Ⅱ. 周波数と時間の計測

1. 周波数安定度の尺度

吉村和幸*

1. まえがき

時間・周波数標準及び宇宙科学をはじめとする各分野 において様々の角度から検討されていた周波数安定度の 尺度(measure)も、Barnesら IEEEの周波数安定度 に関する小委員会のメンバによって統一的な尺度が提示 され⁽¹⁾一応終止符を打つこととなった.これは、直接に はそれまでの周波数安定度に関する集大成であった 1964年の短期周波数安定度に関する NASA—IEEE シ ンポウジウム⁽²⁾と 1966年2月の Proc. IEEEの周波数 安定度特集⁽³⁾に基づいてなされたものであるが、時間領 域の周波数安定度尺度としてはこれらの理論的中心とな った Cutler らに代表される形式ではなく⁽⁴⁾、Allan 及 び Barnes らによる形式⁽⁵⁾⁽⁶⁾のものが採用されるに至 ったのは興味深いことである⁽⁷⁾.

周波数安定度(Frequency Stability)は正確さ(Accuracy)や再現性(Reproducibility)などとともに周 波数標準器の性能を評価する重要な用語の一つである が、言葉上の定義としては、例えば、「連続運転されて いる発振器がある期間にわたって同一の周波数値を実現 し得る度合を表す」というような表現がある⁽⁸⁾.しか し、実際には使用される尺度によってその具体的な内容 が異なってくるため、現在は安定度尺度[$S_y(f)$ や σ_y^2 (τ)] そのものを使って一般に表現している.

周波数安定度尺度には大別して周波数領域のものと時 間領域のものとがあり、更にそれぞれの領域で目的用途 に応じて種々の尺度がある.しかし、いずれにしろ二次 モーメント (パワースペクトル密度や分散)を尺度とす る点ではほぼ共通している.また、時間領域の尺度とし ては測定個数 N を十分大きくして、その平均値の周り の分散を考えるというのが一般的であったわけである が、Cutler らによる分散はこのような尺度の代表的な ものであった.これは定常時系列において、エルゴード 性の仮定のもとに時間軸上での一連のデータから平均値 とその分散を求めようとする場合、自然の考え方といえ る.しかし、これは雑音のパワースペクトル密度が f^a

*周波数標準部 周波数標準値研究室

(α <0) で表されるような場合, $N \rightarrow \infty$ で分散が発散す るという困難さが伴う. この点について Cutler らは有 限時間観測という実際的な場合についての分散とパワー スペクトル密度との変換式を導き,フリッカ (f^{-1}) FM 雑音については有限時間観測によるフィルタ効果が働い て分散の発散が避けられ得ることを示した. f^{-1} FM 雑 音をフィルタする考え方としてはほかに Barnes による 位相の二次差分のモデル⁽⁶⁾ があり, 発振器 の f^{-1} FM 雑音の影響を評価する良好な尺度である.

Allan や Barnes による分散の形式は上記の Cutler らによる有限時間観測の考慮に対応しているものである が、離散的な有限個数(N)のデータを扱うということ、 及び測定と測定の間に空き時間(dead time) があると いうことを明確に考慮しているため、時間領域の実際の 測定によく当てはまるようになっている. このことを重 要にしているのは、扱う時系列が単純な定常時系列では なく,また,一連のデータ間に一般に相関があるとい うことと深い関係がある. この分散の 特長の一つは fa (α<0) FM 雑音に対するフィルタ効果をその中に鮮や かに含んでいることであるが, 特に N=2 の場合はそ の効果が最もよく現れる (Cutler らによる分散は逆に N→∞ に対応). N=2, かつ測定間の空き時間が零の ときの分散は特に Allan 分散と呼ばれ $\sigma_y^2(\tau)$ で表さ れるが [(10)式], これを用いると一般的な分散 [(9) 式]もまた表現し得るという点で基本的な形式になって いる. そして, これはもう一つの周波数安定度尺度(周 波数領域)であるパワースペクトル密度と変換が可能で あるということも考慮して、前述の IEEE 小委員会は Allan 分散を時間領域における周波数安定度の尺度とし て定義した.しかし、理論的な取扱いの面からいえば、 パワースペクトル密度の方が分散より基本的 な 量 で あ る.実際,前者から後者への変換は一般的に可能である が、その逆の変換は特別の場合しかできない. そのよう なことから、パワースペクトル密度の方が周波数安定度 の定義としては上位に置かれている.

IEEE の上記小委員会による周波数安定度の定義以後 10 数年経過しているが、この間定義された尺度 に 関 し

て基本的な点で疑問を呈するものはほとんどないといっ てよく、時間・周波数標準分野に深く根をおろすに至っ ている.そして,安定度尺度の理論に関する研究として は、一つには無限時間平均で定義された Allan 分散に 対して有限個数サンプリングの場合を含め、実際の測定 値から求められる推定値の形式や不確定性に関するもの がある^{(9) (10) (11) (12)}.また,Allan 分散では白色 (f⁰)PM 雑音とフリッカ (f-1)PM 雑音の識別がつかないという 不便さがあるが、この点について High-pass 分散や Band-pass 分散 (周波数領域からの変換)⁽¹³⁾ 及び Modified Allan 分散⁽¹⁴⁾の提案がある. 更に, Allan 分 散ではパワースペクトル密度を f^α とした場合, α>-3 でしか収れんしないという限界 が あ る が, Modified sample (又は three-adjacent-sample) 分散⁽¹⁵⁾ や Prediction error 分散⁽¹⁶⁾ によれば, 例えば $\alpha = -4$ ま で収れんすることができる. これは特に時間誤差の時系 列を扱う場合重要になる. そのほか,時間領域の尺度か ら周波数領域の尺度への変換を一般的に可能にする試み として, Hadmard 分散⁽¹⁷⁾の使用や時系列に対する ARIMA (Autoregressive Integrated Moving Average) モデル^{(18) (19)}の使用がある.後者は、時系列モデ ルを周波数領域で f の形で表すのが一般的になってい るのに対し、時間領域で時系列そのものを直接モデル化 しようとするものである. 同様なものに Percival によ る〔白色雑音+ステップ周波数変化〕の時系列モデルが あるが⁽²⁰⁾, これらは特に原子時系のアルゴリズムの改善 にとって有力な手掛りを与えるように思われる.

次に、周波数安定度の尺度を定義する上で使用される 重要な統計的概念である「定常性」について述べてお く(1)(13)(18). 定常性の概念は多くの統計的議論の根本に あるものであるが、これはある時刻 t にアンサンブル (例えば一定の信号群)を観測したとき、そのアンサン ブル内の値の分布(又は統計的性質)は正確に任意のほ かの時刻 t'のそれと同じであるということである. し かし、このことが現実の測定と完全に一致すると考える ことはもちろんできない. 例えば, ある周波数 (FM) 雑音が定常性であるとしたとき、その積分で与えられる 位相雑音は定常性とはならない.また、同様なことであ るが、パワースペクトルが $f^{\alpha}(\alpha < 0)$ の時系列は f=0を含む全周波数空間を考えるかぎり定常性とはならな い. 統計の有用性は理想化されたモデルを作りあげて, 実際のシステムで必要な観測量を合理的に表現すること にある.したがって、モデルに要求されることは、第1 に追跡が可能であり、容易にそのモデルの構成要素の推 定値が得られることであり、また、実際の装置からの観 測量と一致すべきである. その際注意すべきことは,装 置が定常的なアンサンブルから選ばれたかどうかは問題 ではなく、単に装置からの観測量が例えば仮定された定 常的アンサンブルの要素と一致するかどうかを知ればよ いのである.このように、「定常性」はモデルの特性で あってデータの特性ではない.上に述べた位相雑音の場 合についていえば、これを定常性とすることが便利だか らであり、同時に、実際の位相測定量の統計的性質をよ く記述することができる.また、 $f^{\alpha}(\alpha < 0)$ 型の時系列 についていえば、現実の測定は必ず有限サンプル時 間、有限帯域幅及び有限観測時間のもとに行われるわけ であり、その範囲で考えるかぎり定常性のモデルによっ て十分この時系列の統計的性質を記述することができる わけである.もし、非定常モデルを時系列に当てはあた 方が有用かつ便宜性があるなら、むしろそうした方がよ いのである.

発振器をはじめとする各種装置は、周囲温度、供給電 圧,磁界,気圧,温度,振幅,出力の負荷変動などによ ってその出力周波数(又は位相)が影響を受ける.した がって、周波数安定度の測定値にも影響するから、測定 結果にはこのような環境条件を明確に示すことが望まし いわけであるが、本章で述べる周波数安定度の定義その ものにはこれらの要因は含まれていないことに注意する 必要がある. それは、これら環境要因の莫大なリストや それら個々に対する手立てについて統一的に表現するこ とは不可能だからである(1).したがって、それぞれの分 野で必要な条件等を付加して安定度尺度を使用する習慣 を確立することが重要である. 周波数安定度尺度は信号 発生器間の相互比較を可能にするだけでなく、いろいろ の状況のもとに用いられる信号発生器の性能を推測でき るものでなければならない. それには、しばしば実際の 分布関数が必要となってくるものであり、二次モーメン トの尺度だけでは不十分な場合が生じてくる. ことに分 散は,プロセス(確率過程又は時系列)がガウス分布を するときは、平均値とともにプロセスの統計的性質を十 分表し得るが、そうでないときは近似的表現にしかすぎ ない.実際の分布については、必要に応じてそれぞれの 場合について具体的に調べて議論するしかない.

また,さきに述べた ARIMA モデル等は,時系列を 直接的にとらえようとしている点で新しい可能性を含ん でいる.

本章では、2. に周波数安定度の定義を示し、3. では定 義された尺度間の変換を、また、4. では離散的雑音への 適用と問題点を議論している. 5. では Allan 分散の推 定値と測定値評価への適用について述べている. 2., 3. は解説が中心であり、4., 5. は筆者の研究が中心であ る.上述したように、周波数安定度尺度の研究は多く発 表されているが、できるだけ著者自身の研究を中心に述 べるという本特集号の性格と限られた頁数から、これら の紹介は必要最小限なものにとどめたつもりである.し たがって、興味を持たれた読者は参考文献を直接読まれ ることをお勧めしたい.また、本章は周波数精密測定回 路専門委員会が発行した技術報告「周波数安定度とその 測定」⁽²¹⁾において筆者が執筆した論文⁽¹⁾を基にし、そ の後発表された文献を考慮して若干の修正を加えたもの である.

2. 周波数安定度尺度の定義⁽¹⁾⁽⁷⁾

信号発生器の出力電圧の瞬時値は次のように表され得る.

 $V(t) = [V_0 + \epsilon(t)] \sin [2\pi\nu_0 t + \varphi(t)]$ ……(1) ここで, V_0 , ν_0 はそれぞれ電圧振幅及び周波数の公称 値であり, $\epsilon(t)$ 及び $\varphi(t)$ はそれぞれ V_0 及び $2\pi\nu_0 t$ からのずれである. 位相の瞬時値を

とおくと、周波数の瞬時値は次のように表される.

$$\nu(t) = d\Phi/dt/2\pi = \nu_0 + \dot{\varphi}(t)/2\pi$$
(3)

φ/2π は νo からのずれである.

任意の時刻 t に対して次の条件が成立するとする.

 $|\dot{\varphi}(t)/2\pi\nu_{0}|\ll 1$ (5)

これは $\varphi(t)$ 又は $\dot{\varphi}(t)$ を実際の測定と結びつけて考え る場合欠かせない条件である.

周波数安定度という用語は厳密には周波数不安定度と いわれるべきであるが、(5)式が成立する場合は公称値で 規格化されたいかなる周波数安定度の尺度も1より十分 小さいと考えられるので、安定度という用語を用いても 実際には混乱を生じないと考えられる.

