsilon_{V}\} \quad (z)$ $e_{S1}=e_{H}+e_{V}' \geq \tau h(z),$

$$e_{S1} = 2c_1 e_0 \cos(\omega t + \gamma) \tag{26}$$

 $e_D = e_{D1} + e_{D2}'$ とすれば,

 $e_D = 2c_2 e_0 [\{ \cos(\omega t + \gamma) \} \mathcal{E}_H - \{ \sin(\omega t + \gamma) \} \mathcal{E}_V]$ Ø es1 および e_D がそれぞれ求める右旋 TE_{11} 信号および 右旋 TE_{21} 信号でありこの2 信号を2 チャンネルで増幅 した後、 $\pi/2$ 移相器と乗算器で処理すれば角度誤差が検 出される。すなわち e_{S1} の $\pi/2$ 位相のすすんだものを e_{S2} とすれば、

$$e_{S2} = -2c_1 e_0 \sin(\omega t + \gamma) \tag{28}$$

(27) 式の e_D を (26) 式の e_{S1} あるいは (28) 式の e_{S2} とともに,乗算器に加え直流分をとり出すと,

$$\left. \begin{array}{c} e_D \times e_{S1} = 2c_1 c_2 e_0^2 \varepsilon_H \\ e_D \times e_{S2} = 2c_1 c_2 e_0^2 \varepsilon_V \end{array} \right\}$$

$$(29)$$

が得られる。実際は乗算器の前で、 e_{S1} の検波出力によるAGC正規化が行われるので乗算器の出力は(29)式の右辺の e_0^2 がなくなって受信レベルに影響されない誤差電圧 $v_H = A \varepsilon_H$ および $v_V = A \varepsilon_V$ (Aは定数)となる。(第13図参照)

以上は右旋信号の場合であるが,左旋信号をとり出す ときは次のようにする。

(15・a) 式の e_H から (24) 式の e_V'を引いたものを esi' とすれば,

$$e_{S1}' = 2c_1 e_0 b \cos(\omega t - \gamma) \tag{30}$$

(16・a) 式の e_{D1} から (25) 式の e_{D2}'を引いたものを
 e_D' とすれば、

 $e_D' = 2c_2 e_0 b ((\omega t - \gamma)) \varepsilon_H$

$$+ \{\sin(\omega t - \gamma)\} \varepsilon_{V} \}$$
(31)

(30) 式の e_{s1} 'および(31) 式の e_{D} 'がおのおの左旋 TE_{11} 信号および左旋 TE_{21} 信号であり、この2信号が 右旋の場合と同様に2チャンネルで処理される。

すなわち (30) 式の es1'の π/2 遅れたものを es2'と

240 すれば,

$$e_{S2}'=2c_1e_0b\sin(\omega t-\gamma)$$

(32)

(30) 式の e_{s1}' の検波電圧でAGC正規化を行った後, $e_{D}' \times e_{s1}'$ および $e_{D}' \times e_{s2}'$ の算演を乗算器で行って直 流分をとり出せば,右旋の場合と同じく,追尾誤差の水 平成分に比例した直流電圧および垂直成分に比例した直 流電圧が得られる。

付録2. 直線偏波2チャンネル方式における 収束条件

アンテナの初期位置を ε_{H_0} , ε_{V_0} とし, アンテナは (23) 式の電圧に比例して水平方向および垂直方向に偏 位するとすれば, 微小な時間を経た後のアンテナの位置 ε_{H_1} , ε_{V_1} は δ を1に比べじゅうぶん小さくとって次式 で近似できる。

$$\begin{pmatrix} \varepsilon_{H1} \\ \varepsilon_{V1} \end{pmatrix} = (E - \delta M) \begin{pmatrix} \varepsilon_{H0} \\ \varepsilon_{V0} \end{pmatrix}$$
(33)

ここに,

$$E = \begin{pmatrix} 10\\01 \end{pmatrix}, \quad M = \begin{pmatrix} 1 & \tan \gamma'\\ \tan \gamma' & 1 \end{pmatrix}$$

である。

アンテナの慣性を無視して逐次アンテナの位置を、同様にして追跡すると、(33)式の偏位をn回行った後の位置 ε_{Hn} 、 ε_{Vn} は、

$$\begin{pmatrix} \varepsilon_{Hn} \\ \varepsilon_{Vn} \end{pmatrix} = (E - \delta M)^n \begin{pmatrix} \varepsilon_{H0} \\ \varepsilon_{V0} \end{pmatrix}$$
(34)

となる。

(34) 式において $n \rightarrow \infty$ のとき, ε_{Hn} , ε_{Vn} が0に収束 するための条件は, $(E-\delta M)^n \rightarrow 0$ すなわち,

$$(A)^{n} = \begin{pmatrix} 1-\delta & -\delta \tan \gamma' \\ -\delta \tan \gamma' & 1-\delta \end{pmatrix}^{n} \rightarrow 0 (n-\infty)$$

である。

(35) 式が成立するための必要じゅうぶん条件はAの 固有値の絶対値が1より小さいことである。⁽⁹⁾

Aの固有値を λとすれば,

 $|A-\lambda E|=0$

 $\begin{vmatrix} 1 - \delta - \lambda & -\delta \tan \gamma' \\ -\delta \tan \gamma' & 1 - \delta - \lambda \end{vmatrix} = 0$