2.1 周波数安定度尺度の第1の定義(周波数領域) 周波数変動分を公称周波数 ν₀ で規格化すると,

.....(6)

 $y(t) \equiv \dot{\varphi}(t) / 2\pi \nu_0$

<u>周波数安定度の第1の尺度は y(t) のパワースペクト</u> ル密度 $S_y(f)$ で定義する. ただし、f はフーリエ周波 数であり、 $S_y(f)$ は片側スペクトル密度で単位は H_z^{-1} である.

 $S_{\eta}(f) と \dot{\varphi}(t) のスペクトル密度 <math>S_{\dot{\varphi}}(f)$ 及び $\varphi(t)$ のスペクトル密度 $S_{\varphi}(f)$ (すべて片側で定義) との関係 は,

 $S_y(f) = S_{\varphi}(f)/(2\pi\nu_0)^2 = S_{\varphi}(f) \cdot (f/\nu_0)^2$ ……(7) で与えられる.

2.2 周波数安定度の第2の定義(時間領域)
 規格化された周波数変動分 y(t)の τ 秒平均は,

で与えられる. ただし, $t_{k+1} = t_k + T$, k = 0, 1, 2, ……で あり, T は τ 秒測定の繰返し周期である(第1図). し たがって, $T - \tau$ は $T > \tau$ のときは測定間の空き時間を 意味している. t_0 は任意に選ばれる.

周波数安定度の第2の尺度は標本分散と類似の次の関 係式によって定義される.

ここで、 < >は無限時間平均を表す. (9)式は無単位の 量である.

(9)式の 1/(N-1) は不偏推定量にするためのもので あるが、実際は白色周波数 (f^{0} FM) 雑音のときには満 足するが、白色位相 (f^{0} PM) 雑音のときには満足しな い⁽¹³⁾. Cutler に代表される尺度⁽⁴⁾ は $\langle \sigma_{y^{2}}(N \rightarrow \infty, T=\tau) \rangle$ に相当するが、一般にこの方がプロセスの統 計的性質を常に正確に示し、意味あるものにすると考 えるのは正しくない. なぜなら、フリッカ 周波数 (f^{-1} FM) 雑音などはフーリエ周波数成分 f が低いほど雑音 パワーが大きくなるため、 $\langle \sigma_{y^{2}}(N \rightarrow \infty, T, \tau) \rangle \rightarrow \infty$ と なってしまうからである. したがって、このような場合 にデータの比較を意味あるものにするには有限の N,T でなければならない (実際にこれしか実現 できない) し、測定結果にこれを明記することが必要である.

(9)式で N=2 (N が整数のときの最小値), $T=\tau$ と おいた場合を $\langle \sigma_y^2(2, T=\tau) \rangle \equiv \sigma_y^2(\tau)$ と表し, Allan 分散と呼ぶ. これは(9)式から次のように簡潔な形で与え られる.

<u>Allan</u> 分散 $\sigma_{y^2}(\tau)$ を時間領域における周波数安定度の尺度として定義する*.

Allan 分散は *N→∞* の場合と逆の考え方に立つもの といえるが, 次のような特徴をもっている.

* CCIR Rec. 538 では Allan 分散の平方根である $\sigma_y(\tau)$ を二標本標準偏差 (two-sample standard deviation) と呼称 している. また,最近の外国の,文献などでは $\sigma_y^2(\tau)$ を二標 本分散 (two-sample variance) と呼んでいるのが普通である が,本論文では Allan 分散の用語に統一している. ①短期周波数安定度に影響を及ばす f^0 及び f^{-1} PM 雑音については $\langle \sigma_y^2(\infty, \tau, \tau) \rangle$ の1.5倍程度の過大 評価になるにすぎない. f^0 FM 雑音については両者は 一致する(第1表).

② (9) 式の一般式は Allan 分散によって表現 で きる (3.). したがって, 雑音の スペクト 特性がわ かれば $<\sigma_y^2(N, T, \tau) >$ は Allan 分散の測定から推定でき得 るので, Allan 分散を発振器に固有な量として取り扱う ことができる.

③Allan 分散は2個の測定値間の差によって与えられ るので、 $<\sigma_y^2(\infty, T, \tau) >$ が発散する f^{-1} 及び f^{-2} FM 雑音の場合でも収れんすることができ、これらの雑音に 対する安定度尺度として使用することができる.

3. 周波数安定度尺度間の変換

一般に、 ランダム時系列を g(t) と表すと、 g(t) の自 己相関関数 $R_g(\tau)$ は次のように定義される.

 $R_g(\tau) = \langle g(t) \cdot g(t+\tau) \rangle$ ……(1) ただし、g(t) は定常的と仮定する.したがって、 $R_g(\tau)$ は時系列の2点間の時間 τ のみに依存する.

g(t) のパワースペクトル密度 $S_g(f)$ は Wiener— Khintchine の公式により $R_g(\tau)$ のフーリエ変換で与 えられる.

 $S_{g}(f)$ は $0 \le f \le +\infty$ の範囲で定義される片側スペクトル密度である. $-\infty \le f \le +\infty$ で定義される両側スペクトル密度は理論計算には便利であるが、実験との結びつきは片側スペクトル密度の方がよい.

時間領域での微分 d/dt は、周波数領域では $j\omega$ ($j=\sqrt{-1}$, $\omega=2\pi f$)を掛けることに相当するので、パワースペクトル密度としては ω^2 を掛けることになる.すなわち、g(t)=dG(t)/dtなる関係にある二つの量のパワースペクトル密度は次式で結ばれる.

 $S_{g}(f) = \omega^{2}S_{G}(f)$ ……(14) パワースペクトル密度の単位は、g(t)が例えば $\varphi(t)$ 、 $\dot{\varphi}(t)/2\pi$ 、 $\epsilon(t)$ [(1)~(3)式参照] とすると、それぞれ

rad²/Hz, Hz²/Hz, Volts²/Hz となる. このように, パワースペクトル密度はあるフーリエ周波数 f におけ る単位周波数幅当たりの強さを意味するが,実際のパワ ーを表しているわけではない. これは,例えば電圧変動 分の場合に単位の大きさの抵抗に $\epsilon(t)$ の 電圧を消費さ せたとき, $S_{\epsilon}(f)$ (Watts/Hz) が実際にパワーを意味す るようになるという程度の類似しかない. しかし, (1)~ (13式で $\tau = 0$ とおくと,

となるので、二乗平均値 $< g(t)^2 >$ は時系列全体が含ん でいるパワーのように想定することができる。したがっ て $S_q(f)$ は全パワーを各フーリエ周波数成分に 分解し たときのそれぞれにおける密度を表すということから、 パワースペクトル密度という呼び方も可能な わけで あ る.

時間領域における各量は(12)、(13)式のフーリエ変換を通 じて周波数領域の量と結びつけることができる. 例え ば、(8)式の τ 秒平均値 ӯ の二乗平均を考える.

 $<\!\bar{y}^2>=\![\varphi(t+\tau)-\varphi(t)]^2>/(2\pi\nu_0\tau)^2$

 $= [\langle \varphi(t+\tau)^2 \rangle + \langle \varphi(t)^2 \rangle$

 $-2 < \varphi(t+\tau)\varphi(t) >]/(2\pi\nu_0\tau)^2$

(11)式の関係を用いると,

 $<\bar{y}^2>=2[R_{\varphi}(0)-R_{\varphi}(\tau)]/(2\pi\nu_0\tau)^2$ ……(16) (16式は、(13)、(15を用いてパワースペクトル密度と関係 づけることができる.

また, (7)式の $S_y(f)$ を用いると,

$$\langle \bar{y}^2 \rangle = \int_0^\infty S_y(f) \frac{\sin^2(\pi f \tau)}{(\pi f \tau)^2} df$$
(18)

 $\langle \bar{y}^2 \rangle$ は、(9)式では $\langle \sigma_y^2(\infty, \tau, \tau) \rangle$ に、 Cutler らの記号では $\sigma^2[\langle \phi \rangle_{l,\tau}]/\omega_0^2$ に⁽⁴⁾ 相当するが Rutman はこれを $I^2(\tau)$ と表し、True 分散と呼んでい る⁽¹³⁾.

時間領域における τ 秒測定はランダム時系列 y(t) を 高さ $1/\tau$,幅 τ の方形の時間ウインドウを通すことに 相当するが(第2図), これを周波数領域のパワーで考 えると、 $S_y(f)$ を $\sin^2(\pi f \tau)/(\pi f \tau)^2$ の特性をもつ周波 数ウインドウを通すことに相当するわけである [108式]. したがって、 $S_y(f)$ を測定するとき $H(j\omega)$ の特性のフ ィルタを付加したとすると、(180式の右辺の積分内に |H $(j\omega)^2$ | を新たに追加して計算することになる。第3図 に、 $\sin^2(\pi f \tau)/(\pi f \tau)^2$ のウインドウを示すが、その効 果は $f \tau \leq 1$ にほとんど集中しており、 $f \tau \geq 1$ では最大 値が $1/(\pi f \tau)^2$ で減衰してゆく.

(9)式の場合, y(t) を r 秒平均の時間ウインドウを通 すだけでなく,有限個数 N のサンプルと測定間に 空 き 時間があることによるウインドウが加わってくる.(9)式

第2図 で平均の時間ウインドウ

第3図 周波数ウインドウ $(u \equiv \pi f \tau)$

は(16式を求めたときと同様にして自己相関関数を用いて 表せる⁽³⁾.すなわち,

$$<\sigma_{y^{2}}(N, T, \tau) > = \frac{1}{\tau^{2}} \Big\{ U_{x}(\tau) + \frac{1}{N(N-1)} \\ \sum_{n=0}^{N-1} (N-n) [2U_{x}(nT) - U_{x}(nT+\tau) \\ -U_{x}(nT-\tau)] \Big\} \qquad \dots \dots (19)$$

ただし、x は時間の変動分を表し、 $U_x(\tau)$ は

 $U_{\mathbf{x}}(\tau) \equiv 2[R_{\varphi}(0) - R_{\varphi}(\tau)]/(2\pi\nu_0)^2$ ……20) (19式で $T = \tau$ とおくと簡単になって,

(18)、(19)式にみられるように、全パワーに相当する分散 はパワーが各周波数成分に分解されているパワースペク トル密度やそのフーリエ変換である自己相関関数を用い て表すことができるが、その逆の一般的な変換式を得る ことは困難である.

3.1 周波数領域から時間領域への変換

周波数領域の安定度尺度から時間領域の尺度への変換 式は Cutler によって与えられた⁽¹⁾. これは,既に述べ たような自己相関関数による表現からフーリェ変換を使 ってパワースペクトル密度による表現に変える数学的手 法を含んでいるが,文献(1)に詳しく証明されているの で,ここでは結果のみを記す.

(9)式は $S_y(f)$ を用いて次のように表せる.

$$\langle \sigma_y^2(N, T, \tau) \rangle = \frac{N}{N-1} \int_0^\infty df S_y(f)$$
$$\frac{\sin^2(\pi f \tau)}{(\pi f \tau)^2} \left\{ 1 - \frac{\sin^2(\pi r f N \tau)}{N^2 \sin^2(\pi r f \tau)} \right\} \quad \dots \dots 22$$

ただし, r≡T/τ. 02式で N=2, r=1 とおくと Allan 分散になり, 次式のようになる.

$$\sigma_y^2(\tau) = 2 \int_0^\infty df S_y(f) \frac{\sin^4(\pi f \tau)}{(\pi f \tau)^2} \qquad \dots \dots 23$$

22式で、第1のウインドウは τ 秒平均によるものであ り、第2のウインドウは 有限個数 Nのサンプリング 測定間に空き時間があることによるものである.第3 図 に r=1,及び N=2 と10 について示してあるが、Nが大きいほど立ち上がりが急になる方形状の 特性 にな り、N が小さいときは正弦波状の特性になる. 図 には 示していないが、r>1のときは繰り返し周期が早くな るだけで、全体の形状は全く同じである. このウインド ウの特徴は $\pi r f \tau \rightarrow 0$ で N が 有限のとき零になる、 す なわち低域遮断のフィルタ特性をもっていること であ る. このために、 $S_y(f) \sim f^{-1}$ 又は f^{-2} のときでも(22式 は発散しないですむわけである.

高安定発振器において、 $S_y(f)$ はフーリェ周波数のべき乗としてモデル化することが可能である.すなわち、

 $S_y(f) = h_{\alpha} f^{\alpha}$ ……20 h_{α} はスペクトル密度の強さである. あるいは, $\alpha = -2$, -1, 0, 1, 2 などの各独立した雑音の合成として モデ ル化することが一般的に行われている.

 $S_y(f) = h_{-2}f^{-2} + h_{-1}f^{-1} + h_0f^0 + h_1f + h_2f^2$ ……25 ここで、第1項は第3項白色 FM 雑音のランダムウォ ークであり、第2項はフリッカ FM 雑音、第4項及び 第5項はそれぞれフリッカ PM 雑音及び白色 PM 雑音 であるが、FM 雑音に変換して表したものである [(14 式]. (22, (23)式の $S_y(f)$ としてこれら雑音モデルを代 入して計算した結果を第1表に示す⁽¹⁾(13)</sup>。

22式を $u \equiv \pi f \tau$ とおいて書き換えると,

203式で、 $u \to 0$ のときは $S_y(u/\pi\tau)$ を除いた項の大き さは u^2 のように、また、 $u \to \infty$ のときは主に u^{-2} の ように変化する*. したがって、積分で u のべきが一つ 増すことを考えると、24式の α が $-3 < \alpha < 1$ の範囲な ら低域又は高域で遮断を行わなくても203式は 収 れ ん す る. それ以外では、 $\alpha \le -3$ のスペクトル特性をもつ雑 音に対しては低域での新たな遮断が、また、 $\alpha \ge 1$ (PM 雑音) では高域での遮断が必要になってくる、第1表の 場合、 $0 \le f \le f_h$ の方形フィルタを仮定している. した

^{*} $u \rightarrow 0$ のとき $\sin^2 u/u^2 \rightarrow 1$. また、 $\wp | c = 1$ の $\sin^2 Nru \in \mathbb{R}$ 開すると { } 内は $u \rightarrow 0$ で $\sin^2 ru$ の項に近似されるので、結局 { } $\circ u^2$ となる、 $\wp | c = 1$ 公式の $\sin^2 u \times$ { } は定数項と振動項からなるので、 $u \rightarrow \infty$ で振幅特性を主に左右するのは $1/u^2$ となる・

第1表 安定度尺度の変換

Time Domain (Allan variances,) Frequency Domain (Power law spectral densities)	$\sigma_y^2(r)$ (N=2, r=1)	<pre></pre>	$\langle \sigma_y^2(N,T,\tau,f_h) \rangle$
$\frac{\text{WHITE } x}{S_y(f) = h_2 f^2} \left(S_x(f) = \frac{h_2}{(2\pi)^2} \right)$ $2\pi f_A \tau > 1$	$h_2 \cdot \frac{3f_A}{\left(2\pi\right)^2 \tau^2}$	$h_2 \cdot \frac{N+1}{N(2\pi)^2} \cdot \frac{2f_A}{r^2}$	$h_2 \cdot \frac{N+\delta_k(r-1)}{N(2\pi)^2} \cdot \frac{2f_h}{r^2}$ $\delta_k(r-1) \equiv \begin{cases} 1 & \text{if } r=1, \\ 0 & \text{otherwise} \end{cases}$
FLICKER x $S_y(f) = h_1 f \left(S_x(f) = \frac{h_1}{(2\pi)^2 f}\right)$ $2\pi f_h \tau > 1, 2\pi f_h T > 1$	$h_1 \cdot \frac{1}{r^2 (2\pi)^2} \left[\frac{9}{2} + 3 \ln (2\pi f_{\lambda} r) - \ln 2 \right]$	$h_{1} \cdot \frac{2(N+1)}{Nr^{2}(2\pi)^{3}} \left(\frac{3}{2} + ln(2\pi f_{h}r) - \frac{ln}{N^{2}-1}\right)$	$h_{1} \cdot \frac{2}{(2\pi\tau)^{2}} \left\{ \frac{3}{2} + \ln(2\pi f_{h}\tau) + \frac{1}{N(N-1)} \sum_{n=1}^{N-1} (N-n) \cdot \ln\left(\frac{n^{2}\tau^{2}}{n^{2}\tau^{2}-1}\right) \right\}, \text{ for } \tau > 1$
WHITE y (Random Walk x) $S_y(f) = h_0 \left(S_x(f) = \frac{h_0}{(2\pi)^2 f^2}\right)$	$h_0 \cdot \frac{1}{2} \tau^{-1}$	$h_0 \cdot \frac{1}{2} \tau^{-1}$	$h_0 \cdot \frac{1}{2} \tau^{-1}$, for $r \ge 1$ $h_0 \cdot \frac{1}{6} r (N+1) \tau^{-1}$, for $Nr \le 1$
$\frac{\text{FLICKER } y}{S_{y}(f) = \frac{h_{-1}}{f} \left(S_{x}(f) = \frac{h_{-1}}{(2\pi)^{2} f^{3}} \right)}$	h-1•2ln2	$h_{-1} \cdot \frac{N \ell n N}{N-1}$	$h_{-1} \cdot \frac{1}{N(N-1)} \sum_{n=1}^{N-1} (N-n) \left(-2(nr)^2 \ell n(nr) + (nr+1)^2 \ell n(nr+1) + (nr-1)^2 \ell n(nr-1) \right)$
RANDOM WALK y $S_y(f) = \frac{h_{-2}}{f^2} \left(S_x(f) = \frac{h_{-2}}{(2\pi)^2 f^4} \right)$	$h_{-2} \cdot \frac{(2\pi)^2 \tau}{6}$	$h_{-2} \cdot \frac{(2\pi)^2 \tau}{12} \cdot N$	$h_{-2} \cdot \frac{(2\pi)^2 \tau}{12} (\tau (N+1) - 1), \tau \ge 1$

がって、実際の測定でこれと異なる特性のフィルタを用いたときは第1表の結果と異なってくることが考えられる. このようなときは、02、03式でフィルタ特性 | H(*jw*)|²を掛けて計算すればよい. また、一般に周波数 安定度の測定においては測定帯域幅を結果について明記する必要がある.

第1表において f^{0} FM 雑音については $N, r(\geq 1)$ に無関係であるが、これはインパルス性の 雑音 の ため \bar{y}_{i} 間に相関が全くないことによる. このことは PM 雑 音もこれに準じており、相関が小さく N,r への依存度 が小さい. f^{0} FM 及び f^{0} PM 雑音については分散を SN 比で表すこともよく行われてい る、 [70, 71]式]. f^{-1} PM 雑音については f^{0} PM 雑音にほぼ準じている と考えてよい.

一般に、長時間測定においては FM 雑音が支配的に なる. ところが、 $\alpha < 0$ の場合 $< \sigma_y^2(N \rightarrow \infty, T, \tau) > \rightarrow$ ∞ となる. これは周波数の無限個数測定の分数が発散 するということであるから、このような雑音を伴う場合 周波数の平均値の真値を求めることができない.一方, 周波数ドリフトの場合, dy(t)/dt を測定するため (14式) から $f^{\alpha} \times f^2$ となるので, $\alpha = -1$, -2 のような場合 でも分散は発散せず、ドリフトを決定することが可能で ある. 逆に時間は周波数の積分で与えられるから, スペ クトル密度は $f^{\alpha} \times f^{-2}$ のようになり、時間に支配的に 影響する f⁻¹ 及び f⁻² FM 雑音の場合には, f⁻³ 及び f-4 のスペクトル特性となる.したがって, (22), (23)式の 尺度は時刻に対して使用することはできない. これに対 して Modified Sample 分散⁽¹⁵⁾ や Prediction error 分散⁽¹⁶⁾ などの提案があり、また、ARIMA モデル^{(18) (19)} やカルマンフィルタ による取扱いが有力になってく Z⁽²²⁾⁽²³⁾.

3.2 時間領域から周波数領域への変換

時間領域の周波数安定度尺度から周波数領域のそれへ の変換の一般式を導くことは困難である.しかし,高安 定発振器の場合などによく当てはまるスペクトルモデル である04,05式の場合は変換が可能である.すなわち,06式から,

 $<\sigma_y^2(N, T, \tau)>=\tau^{-\alpha-1}h_{\alpha}C_{\alpha}$ = $\tau^{\mu}h_{\alpha}C_{\alpha}$ (-3< α <1) ……27) ただし、 μ = $-\alpha$ -1、及び

$$C_{\alpha} \equiv \frac{N}{(N-1)\pi^{\alpha+1}} \int_{0}^{\infty} du \ u^{\alpha} \frac{\sin^{2} u}{u^{2}}$$
$$\left\{ 1 - \frac{\sin^{2}(Nru)}{N^{2} \sin^{2}(ru)} \right\}$$

 $\mu \geq \alpha$ の関係を第4図に示す⁽¹⁾. ただし、 $\alpha \geq 1$ で は高域遮断周波数 f_h が必要であり、また、 $2\pi f_h \tau \gg 1$

第4図 μとαの関係

としている. 第4図は時間領域の安定度の測定から τ 特 性 (μ)を把握し得るので, これから雑音のスペクトル 特性 (α)が推定できる. したがって, 第1表からパワ ースペクトル密度の強さ h_{α} を決定し得る. ただし, $1 \le \alpha \le 2$ では $\mu \simeq -2$ となり, f^{0} PM 雑音と f^{-1} PM 雑音の識別ができない. このような 場合 は 測定帯域幅 f_{h} を可変にして Allan 分散の f_{h} に対する特性を求め ることが考えられる⁽²⁴⁾. また, 測定値を少しずつ重複 させながらずらして処理する Modified Allan 分散の 提案もある⁽¹⁴⁾.

Allan 分散の測定からスペクトル特性を推定する方法 は、長時間測定のデータを必要とし、フーリエ周波数が 約1Hz 以下(rが1秒以上、数時間又は数か月にな ることもある)の時系列に特に有効である。筆者らは衛 星からのミリ波電波強度が降雨により減衰を受けた時系 列データを Allan 分散処理して、これがランダムウオ ーク(f⁻²)することを見いだしたことはその一例であ る⁽²⁵⁾.

Allan 分散の高安定発振器についての典型的な形を第 5 図に⁽²⁶⁾、また、 f^{α} 型のスペクトル特性をもつ時系列 のシミュレーションによるプロットを第6図に示す⁽²⁷⁾.

Allan 分散等の測定から一般的なパワースペクトル密 度を求めることができないことは既に述べた. このこと は、第7図に示される Allan 分散のウインドウの分解 能の悪さを見れば理解できる. すなわち, $2\pi f \simeq 1$ の主 ウインドウのほかに, これの奇数倍のところに無視でき ないウインドウがある. これに対して, Hadmard 分散 により一般的にパワースペクトル密度を算出する方法が ある⁽¹⁷⁾.

周波数領域で鋭い通過特性をもたせるには、時間領域 のウインドウは正弦波に近い必要がある.それには第7

第10図 修正 Hadmard 分散のウインドウ (二項分布係数の重み, N=5)

図のウインドウを幾つも連ねて第8図のようにし、更に 空き時間を作って丸みをもたせるようにするとよい (第9図).空き時間の最適値は測定時間 r の1/2であ る.しかし、測定の開始と終わりが急であると、多くの 小さいウインドウができるので、第10図に示すように 測定値のそれぞれに重みをつけるのがよい.このことに より、主ウインドウの幅が広がり、分解能がやや低下す るが、測定値の信頼性は高まる⁽²⁸⁾.