(36)

$$\begin{array}{c} \lambda_1 = 1 - \delta - \delta \tan \gamma' \\ \lambda_2 = 1 - \delta + \delta \tan \gamma' \end{array} \right\}$$
(37)

となる。
$$|\lambda_1| < 1$$
、および $|\lambda_0| < 1$ の条件から、

$$-1 < \tan \gamma' < \frac{2-\delta}{\delta}$$
$$-\frac{2+\delta}{\delta} < \tan \gamma' < 1$$
(33)

となり、 δ が1に比べてじゅうぶんに小さい正の数であ ることを考慮して、結局アンテナが収束するための必要 じゅうぶん条件は $|\tan \gamma'| < 1$, すなわち $|\gamma'| < 45^{\circ}$ が 得られる。これはアナログ計算機で求めた収束運動の軌 跡によっても確められた。

付録3. パラポラ・アンテナの誤差パターン (*TE*21 モード)の傾斜

1次ふく射器用円形導波管開口面のTE₂₁モードによってパラボラ面を照射し,そこで反射された電界のふく 射パターンのボアサイト近傍における傾斜をθ成分およびφ成分について求め,両者が等しいことを以下に証明 する。

第18図(b) に示すようにパラボラ面上の 電界分布は 導波管開口面の分布とはちがってくるが,その対称性は 保持されている。そしてボアサイトからの角度 θ が小さ いときは,パラボラ面上の電界によるふく射電界の強さ は θに比例すると考えられる。逆に空間の電波源によっ て誘起されたパラボラ面上の電界強度は θ に比例する。

第20図に示すように、水平軸から45°なす方向にボア サイトから小さい角度 θ 離れた所に直線偏波 の 電波源 E_1 があるとする。 E_1 の偏波面も水平軸と45°なすとす れば、電波源の θ 成分は E_1 、 ϕ 成分は0となる。 E_1 に よってパデボラ面上に誘起される電界のうち TE_{21} モー ドに対応する成分は第21図 (a) のようで、その強度 e_{D1} は θ に比例する。すなわち

ここに k_1 はパラボラ・アンテナの誤差パターンの θ 成分のボアサイト近傍における傾斜である。

一方 E_1 は第20図に示すように、水平成分 E_2 と垂直 成分 E_3 との合成と考えられる。この E_2 および E_3 によ ってパラボラ面に誘起される電界分布は第21図(b)およ び(c)に示すように、実線と点線の2成分からなる。

第21図 (b) の実線の成分の強度 e_{D2} は θ の水平成分 $\theta/\sqrt{2}$ に比例し, (39) 式と同じ定数 k_1 を用いて,

 $e_{D2} = k_1 E_2 \theta / \sqrt{2}$ (4) となる。第21図 (b) の点線の成分の強度 e_{D2} ' は θ の垂直 成分 $\theta / \sqrt{2}$ に比例し,その比例定数は誤差パターンの ϕ 成分の傾斜であり、これを k_1 とは一応相異る定数 k_2 とすれば、

$$e_{D2}' = k_2 E_2 \theta / \sqrt{2} \tag{41}$$

となる。

*E*₈ によるパラボラ面上の誘起電界の強度も同様にして求められ,第21図 (c) の実線および点線に対応して,

$$e_{D3} = k_1 E_3 \theta / \sqrt{2} \tag{42}$$

および

$$e_{D3}' = k_2 E_3 \theta / \sqrt{2} \tag{43}$$

となる。

ここで、(40)~(43) 式に示す e_{D2} , e_{D2}' , e_{D3} および e_{D3}' の合成が(39) 式の e_{D1} に等しく、 $E_2=E_3=E_1/\sqrt{2}$, $e_{D2}+e_{D3}=0$, $e_{D2}'=e_{D3}'$ を考慮すると、 $k_1=k_2$ となり、結局 TE_{21} モードによるパラボラ・アンテナの 誤差パターンはアンテナ系が軸対称の特性をもつ限り, ボアサイト近傍においては,θ成分の傾斜とφ成分の傾 斜とは相等しいことが証明された。

参考文献

- J. S. Cook, R. Lowell; "The Autotrack System", B. S. T. J., 42, 4, pt. 2, pp. 1283~ 1307 (July. 1963).
- (2) 宇田,大橋,佐藤; "衛星通信用トラッキング信 号検出器",昭和39年信学全大,220.
- (3) 中橋; "自動追尾系", 電波研季報, 10, 51, pp. 273~279 (Nov., 1964).
- (4) L. J. Chu; "Calculation of the Radiation Properties of Hollow Pipes and Horns", Jour. of Appl. Physics, 11, pp.603~610 (Sept., 1940)
- (5) S. Silver; "Microwave Antenna Theory and Design", pp. 337~338, M. I. T. Series, No. 12, McGraw-Hill Book Co., 1949.
- (6) C.C. Cutler; "Parabolic-Antenna Design for Microwaves", P.I.R.E., 35, p.1287 (Nov., 1947).
- (7) R. Stevens, W. K. Victor; "The Goldstone Station Communications and Tracking System for Project Echo", J. P. L. Technical Report, No. 32-59, p. 20 (Dec. 1, 1960).
- (8) J.N. Hines et al; "The Electrical Characteristics of the Conical Horn-Reflector Antenna", B.S.T.J., 42, 4, pt.2, pp.1187— 1211 (July, 1963).
- (9) 古屋 茂; "行列と行列式", p.137, p.193, 培 風館 (1965).