Hadamard 分散は次のように定義される.

$$<\sigma_{H^2}(N, T, \tau)> = <(\bar{y}_{k+1} - \bar{y}_{k+2} + \bar{y}_{k+3})$$

 $-\cdots - \bar{y}_{k+2N}> \cdots \cdots (28)$

これをスペクトル密度で表すと、

 $<\sigma_{H^{2}}(N, T, \tau)>=\int_{0}^{\infty}|H(f)|^{2}S_{y}(f)df\cdots(2)$

ただし, |*H*(*f*)|² はウインドウ特性であるが, 第8図 の場合次のようになる⁽²⁹⁾.

$$|H(f)|^2 = \left(\frac{\sin \pi \tau f}{\pi \tau f}\right)^2 \left(\frac{\sin N\pi Tf}{\cos \pi Tf}\right)^2 \dots 30$$

(28)式の ӯҟ を二項係数で重みをつけた場合の分散は

と書き表せるが(17)、これに対するウインドウ特性は(29)、

$$|H_{BC}(f)|^{2} = 2^{2(N-1)} \left(\frac{\sin \pi \tau f}{\pi \tau f}\right)^{2} \sin^{2(N-1)} \pi T f$$
.....(32)

第9図のような場合, Hadmard 分散の測定から, パワースペクトル密度は f=1/2T における幅 $B_N=(2NT)^{-1}$ のウインドウのみが支配的であるとして, 29 式より次のように変換することができる⁽¹⁷⁾.

 $S_y(f=1/2T) \cong (2NT/A_1^2) < \sigma_H^2(N, T, \tau) >$(33)

ただし, $A_1=2N\sin(\pi x)/(\pi x)$, $x=\tau/2T$ である. 既 に述べたように, 33式は $T=(3/2)\tau$ のとき最適とな る.

3.3 周波数領域の尺度間の変換

(3), (6)式より,周波数の変動分 δν 及び位相の変動分 φ の間には次の関係がある.

$\delta v = d\varphi/dt/2\pi = \dot{\varphi}/2\pi$	(34)
$y \equiv \delta \nu / \nu_0$	(35)

したがって、(14式よりパワースペクトル密度間には、

$$S_y(f) = S_{\delta \nu}(f) / \nu_0^2 = (f / \nu_0)^2 S_{\varphi}(f)$$
(37)

 $S_{\delta\nu}(f)$, $S_{\varphi}(f)$, $S_y(f)$ の単位は, それぞれ Hz^2/Hz , rad²/Hz, /Hz である.

時間間隔 τ と位相の間には,

ただし、 ϕ_0 は適当な固定位相量である. したがって、 τ の変動分 $\delta\tau$ と位相変動分の間には、

それゆえ,

$$S_{\varphi}(f) = (2\pi\nu_0)^2 S_{\delta\tau}(f) \qquad \cdots \cdots (40)$$

$$S_{\delta\tau}(f) = S_{\eta}(f) / (2\pi f)^2 \qquad \cdots \cdots (41)$$

 $S_{\delta\tau}(f)$ の単位は \sec^2/Hz である.以上のパワースペクトル密度の周波数範囲は $0 \le f \le \infty$ で定義されている.

実際にパワースペクトル密度を測定する場合,厳密に は RF (無線周波数)信号のパワースペクトル密度 S_{RF} (f) (例えば,(1)式の V(t)のパワースペクトル密度 $S_V(f)$)を測定することになる.ところが,これにはキ $_{7}$ リアパワーや振幅変動分のパワーも含まれている.そ して,たとえ振幅の変動分が無視し得るとしても, S_{RF} (f) は周波数の変動分とは一般に単純には関係づけられ ない*. Srr(f) が実際的な尺度であるにもかかわらず 周波数安定度の第一義的な尺度に選ばれないのはこの理 由による.

RF 信号の 測定から 周波数領域の 安定度尺度を 求める 方法について述べる.(1)式の信号 V(t) を基準信号 V_r $(t) = V_{or} \sin 2\pi\nu_o t$ とともに掛け算型の検出器 (二重平 衝型混合器など) に入れたとすると、出力信号 v(t) は、 $v(t) = rV(t) \cdot V_r(t)$

 $= \gamma V_{0r}(V_0 + \varepsilon) \sin(2\pi\nu_0 t) \times \sin(2\pi\nu_0 t + \varphi)$

ただし, γ は検出器の効率に関係した定数である.上式 は次のように書くことができる.

 $v(t) = (A_{ptp}/2)(1 + \varepsilon/V_0)$

 $[\cos \varphi - \cos(4\pi\nu_0 t + \varphi)]$ ……(d2) ここで、 $A_{ptp} = \gamma V_{0r} V_0$ は正弦波出力を仮定したときの p-p 値である.いま、雑音のスペクトル分布が $f \leq f_h$ に制限されており、測定帯域幅 f'_h と V_0 との間に、

 $0 < f_h < f'_h < \nu_0$

なる関係が成立しているとすると、42式の[]内のキャ リア成分は低域フィルタで除くことができるから、

 $v'(t) = (A_{ptp}/2)(1+\epsilon/V_0)\cos \varphi$ ……(43) ただし、キャリアを完全に分離除去できるには(5)式の条 件が成立しなければならない. (43式で $\cos \varphi \simeq 1$ とする と、

$$v'(t) \cong (A_{p\iota_p}/2)(1+\epsilon/V_0)$$
 ……(44)
となり,振幅変調雑音 ϵ を測定することになる.

φ に固定位相 π/2 を加えると、cos[φ-π/2]=sin φ
 ≃φ となるから、43式は

このようにして、ランダム雑音が位相検出器の出力と して得られるならば、これを周波数領域又は時間領域で の任意の測定が可能である.(45式が得られるには、(4)、 (5)式の条件が成立するとしているが、これが成立しない

*(1)式の RF スペクトル密度 $S_{\nu}(f)$ と位相スペクトル密度 $S_{\varphi}(f)$ の完全な関係式は, AM 雑音 $\epsilon(t)$ を無視して, Rutman によって与えられている⁽³⁰⁾.

$$S_{V}(f) = \frac{V_{0}^{2}}{2} e^{-\langle \varphi^{2} \rangle} \left\{ \hat{o}(f - \nu_{0}) + S_{\varphi}^{(TS)}(f - \nu_{0}) + \sum_{n=2}^{\infty} \frac{1}{n!} (S_{\varphi}^{(TS)}(f))_{\bigotimes}^{n-1} S_{\varphi}^{(TS)}(f))_{\nu_{0}} \right\}$$

ただし、 φ は定常正規過程とし、 $S_{\varphi}^{(rs)}(f)$ は φ の 両側 スペ クル密度、[] 内は $S_{\varphi}(f)$ 同士の n-1 回の たたき込み積 分であり、キャリア周波数 ν_0 を中心とする変換に追従される. (4)、(5)式の条件が成立するとき、

$$S_{\nu}(f) \simeq \frac{V_0^2}{2} \{ \hat{o}(f - \nu_0) + S_{\varphi}^{(TS)}(f - \nu_0) \}$$

となって, Sv(f) の観測から直接 $S_{\varphi}(f)$ を推定することができる.

ときは $\sin \varphi$ は一般に Bessel 関数として表され、 φ の 各フーリエ周波数成分の高調波が含まれてくるようになる.

キャリア周波数 ν_0 を中心とする二つの 側帯波成分 $\nu_0+f \ge \nu_0-f$ が振幅が等しくコヒーレントであれば, 位相検出器の出力では単純に加算されるのでパワーとし ては4倍になる.したがって、 $\nu'(t)$ のパワースペクト ル密度を $S_{\nu'}(f)$, PM 雑音 φ による周波数 ν_0+f の 側帯波成分の RF パワースペクトル密度を $[S_{RP}(\nu_0+f)]_{PM}$ と表すと,

 $S_{\nu'}(f) = 4[S_{RF}(\nu_0 + f)]_{PM}$ ……(46) 更に、Halford は測定上の便利さから次のような量を定 義した⁽³¹⁾.

(45)式の二乗平均を考えると,

 $< \varphi^2 > \cong 4 < v'^2 > /A_{plp}^2 = < v'^2 > /2P_{lotal}$ …(48) ここで、 $A^2_{plp} = 8 A^2_{rms} = 8 P_{lotal}$. $< v'^2 > /2$ は雑音パ ワーであるから、これを P_N とおくと

 $\langle \varphi^2 \rangle \cong P_N / P_{total}$ (49)

すなわち、<*♀*≥ は信号対雑音比で与えられる. (48)、(49式に対応するパワースペクトル密度は、

 $S_{\varphi}(f) \cong S_{v'}(f)/2P_{total} = S_{v'rms}(f)/P_{total}$50) (46), (切式の関係を用いると,

 $\mathcal{L}(f) \cong S_{\varphi}(f)/2 \qquad \dots \dots (51)$

このように,位相雑音のスペクトル密度 $S_{\varphi}(f)$ は 測定上実際的な量 $\mathcal{L}(f)$ と結びつけることができる. A_{ptp} を測定するには,位相検出器の二つの入力信号の 周波数をわずかにずらして,出力に正弦波のビート信号 を得るようにすると,その p-p 値が A_{ptp} となる.再 び零ビートにしたときの雑音レベルが A_{ptp} より十分小 さければ,位相差 $\pi/2$ の条件がほぼ成立しているとし てよい.

(48式の <v²> を周波数 f を中心とする単位帯域幅 のウィンドウを通して得られたとすると, 511式は

 $\mathcal{L}(f) = 2 \langle v'^2 \rangle / n^2 A^2 p t p \qquad \dots$ (52)

ただし、 n は逓倍次数である. 50式から $\mathcal{L}(f)$ を測定 によって求めることができる.

その他の周波数領域の尺度としては、例えばマイクロ 波発振器の FM 雑音を規定するのに、 周波数弁別器の 出力において周波数 f_m を中心とする 1 kHz の帯域幅 で測定した rms 電圧を使用する場合 がある⁽⁴⁾. この rms 電圧は較正により rms 周波数偏移 $< \delta f^2 > \frac{1/2}{f_{efm}}$ に対応させることができ、周波数安定度の尺度を用いて 次のように表すことができる[19式].

ただし、帯域幅Bの方形フィルタを通すとする.

 $S_{\varphi}(f)$ が帯域幅B内でほぼ一定とするなら,

$$\langle \delta f^2 \rangle_{f=fm} \cong S_{\varphi}(f) B/(2\pi)^2 \qquad \dots \dots 54$$

$$\mathbb{Z}$$
 is

$$< \delta f^2 >_{f=fm}^{1/2} / \nu_0 \cong [BS_y(f)]^{1/2}$$
(55)

 f_m に対して $< \delta f^2 > \frac{1}{2} f_{fm}$ をプロットすることが多い.また、 $< \delta f^2 > \frac{1}{2} f_{fm} / f_m$ が小さいときは、

 $<\delta f^2>_{f=fm}^{I^2}$ と同じ rms 周波数偏移を起こさせるよう な周波数 f_m の正弦波変調信号による単側帯波のパワー とキャリアのパワーとの比で表すことがある. す な わ ち,

$$(N/C)_{dB} = -20 \log_{10}(\sqrt{2} f_m / <\delta f^2 >_{f=f_m}^{1/2}) \dots (56)$$

4.3 時間領域の尺度間の変換

周波数安定度の尺度 $<\sigma_y^2(N, T, \tau) > t N, T, \tau (及$ $び f_h) の関数であるから,同一の信号についてこれら$ のパラメータを変えたときの尺度相互間で変換できれば便利である.ランダム雑音のスペクトル特性が24式のように周波数成分のべきで表されるとき,次のようなバイアス関数を定義する⁽³²⁾.

$$B_{1}(N, r, \mu) \equiv \langle \sigma_{y}^{2}(N, T, \tau) \rangle / \langle \sigma_{y}^{2}(2, T, \tau) \rangle \qquad \cdots \dots \langle 57 \rangle \\ B_{2}(r, \mu) \equiv \langle \sigma_{y}^{2}(2, T, \tau) \rangle / \langle \sigma_{y}^{2}(2, \tau, \tau) \rangle \qquad \cdots \dots \langle 58 \rangle$$

ただし、 $r \equiv T/\tau$. $\mu \geq \alpha$ の関係は第4図に示されている.

(19)式の $U_x(\tau)$ が、 $U_x(\tau) = a(\mu)\tau^{\mu}$ のように表されるとすると⁽⁵⁾、(57)、(58)式は次のように書ける.

$$B_{1}(N, r, \mu) = \frac{1 + \sum_{n=1}^{N-1} \frac{N-n}{N(N-1)} [2|nr|^{\mu+2}}{1 + [2|r|^{\mu+2} - |r+1|^{\mu+2}} - \frac{|nr+1|^{\mu+2} - |nr-1|^{\mu+2}}{-|r-1|^{\mu+2}]/2} - \frac{|nr+1|^{\mu+2} - |nr-1|^{\mu+2}}{-|r-1|^{\mu+2}]/2}{2(1-2\mu)}$$

59式でr-1とおくと、 $B_1(N,r=1,\mu)=N(1-N^{\mu})/[2(N-1)(1-2^{\mu})]$(61)

また, 定義により, $B_2(r=1,\mu)=1$ である.

59, 60式では $\mu=0$ で 0/0 の形になるが、 そのとき は L'Hospital の定理を使って計算する必要がある (例 えば、分子と分母を μ で微分した 後 $\mu \rightarrow 0$ を代入す る). 文献62に B_1 , B_2 の値が μ , r をパラメータとし て表にされている. 例えば、測定によって $\langle \sigma_y^2(N_1, T_1, \tau_1) \rangle$ の推定値を得たとすると、 $\langle \sigma_y^2(N_2, T_2, \tau_2) \rangle$ は次式により計算できる.

$$<\!\!\sigma_y^2(N_2, T_2, \tau_2) \!> = \! \left(\frac{\tau_2}{\tau_1}\right)^{\mu} \\ \left(\frac{B_1(N_2, r_2, \mu) B_2(r_2, \mu)}{B_1(N_1, r_1, \mu) B_2(r_1, \mu)}\right) \!<\!\!\sigma_y^2(N_1, T_1, \tau_1) \!> \dots \dots (6)$$

ただし, $r_1 = T_1/\tau_1$, $r_2 = T_2/\tau_2$.

59, 60式から *B*₁, *B*₂ の主なものを計算すると次の ようになる.

次に,時間領域で用いられるその他の尺度を幾つか述 べておく.(1)式の信号を適当な周波数 *f* B に下げて,カ ウンタで周期測定したとする.周期数を N₀ とし,この 間の時間間隔を τ とすると(3)式と類似の関係から,

$$2\pi N_0 = \int_t^{t+\tau} [2\pi f_B + \dot{\varphi}(t')] dt'$$
$$= 2\pi f_B \tau + \varphi(t+\tau) - \varphi(t) \qquad \cdots \cdots (64)$$
$$\tau = N_0 / f_B \tau + \tau = \tau_0 - \delta \tau (\delta \tau \ll \tau_0) \quad (0, t-\delta) \tau \neq \zeta + \delta$$

いま, $\tau_0 = N_0/f_B$, $\tau = \tau_0 - \delta \tau (\delta \tau \ll \tau_0)$ のようにおくと, 64式は,

$$\varphi(t+\tau_0) - \varphi(t) \cong 2\pi f_B \delta \tau \qquad \dots \dots 65$$

したがって、周波数変動の τ 秒平均値 $\overline{\delta \nu}$ は、

$$\overline{\delta \nu} = [\varphi(t+\tau_0) - \varphi(t)]/2\pi\tau_0 = f_B \delta \tau / \tau_0 \cdots 66)$$
公称値 ν_0 で規格化すると、

また、 $\Delta \varphi \equiv \varphi(t+\tau_0) - \varphi(t)$ 、 $\Psi_0 \equiv 2\pi \nu_0 \tau_0$ とおくと、 (67) 式は

(初式は周波数カウンタで測定される時間の変動量を周 波数の変動量に換算する重要な関係式である. 周波数安 定度としては67又は68式の *rms* 値を求めるのが 従来よ く行われてきた方法であるが, f^{-1} 及び f^{-2} FM 雑音 の場合 $N \rightarrow \infty$ で *rms* 値が発散してしまうことは既に 述べた [$\langle \sigma_y^2(\infty, T, \tau) \rangle^{1/2}$ に相当する]. しかし, PM 雑音や f^0 FM 雑音の場合, この方法の方が統計的 意味を分かりやすく表しているために, $\sigma_y(\tau)$ の使用よ り適している場合が少なからずあるものと思われる.

 f° PM 雑音のとき, \bar{y} , $\delta\tau$, $\Delta\varphi$ の各 rms 値は Allan 分散の平方根と次のように関係づけられる.

ただし、2 $\pi f_{h\tau}$ ≫1 とする. f^{-1} PM 雑音のときは(6)式 の係数 $\sqrt{3/2}$ がやや小さめになるだけであり、(6)式に よっても事実上差し支えない.

(49 式 から、位相変動 の二乗平均値 は信号対雑音比 (SNR)で与えられるので、69式は次のようにも書ける.

 $\sigma_y(\tau)_{f^0 \text{PM}} = \sqrt{3/2} (2\pi\nu_0\tau_0)^{-1} (\text{SNR})^{-1/2}$(70)

また,発振器の f°FM 雑音については(*),

 $\sigma_y(\tau)_{f^0FM} = [Q^2\tau_0 \cdot P/(kT/2)]^{-1/2}$ ……(71) ただし、Q は共振器の負荷 Q、P は発振電力、k はボ ルツマン常数、T は実効雑音温度である. P/(kT/2)は 単位雑音帯域幅の SN 比を表している.

高安定発振器では周波数ドリフトがその長期的性能を 大きく左右する。測定されたデータから決定可能な量と してのドリフトとランダム雑音を分離して,安定度尺度 を求めるのが普通である。それには最小二乗法による直 線の当てはめが有力な方法であるが,このようにして決 定した周波数ドリフトを Allan 分散対 τ の図の上に表 す場合を考える。

ドリフトの傾斜を β として, これを, (8), (10) 式へ代 入すると次式を得る.

 $\sigma_y(\tau) = |\beta| \tau / \sqrt{2} \qquad \dots \dots (72)$

すなわち, τ に正比例した特性を得るが, これは見掛け 上 f^{-3} FM 雑音のようになる. しかし, f^{-3} FM 雑音に 対しては Allan 分散は発散するので, これに対する尺 度にはならない. なお, 傾斜の位置は $|\beta|$ によるが, ドリフトの方向は示されない.

実際の場合, 真のドリフトか f-2 又は f-3 スペクト

ル雑音の極めて低い周波数成分(例えば,数か月以上の 周期成分)であるか判断することは難しい.このことは 時刻誤差の時系列のときに特に重要となるが,Jones ら は、データの差分をとることにより識別する方法を試み ている⁽³³⁾.

4. 離散的雑音による周波数安定度

2., 3. では連続スペクトルをもつ雑音の周波数安定度 について述べた. 原子周波数標準器や周波数計測装置に おいては周波数合成器が一般的に用いられているが, こ の場合信号出力は周波数合成の過程などでスペクトルが 離散的な雑音で FM 又は PM 変調を受ける可能性が ある. そして,時間領域の周波数安定度尺度も連続スペ クトル雑音のときとかなり様子が違ってくる.

本節では、2.で述べた周波数安定度尺度を離散的雑音 の場合に適用して式を導き、連続スペクトル雑音の場合 との相違点を明らかにした.また、実際の周波数合成器 について検討し、理論と実験との比較を行った^{(34) (7)}.

4.1 離散的雑音による安定度尺度

周波数合成器には大別して同期発振器方式と混合方式 とがある⁽³⁵⁾.第11図には基準信号 f_r を f_s だけオフ セットして $f_r - f_s$ を取り出す簡単な例を示している.例

えば、同期発振器方式の場合は位相検出器からの誤差電 圧に位相比較信号自身又はその高調波が十分フィルタし きれないで重畳して FM 変調を生じる. この場合,(1) 式の $\varphi(t)$ は一つの変調波成分に対して次のように表せ る.

 $\varphi(t) = \varphi_m \sin(2\pi f_m t + \theta)$ ……(73) ただし、 φ_m は変調指数、 f_m は変調周波数である。 θ は固定位相量であり、今の議論では無視してよい、複数 個の変調波の場合は、

 $\varphi(t) = \sum_{i} \varphi_{mi} \sin \left(2\pi f_{mi} t + \theta_i \right) \qquad \dots \qquad (74)$

混合方式については、例えば信号成分 より 周波数 が f_m だけ異なる雑音成分がフィルタしきれないで残った とすると、

 $V(t) = V_0 \sin 2\pi \nu_0 t + \nu_1 \cos 2\pi (\nu_0 + f_m) t$ = $V_0 (1 - \varphi_m \sin 2\pi f_m t) \sin 2\pi \nu_0 t$ + $\nu_1 \cos 2\pi f_m t \cdot \cos 2\pi \nu_0 t$ (75)

ただし, $\varphi_m \equiv v_1/V_0(\ll 1)$. 仰式は次のように近似される.

 $V(t) \cong V_0 \sin \left[2\pi\nu_0 t + \varphi(t) \right] \qquad \cdots \cdots (76)$ $\varphi(t) = \tan^{-1} \left(\varphi_m \cos 2\pi f_m t \right) \cong \varphi_m \cos 2\pi f_m t \qquad \cdots \cdots (77)$

(77式は78)式と同じ形であり、複数個の場合も74式と同様である.ただし、(1)及び73)式の場合雑音成分がキャリアの両側に生じるが、753式では片側のみにあることに注意する必要がある.いま、φm をスペクトル分析したときの一つの雑音成分の信号成分に対する比と考えると、離散的雑音で FM (PM)変調を受けた信号は同期発振

器の場合も混合方式の場合も全く同じように扱うことが

できる.

(73)式を(6)式へ代入すると,

 $y(t) = (f_m / \nu_0) \varphi_m \cos 2\pi f_m t$ ……(78) したがって、(11)式から y(t)の自己相関関数は、

== $(1/2)(f_m/\nu_0)^2 \varphi_m^2 \cos 2\pi f_m \tau$ ……80 80)式を112式へ代入するとパワースペクトル密度が求まる.

 $S_y(f) = 2\varphi_m^2 \left(\frac{f_m}{\nu_0}\right)^2 \int_0^\infty \cos 2\pi f_m \tau \cos 2\pi f \tau d\tau$ $= (1/2)\varphi_m^2 (f_m/\nu_0)^2 \hat{o}(f - f_m) \dots \otimes \mathbb{R}$

ただし, $\hat{o}(z) \equiv (1/\pi) \int_0^\infty \cos zt' dt' はディラック の <math>\hat{o}$ 関数と呼ばれるものであり,次の性質をもっている.

 $\int_{-\infty}^{\infty} \delta(z) dz = 1, \quad \delta(z) = 0 \quad (z \neq 0) \qquad \cdots \cdots \otimes 2$ また、 (81)式において、 $\delta(f+f_m)$ は $f = -f_m < 0$ の成

分であって $S_y(f)$ の定義領域 ($f \ge 0$) に入らないので 除外してある.

14式のような複数個の場合,異なる周波数成分の積の 平均は零であることを考慮すると,

$$R_y(\tau) = \sum_i \left(\frac{f_{mi}}{\nu_0}\right)^2 \frac{\varphi^2_{mi}}{2} \cos 2\pi f_{mi} \tau \cdots \otimes 3$$

したがって、パワースペクトル密度は、

$$S_y(f) = \sum_i \frac{\varphi^2_{mi}}{2} \left(\frac{f_{mi}}{\nu_0}\right)^2 \hat{o}(f - f_{mi}) \quad \dots \dots \quad (84)$$

(81)式を(22)式へ代入し、(82)式の関係を用いると、

$$\langle \sigma_y^2(N, T, \tau) \rangle = \frac{N}{N-1} \frac{\varphi_m^2}{2} \left(\frac{f_m}{\nu_0} \right)^2$$
$$\frac{\sin^2 u}{u^2} \left(1 - \frac{\sin^2 Nru}{N^2 \sin^2 ru} \right) \qquad \dots \dots \otimes 5$$

ただし、 $u=\pi f_m \tau$. また、複数個の雑音の場合は、

$$<\sigma_{y^{2}}(N, T, \tau)>=\frac{N}{N-1}\sum_{i}\frac{\varphi^{2}mi}{2}\left(\frac{f_{mi}}{\nu_{0}}\right)^{2}$$
$$-\frac{\sin^{2}u_{i}}{u^{2}}\left(1-\frac{\sin^{2}Nru_{i}}{N^{2}\sin^{2}ru_{i}}\right) \qquad \dots \dots (86)$$

ただし、 $u_i = \pi f_{mi\tau}$.

89式から次式がえられる.

$$\langle \sigma_y^2(\infty, T, \tau) \rangle^{1/2} = (\varphi_m / \sqrt{2})$$

 $(f_m / \nu_0) |\sin u| / u$ ……(87)
 $\langle \sigma_y^2(2, T, \tau) \rangle^{1/2} = \varphi_m(f_m / \nu_0)$
 $|\sin u| |\sin ru| / u$ ……(88)

複数個の雑音成分のときは、187~189式の和をとればよい.

第12図に $|\sin u|/u$ 及び $\sin^2 u/u$ の特性を示す. (27)~(89)式において,最大値の τ 特性は PM 雑音のとき と同じように τ^{-1} であるが,全体としては第12図に示 すように τ と変調周波数 f_m によって決まる周期で正 弦波的に変化をする.特に, $f_m\tau=1, 2, 3, \cdots$ のときは

第12図 周波数ウインドウ

安定度尺度は零になる. カウンタによる 周波数測定で は、 τ は普通 1 ms, 10 ms, 0.1 s, 1 s, 10 s などの値 をとるので、例えば $f_m \ge 1 \text{ kHz}$ なる整数値の場合、こ れらすべての τ に対し安定度尺度は零となる. また、 100 Hz $\le f_m \le 1 \text{ kHz}$ では $\tau = 1 \text{ ms}$ を除くすべての τ で零となる. 以下同様にいえる. したがって、このよう な測定方法では離散的雑音についての正確な測定をする ことは困難であり、周波数領域における $S_{\varphi}(f)$ 等の測 定によることが望ましい.

4.2 周期測定法における離散的雑音の影響

高精度で周波数又は周波数安定度の測定をする場合, 信号を適当に逓倍して周波数合成器などでビート周波数 を得て,これをカウンタで周期測定するのが普通であ る.実際,現在のカウンタは,周期測定を行ってこれを カウンタ内部で周波数に変換して [64~660式] 表示する ようになっているものが多い.この場合,τ は厳密には 一定ではないが,変動分 δτ が十分小さいという条件の もとでは時間領域の安定度尺度は85~89式と同様に表さ れる.

被測定(ビート)周波数を f_B , 周期数を N_p とする と,

$\tau_0 = N_p / f_B$	(90)
$\tau = \tau_0 - \delta \tau$	(91)

議論を明確にするために 第 11(b) 図 のような場合を考 える.すなわち, f_B を合成周波数 f_s と二つの比較信 号の差周波数 f_a との和で与えられるものとする.

 $f_B = f_s + f_a$ ($f_s \gg f_d$) ……02また,周波数合成器の場合普通に起こり得るように,離 散的雑音の周波数 f_m と合成周波数 f_s は比例するとす る.

 $f_m = lf_s$ (l=1,2,…) ……(93) (90)、(91)式より $\tau_0 = N_p/(f_s + f_d) \cong (N_p/f_s)(1 - f_d/f_s)$ $\equiv \tau_s - \tau_d$ ……(94)

ただし、 $\tau_s \equiv N_p / f_s$, $\tau_d \equiv \tau_s f_d / f_s \cong \tau_0 f_d / f_s$. したがっ て、 $f_m \tau_s = l N_p$ の関係より、 $\sin(\pi f_m \tau_0) = \sin(\pi f_m \tau_d)$ となる.

これらの関係を677, 693式へ代入すると安定度尺度はそ れぞれ次のようになる.

 $\langle \sigma_y^2(\infty, T, \tau) \rangle^{1/2} = (\sqrt{2} \varphi_m / 2\pi \nu_0 \tau_0) \\ |\sin(\pi f_m \tau_d)| \\ \cong (l\varphi_m / \sqrt{2})(f_d / \nu_0) |\sin u' / u'| \qquad \dots95 \\ \sigma_y(\tau) = (2\varphi_m / 2\pi \nu_0 \tau_0) \sin^2(\pi f_m \tau_d) \\ \cong l\varphi_m (f_d / \nu_0) \sin^2 u' / u' \qquad \dots96$

ただし、 $u' \equiv \pi f_m \tau_d$. τ_d が十分小さくて、 $\sin(\pi f_m \tau_d)$ $\cong \pi f_m \tau_d$ が成立するとき*、 05, 06式は、 $\langle \sigma_y^2(\infty, T, \tau) \rangle^{1/2} \cong (l\varphi_m / \sqrt{2}) (f_d / \nu_0) \cdots (97)$ $\sigma_y(\tau) \cong \pi l^2 \varphi_m \tau_0 f_d^2 / \nu_0 \cdots (98)$

以上のことから次の点が明らかとなる.

① fa=0, すなわち二つの比較される信号の周波数が一致するとき, 05~00式の各安定度尺度は零となる.測定系自身の性能を評価するために,比較信号を同一の発振器からとる共通入力法が一般的に行われているが,それに相当する.上述の結果は,離散的な雑音で測定系が汚されていても,共通入力法による時間領域の測定ではこれを評価し得ないことを意味している.

② (97)式は τ_0 に対して一定, (98)式は τ_0 に比例し ている(f_B は一定とする). したがって, $\sin(\pi f_m \tau_d)$ $\cong \pi f_m \tau_d$ の近似 が 成立する範囲で, 連続スペクトル 雑音による周波数安定度が比較的よくなる, 測定時間 τ_0 の大きいところで影響は大きくなる.

③ f_a , ν_0 はともに周波数逓倍によって拡大され るので、 f_a/ν_0 はそれに対して一定に保たれる. (37式 は (f_a/ν_0) に比例し、(38式は $f_a(f_a/\nu_0)$) に比例して いるから、前者の場合は周波数逓倍をしても相対値と しての安定度は改善されず、後者については逆に安定 度が劣化する ($\sin \pi f_m \tau_a \cong \pi f_m \tau_a$ の近似が成立する 範囲でである). すなわち、周波数合成器を測定系等 に用いる場合、それによる劣化は周波数逓倍器と組み 合わせることによって一般に軽減される が (第 13 図 参照)、離散的な雑音の場合このことが必らずしも 正 しくないことを意味している.

離散的雑音の影響を時間領域の安定度尺度から議論 するには, (85)~(89)式又は(95)~(98)式の最大値で行うべき

第13図 高精度周波数安定度の測定系例

* この近似式が成立する範囲を検討してみる. 近似が成立するには、 $f_{m\tau_a} = lf_{a\tau_0} = lN_p(\nu_0/f_B)(f_d/\nu_0) < 1/6$ の必要がある. したがって、 $f_d/\nu_0 < (f_B/\nu_0)(6lN_P)^{-1}$. 例として、 $N_P = 10^3$, $f_B = 10^3$ Hz, l = 1 とすると、 $\tau_0 = N_P/f_B = 1$ sec であり、 $\nu_0 = 10^7$ Hz で $f_d/\nu_0 < 10^{-8}$, $\nu_0 = 10^8$ Hz で $f_d/\nu_0 < 10^{-9}$, $\nu_0 = 10^9$ Hz で $f_d/\nu_0 < 10^{-10}$ の範囲で、比較される二つの発振器は一致している必要がある.

であろう. (85), (87)式から,

 $<\sigma_{y^{2}}(\infty, T, \tau)>_{max}^{1/2} = \sqrt{2}\varphi_{m}/(2\pi\nu_{0}\tau_{0})$

例えば、 $\nu_0 = 10^{7}$ Hz, $\varphi_m \leq -80$ dB とすると, $\tau_0 = 1$ sec で、

 $<\sigma_{y^2}(\infty, T, \tau)>_{max}^{1/2} \le 2 \times 10^{-12}$

 $\sigma_y(\tau)_{max} \leq 3 \times 10^{-12}$

 $\sigma_{y}(\tau)_{max} = 2\varphi_{m}/(2\pi\nu_{0}\tau_{0})$

複数個の成分があるときは、安定度は個々の和になる から、 各変調指数 φ_{mi} についての要求は更に厳しく なる.

4.3 実験による検討

第14 図に離散的雑音で変調を受けている Ro 原子発 振器(試作器)出力の周波数安定度のプロットを参考の ために示す.周波数が正弦波状に変化しているが、変調 周波数を表しているわけではない.次に、同期発振器方 式と混合方式の周波数合成器を試作し、実験を行った結 果について述べる.

(1) 同期発振器方式

同期発振器方式は比較的簡単な構成で複雑な周波数合 成が可能なので周波数合成器に多く使われている.第 11図(a)と同じ構成で,周波数測定装置の目的で5MHz +1kHzの合成器を試作した.周波数測定用のため位 相同期回路の帯域幅をあまり狭くできないことから,位 相比較器の出力誤差電圧に1kHz及びその高調波成分 が重畳する状態になった.

5 MHz + 1 kHz の周波数合成器の出力信号をもう一 つの 5 MHz の信号と混合して 1 kHz のビートを取り 出し、周期測定によって周波数安定度を測定した. 周波 数合成器への5 MHz 入力信号 [第 11(a) 図の REF] と 他の5 MHz 信号 [同図の SIG] との相対差周波数 fa/ν_0 に対する周波数安定度の測定値を第 15 図に示す. 図 の縦軸は $\langle \sigma_y^2(\infty, T, \tau) \rangle^{1/2}$ に相当している. 図から 明らかなように、周波数安定度は fa/ν_0 に比例 してお り、(約式の正しさを証明している. 図で、 $fa/\nu_0 \cong 10^{-11}$ のところで比例関係からずれているのは連続スペクトル

第15図 比較発振器の周波数差と周波数安定度―実験データ

雑音と測定精度の影響によるものである.

第15図の直線部分に1971式を当てはめると、

 $l\varphi_m/\sqrt{2}\cong 0.2$

平衡混合形位相比較器を使用しているので、l=4とすると、 $\varphi_m \cong 0.087$ という非常に大きい値となる.

(2) 混合方式

同じく,周波数測定の目的で 10 MHz-1 kHz の比較的簡単な周波数合成器を混合方式で試作した [第 11(b) 図]. この出力とほかの被測定信号 10 MHz を混合して 1 kHz を取り出して周期測定をすると, 600 式より平均 測定時間は $\tau_0 = N/f_B \cong N \times 10^{-3} \sec(f_s \cong f_B)$ から求 められる.普通,カウンタでは N=1, 10…10⁵ である から, τ_0 としては 10⁻³, 10⁻²,…10² sec が得られる. 測定精度は, $\nu_0=10$ MHz,カウンタのタイミングを 0.1 nsec として, $\tau_0=1$ sec で 10⁻¹⁴ が得られる.第 13 図の ように逓倍器と組み合わせると更に精度が上がり得る.

離散的雑音レベルを -80 dB 以下を目標とし, その ため3個の水晶フィルタを使用した.これにより帯域幅 も 6 dB down 値が $\pm 3.5 \text{ kHz}$ と比較的広くすること ができた.連続スペクトル雑音も含め,本周波数合成器 の性能は所期の性能を満たすことがわかった.

Allan 分散の推定値と 周波数測定誤差の評価

2. で述べた時間領域の周波数安定度尺度は無限時間平 均で定義されている [(9), (10]式]. しかし, これは実際 には実現不可能であり, 有限個数の測定から推定値を求 めることになる. 文献(1)が提示している Allan 分散の 推定値の形式は次のようである.

ただし, M は測定個数である.

(101)式は100式と類似して書かれているが、 個々 の測 定値 $(\bar{y}_k - \bar{y}_{k+1})^2/2$ $(k=1,2,\cdots)$ においてデータ \bar{y}_k が 重複して使用されているという特徴をもっている. とこ ろで、(10)、(101)式は無限時間平均と統計(アンサンブ ル) 平均という基本的相違を有している⁽³⁶⁾. 例えば, (9)式の推定値 *c*_{y²}(N, T, τ)_k を M 個測定によって得た とする. 個々の推定値において, \bar{y}_n は n=1,2,...N に 対して定義により連続している必要が ある が, 推定値 $d_{y^2}(N, T, \tau)_k$ (k=1,2,…M) は連続している必要はな い. 逆に, 平均をとる上で各推定値が独立であることが 本来望ましいわけであから、各推定値の測定間隔は一般 に離れていた方がむしろ良い. Allan 分散のときは, N=2, $T=\tau$, であるが議論は全く同じである. したが って, (101) 式の形式は, 前述の IEEE 小委員会によ る、推定値を統一するための定義とみなされるべきもの である.

本節では、Allan 分散の推定値の一般形式を示し、個々の推定値 ($\bar{y}_k - \bar{y}_{k+1}$)²/2 の時間軸上の配列の仕方と測定個数による影響等について理論的に検討した.また、Allan 分散の信頼限界を議論するために、スペクトルが f^{α} 型の雑音モデルに対して計算機 シミュレーションによって推定値の分布を調べた.更に、これらの結果を測定周波数の誤差を評価するために適用し、検討した⁽¹¹⁾(12).

5.1 Allan 分散の信頼限界について

(9)式の $\sigma_y^2(N, T, \tau)$ は N 個の τ 秒平均測定値 \bar{y}_1 , \bar{y}_2 ,… \bar{y}_N についての分散を表しているが, もし, これら の測定値が互いに独立なガウス分布をするなら,

 $\chi^2 \equiv (N-1)\sigma_y^2(N, T, \tau) / \langle \sigma_y^2(N, T, \tau) \rangle$ (102)

は自由度 N-1の χ^2 (カイ二乗)分布をする.また,独 立な M 個の $\sigma_{y^2}(N, T, \tau)$ の測定値について更に平均 をとった場合は自由度 M(N-1) になる. \bar{j}_k が互いに 独立な条件は f^0 FM 雑音の場合にのみ当てはまる.

Allan 分散については N=2 であるから自由度は M となり, $\sigma_y(\tau)$ の信頼限界は次式で与えられる.

$$\frac{\sqrt{M d_y^2(\tau)}}{\chi_{p_1}} < \sigma_y(\tau) < \frac{\sqrt{M d_y^2(\tau)}}{\chi_{p_2}}$$
.....(103)

ただし、 $\sigma_y^2(\tau)$ は、 $\sigma_y^2(2,\tau,\tau)$ 、(*i*=1,2,…*M*)の*M* 個の平均で与えられる推定値である. χ_{p1} , χ_{p2} は信頼 限界(%)を定める係数である. ($\bar{y}_{k+1}-\bar{y}_k$)/ $\sqrt{2}$ が互 いに独立でガウス分布するなら、 $M\sigma_y^2(\tau)$ は χ^2 分布 をする.例えば、95% 信頼限界のときは、 $p_1=0.975$ 、 $p_2=0.025$ として χ^2 分布の表から自由度*M* のときの 値を採用すればよい.

f-1 及び f-2 FM 雑音などの場合,測定値 ӯk 間に 共分散が存在するので, タk は互いに独立とはいえなくな る. したがって、 *ŷk* がガウス分布をするとしても(102) 式は y² 分布からずれてくると考えられる. そして, σy² (N, T, τ) は特定の個数又は全観測時間 NT に固有の量 になり、独立なガウス分布のときのようにNの相違が単 に自由度の相違、すなわち、測定値の信頼性の相違を意 味するのとは異なってくる. しかし, このことが $\langle \sigma_y^2 \rangle$ (*N*,*T*, *τ*)> の形式の定義を特徴的にしているといえる わけである. この場合, 1個の測定値 $\sigma_y^2(N, T, \tau)$ だ けでは当然信頼性が悪すぎるので、独立な測定値を平均 して推定値を求めることになる.そして、Allan 分散の 信頼限界を定めるには、実際の分布を測定によって求め るか、多数の測定個数を得ることにより中心極限定理で ガウス分布とみなせるようにすることによって行うこと になる.

Allan 分散の場合, 測定値は等価的に $(\bar{y}_{k+1} - \bar{y}_k) / \sqrt{2}$ とみなせるので, f^{-2} FM (ランダムウォーク) 雑音の とき各測定値は独立とみなし得る [[14式]. f^{α} 型スペク トル特性の雑音に対する Allan 分散の推定値について の検討を次節以下で述べる (詳しくは文献(7)参照).

5.2 相関係数

x

Allan 分散の推定値の一般形式を次のように表す.

$$\hat{\sigma_y}^2(\tau) = \sum_{i=1}^M x_i^2 / M$$
(104)

ただし、 x_i は第 16 図に示すように i 番目の サ ン プ ル 値である. 図で、X は時間誤差を表してお り、 ま た、 (101) 式は $T_m = \tau$ とした特別な場合になっている. 時 間誤差 X と規格化周波数 \bar{y} との間に次の関係がある.

第 16 図 (a) Allan 分散の推定値の一般的サンプリング形式
 (b) T_m=r の場合

 $\bar{y}_1^i = (X_1^i - X_2^i) / \tau$(106) $\bar{y}_{2}^{i} = (X_{2}^{i} - X_{3}^{i})/\tau$ (105)式の x の相関係数 ρ を次のように定義する. $\rho_{ij} \equiv \langle x_i x_j \rangle / \langle x_i^2 \rangle$(107) $\rho_{ii}=1$, また, 定常性の仮定から $\rho_{ij}=\rho_{ji}=\rho_k$, k=|ij] である. (10)(105)式から, $\dots (108)$ $\langle x_i^2 \rangle = \sigma_y^2(\tau)$ (107)式の <xixj> を計算すれば ρij が求まる. (107)式から $< x_i x_j > = < (\bar{y}_1^i - \bar{y}_2^i)(\bar{y}_1^j - \bar{y}_2^j)/2 >$ $= \lceil < \bar{y}_1 i \bar{y}_1 j > - < \bar{y}_1 i \bar{y}_2 j > - < \bar{y}_2 i \bar{y}_1 j >$ $+ < \bar{y}_2 i \bar{y}_2 j >]/2$(109) (106)式の関係を用いると、例えば、 $\tau^2 < \bar{y}_1 i \bar{y}_1 j > = < X_1 i X_1 j > - < X_1 i X_2 j >$ $- < X_2^i X_1^j > + < X_2^i X_2^j >$(110) いま, k=j-i 及び $r_m \equiv T_m/\tau$ とおき, 時間誤差 X の自己相関関数 Rx を考える. 第16(a) 図から, 例えば $R_{\rm x}(kr_m\tau) = < X_1^{i}X_1^{j} > = < X_2^{i}X_2^{j} > \cdots \cdots (111)$ などと表せる.また、計算の便宜上次の量を定義する. $U_{\mathbf{x}}(Z) \equiv 2[R_{\mathbf{x}}(0) - R_{\mathbf{x}}(Z)]$ $\dots (112)$ そのとき、Ux は(9)式の分散と次の関係がある⁽⁵⁾. $U_{\mathbf{x}}(n\tau) = -n(n-1)\tau^2 \langle \sigma_y^2(n,\tau) \rangle$(113) $+n^2 U_{\rm x}(\tau)$ ただし、 $\langle \sigma_y^2(n,\tau) \rangle \equiv \langle \sigma_y^2(n,\tau,\tau) \rangle$ とおいた. (113)式の n は整数である必要はない⁽³⁷⁾. (111)~(113)式を(110)式へ代入すると, $<\bar{y}_{1}i\bar{y}_{1}j>=kr_{m}(kr_{m}-1)<\sigma_{y}^{2}(kr_{m},\tau)>$ $-(kr_m+1)kr_m < \sigma_y^2(kr_m+1,\tau) > /2$ $-(kr_m-1)(kr_m-2) < \sigma_y^2(kr_m)$ $-1, \tau$)>/2+ $U_{\rm x}(\tau)/\tau^2$ (114) $U_{\rm x}(\tau)/\tau^2$ は、(113)式で $U_{\rm x}(n\tau)/n^2 \rightarrow 0$ (n→∞) とし τ, $U_{\rm x}(\tau)/\tau^2 = (2/\tau^2)[R_{\rm x}(0) - R_{\rm x}(\tau)]$ $= \langle \sigma_y^2(\infty, \tau) \rangle$(115)

(114)式と同様にして(109)式の他の項も計算できて, 結局(109)は、 $U_x(\tau)/\tau^2$ の項が消えてしまうので次のようになる.

$$< x_i x_j >= 1.5a(a-1) < \sigma_y^2(a,\tau) > -(a+1)a < \sigma_y^2(a+1,\tau) > -(a-1)(a-2) < \sigma_y^2(a-1,\tau) > +0.25(a+2)(a+1) < \sigma_y^2(a+2,\tau) > +0.25(a-2)(a-3) < \sigma_y^2(a-2,\tau) > \dots(116)$$

ただし、 $a \equiv kr_m$.

測定に空き時間のある場合も同様にして求めることが できるが、ここでは省略する. 第1表から、各雑音に対する $\langle \sigma_y^2(n,\tau) \rangle$ を (116) 式へ代入すれば相関係数 ρ_k が求まる.第2表に計算結 果を示す. PM 雑音の場合, $a \rightarrow 1,2$ で ρ_k は最大とな るが、これは第16(b)図 ($a \rightarrow 1$) に示されるように X が 重複して用いられることによる (付録A参照). f^{-1} PM 雑音の場合でも、 $a \ge 3$ であれば ρ_k は十分小さい. f^0 FM 雑音では、 $a \rightarrow 1$ のときのみ $\rho_k \approx 0$ であるが、これ は第16(b) 図に示されるように \bar{y} が重複して用いられる ことによる.

 f^{-2} FM 雑音の場合,常に $\rho_k=0$ となる. これは x_i が \bar{y} の相隣る量の差 (≅ 微分) で与えられるため, x_i のスペクトル特性は $f^{-2} \times f^2 = f^0$ のようになるからで ある [14]式]. f^{-1} FM 雑音についても, x_i のスペクト ル特性は $\propto f$ になって,発散性の周波数雑音が適度に 白色化されて好都合であるが, f^0 及び f^{-1} PM 雑音の ときは x_i が f^4 及び f^3 のスペクトル特性 と な る の で, x_i はかなり急峻な変化をするようになる (周波数 成分の高い方にパワーが大きく移行する). Allan 分散 では f^0 PM 雑音と f^{-1} PM 雑音の識別ができないこ とも考えると, Allan 分散は発散性の雑音の尺度として は優れているが (ただし, $\alpha > -3$ でしか使えないが), PM 雑音に対してはあまりよい尺度とはいえないと思わ れる.

5.3 Allan 分散の推定値の分散

さきに求めた相関係数を用いると、*xi*の平均値の分 散や xi² の平均値 (Allan 分散) の分散が求まる⁽⁷⁾. Lesage らは(101)式で定義された Allan 分散の推定値 について、ここで述べる方法とは全く別の計算手法で推 定値の分数を計算し報告している(9)(10). しかし, 既に 述べたようにプロセスの分布の議論を抜きにして単に推 定値の分散のみを議論するのは正確ではない. 推定値の 分散がプロセスの統計的性質を正確に表し得るのはガウ ス分布のときだけである. 実際, 推定値 の²(τ)は, xi が独立なガウス分布をするという最も都合の良い場合を 想定しても, χ² 分布をするわけであり, この場合推定 値の分散によっては信頼限界を表し得ない. したがっ て、Allan 分散の推定値 $\sigma_y^2(\tau)$ とその分散 σ^2 を求め て, $\sigma_{0}^{2}(\tau) \pm \sigma$ のように表しても, それのもつ具体的な 内容が不明確となる. M が大きく, $d_y^2(\tau)$ が中心極限 定理でガウス分布に近づく場合は σ² は直ちに信頼限界 と結びつく.

Allan 分散の推定値の分散 σ² は次のように書ける.

$$\sigma^{2} = \left\langle \left[\sum_{i=1}^{M} x_{i}^{2}/M - \sigma_{y}^{2}(\tau) \right]^{2} \right\rangle$$

= $\langle x_{i}^{4} \rangle / M + \sum_{i \neq j} \langle x_{i}^{2} x_{j}^{2} \rangle / M^{2} - [\sigma_{y}^{2}(\tau)]^{2}$
.....(117)

第	2	Ł
---	---	---

(a)—Autocorrelation coefficient ρ_k .

noise	f ⁰ pm	f ^{−1} PM	f ⁰ FM	f ⁻¹ FM	f ⁻² FM
a*0,1,2	o	$\frac{1}{c_2} [2 \ln (a^2 - 1) - 3 \ln (a) \\ - \frac{1}{2} \ln (a^2 - 4)]$	0	$\frac{1}{42n^2}[3a^2\ln(a)-2(a+1)^2\ln(a+1)$	
a+1	$-\frac{2}{3}$	$\frac{-1}{c_2} [2c_1 + \frac{1}{2} \ln 3 - 2 \ln 2]$	$-\frac{1}{2}$	$-2(a - 1)^{2} \ln a - 1 + \frac{1}{2}(a + 2)^{2}$	o
a+2	$\frac{1}{6}$	$\frac{1}{4c_2}[2c_1 - 16in2 + 8in3]$		$\ln(a + 2) + \frac{1}{2}(a - 2)^2 \ln a-2 $	

(b)—Numerical value of ρ_k for flicker-phase and flicker-frequency noises. $E - d \equiv \times 10^{-d}$. $c_1 = 3/2 + \ln (2\pi f_h \tau)$, $c_2 = 9/2 + 3 \ln (2\pi f_h \tau) - \ln 2$, $2\pi f_h \tau \gg 1$. $a \equiv kr_m$.

noise	f ⁻¹ FM		f ⁻¹ PM	
21.fht a		10	102	10 ³
1	-0.217	-0.632	-0.645	-0.651
2	-0.132	0.124	0.141	0.148
3	-0.455E-1	0.544E-2	0.331E-2	0.2385-2
4	-0.241E-1	0.138E-2	0.838E-3	0.602E-3
5	-0.150E-1	0.516E-3	0.3142-3	0.2265-3
10	-0.364E-2	0.2905-4	0.176E-4	0.127E-4
100	-0.385E-4	0.282E-8	0.172E-8	0.123E-8

いま, *x_i*, *x_j* が2変数のガウス分布に従うとすると, 多変数モメントの関係式*及び(107),(108)式から,

 $< x_i^4 > = 3[\sigma_y^2(\tau)]^2$

 $< x_i^2 x_j^2 > = [\sigma_y^2(\tau)]^2 (1+2\rho_{ij}^2)$ ……(118) (118)式の関係を(117)式へ代入すると,結局

$$F_{ct} \equiv 1 + (2/M) \sum_{k=1}^{M-1} (M-k) \rho_k^2 \quad \dots \dots (120)$$

ただし、 $\rho_{ij} = \rho_{k=1i-j1}$ であるから、次の関係式を用いている.

$$\sum_{i \neq j} \rho_k^2 = 2 \sum_{i < j} \rho_{k=j-i}^2 = 2 \sum_{k=1}^{M-1} (M-k) \rho_k^2$$

.....(121)

第3表に各雑音について F_{ct} の値を計算した結果を 示す. 第3(b)表の f^{-1} PM 雑音の場合, $2\pi f_h \tau = 10^2$ に

* 確率変数 $Z_1, Z_2...Z_{2k}$ (k は整数) が多変数正規分布に 従うとき, $Z_1Z_2...Z_{2k}$ の統計平均は次式で計算できる⁽³⁸⁾. $\overline{Z_1Z_2...Z_{2k}} = \sum \overline{Z_1Z_2} \cdot \overline{Z_3Z_4...Z_{2k}}$

ととで, ──は統計平均を表し, *S* は任意の二つの確率変数の 積の平均と残りの確率変数のそれとの積をすべての組みについ て和をとることを意味している. ついてのみ示したが、 $2\pi f_{h\tau}$ にはあまり依存 し な い. 表から、 $M \rightarrow \infty$ で F_{et} は一定値に収れん す る の で、 (119)式において、 $\sigma^2 \rightarrow 0(M \rightarrow \infty)$ となる. したがって、 Allan 分散の推定値はここに示した雑音特性の範囲で真 値に収れんする [(117)式].

第3表

(a)—Factor for the variance of the estimated Allan variance; $Fct = 1 + (2/M) \sum_{k=1}^{M-1} (M-k)\rho_k^2$.

rm	f ⁰ pm	f ⁻¹ PM	f ⁰ FM	f ⁻¹ FM	f ⁻² FM
1	$\frac{35}{18} - \frac{1}{M}$	see (b)	$\frac{3}{2} - \frac{1}{211}$	see (h)	1
2	19 - 1 18 - 18m	~1	1	= 1	1
≥3	1	=1	1	= I	1

(b)-Numerical value of *Fct* for flicker-phase and frequency noises.

noise		f ⁻¹ FM			¹ РМ(2л f _h т=	:10 ²)
H	1	2	3	1	2	3
2	1.047	1.018	1.002	1.417	1.020	1.000
5	1.098	1.029	1.004	1.690	1.032	1.000
10	1.117	1.033	1.004	1.781	1.036	1.000
100	1.134	1.036	1.004	1.864	1.039	1.000

Lesage らは $r_m = 1$ について $\sigma^2 \epsilon^{(0)}$, また, Tausworthe は $r_m = 2$ について $\sigma^2 \epsilon^{(10)}$ 筆者とは全く別の 方法で計算して報告しているが, 残念ながら筆者の結果 と一致しない部分がある. この不一致に関して, 実験的 側面からと⁽³⁹⁾, 理論的側面から⁽⁴⁰⁾ 検討が試みられてい る.

5.4 シミュレーションによる推定値の分布

一般に,統計量の信頼限界を定めるには分布を知る必要がある.独立なガウス分布の場合は話が容易になることは既に述べたとおりである.一方,時系列に自己相関のある場合に分布を定める一般的な理論式は,確率変数がたとえガウス分布をするとしても無いようである.したがって,ここでは計算機シミュレーションで Allan分散の推定値の分散を調べる.

シミュレーションに用いた f^0 雑音 (f^0 PM 及び f^0 FM) はガウス分布をするとしたが、これはほぼ実測と 合致する⁽⁴¹⁾. また、 f^{-1} 雑音 (f^{-1} PM 及び f^{-1} FM) は Barnes らによるモデル⁽⁴²⁾ を用いたが、これは f^0 雑音を適当にフィルタすることによって得る もので あ る. f^{-1} 雑音はその発散性の性質から考えて、有限測定 データの範囲ではガウス分布からずれてくると思われる が、ガウス分布に近似できる実測結果を得たという報告 もある^{(10) (43)}.

(104)式の $\sum_{i} xi^2$ のシミュレーションによる分布を f° PM, f° FM, f^{-1} FM の各雑音に ついて第 17~19 図 に示す. 図の縦軸は確率分布関数である. 規格化に用い た σ_{av^2} は, 1 プロセスについて 100~1000 個の分散 (xi^2) の平均値を更に 10 の独立したプロセスについて平 均し (σ_{rm^2}), これを $r_m = 10$, 20, 30, 50, 100 の場合に ついて平均したものである. したがって, $\sigma_{av^2} \cong \sigma_{y^2}(\tau)$ とみなすことができる. なお, 各 r_m について σ_{rm^2} は 0.5% 以内で一致していた.

第 17 図で, *M* 及び r_m が大きくなると分布を構成す るデータ数が少なくなるので曲線は滑らかでなくなる. 図には比較のため χ^2 分布曲線を示しているが, f^0 PM 雑音から f^{-1} FM 雑音に向かって χ^2 分布に近くなる. そして, f^{-2} FM 雑音の場合は (ここには示していない が), x_i が f^0 特性となるので χ^2 分布 (独立なガウス 分布) と一致する. f^{-1} PM 雑音の場合は, f^0 PM 雑 音と f^0 FM 雑音のほぼ中間の特性であった. f^0 PM 雑 音に見られる χ^2 分布からの大きなずれは, 差分を2回 とるために, x_i のスペクトル特性が f^4 に比例 するよ うになることと関係しているようである.

 $r_m = 1$ の場合,一般に下限では自由度の低い方に,上限では自由度の高い方にずれているが、これは信頼限界を定める場合自由度 Mの χ^2 分布より上限下限が広が

(c) $f^{0} P M \# \oplus (M = 30)$

第17図 Allan 分散の推定値の分布 (f⁰ PM 雑音)

(c) f^{0} F M # \hat{e} (M = 30)

(c) f^{-1} F M # \oplus (M = 30)

第19図 Allan 分散の推定値の分布 (f⁻¹ FM 雑音)

ることを意味している.

5.5 周波数測定誤差の評価

一次周波数標準器の較正(絶対値の決定)や二次標準 器の基準標準器による較正などの場合, 雑音などによる 周波数測定誤差の評価が伴わなければならない. 誤差 は,一般に分散の平方根(標準偏差)に±を付け, ± σ , ± 2σ , ± 3σ などのように表現される. ここでは, この ような測定誤差が時間領域の周波数安定度尺度を用いて どのように表され得るかについて述べる.

(1) 差周波数の測定誤差

例えば、周波数標準器に対するいろいろな要因の影響を規定するため、要因をある値から他の値へとステップ 状に変化させて出力周波数に生じる変化を測定するとい うことは、しばしば用いられる方法である(第20図). いま、発振器の状態を第20図の#1と#2に交互に変え て、一連の τ 秒平均周波数を得、その差を $Ay_i(i=1, 2, \dots M)$ とする. 真の平均値が存在するとし、 AY_0 で表 すと、

$\Delta Y_0 = < \Delta y_i >$	(122)
4	

また, *Ayi* の分散は,

$$\sigma_{Ay^2} = \langle (Ay_i - AY_0)^2 \rangle = \langle Ay_i^2 \rangle - AY_0^2$$

= $2\sigma_y^2(\tau)$ (123)

したがって、 f^{-1} FM 又は f^{-2} FM 雑音のあるときで も ΔY_0 を測定し得ることになる。測定に空き時間のあ るときは、(123)式の $\sigma_y^2(\tau)$ の代わりに $<\sigma_y^2(2, T, \tau)$ > となる。

M 個の Δy_i の平均値を ΔY_M とすると,

$$\Delta Y_M = \sum_{i=1}^M \Delta y_i / M \qquad \qquad \cdots \cdots (124)$$

 ΔY_M の分散を $\sigma_{\Delta YM}^2$ とすると,

$$\sigma_{AYM}^2 = \langle (\Delta Y_M - \Delta Y_0)^2 \rangle$$
 ……(125)
(122)~(124)式を(125)式へ代入し,

 $\rho_{ij} = \rho_k = \langle (\Delta y_i - \Delta Y_0) (\Delta y_j - \Delta Y_0) \rangle / \sigma_{dy^2}(\tau)$(126)

なる関係を用いると、

$$\sigma_{AYM^2} = 2\sigma_y^2(\tau) F_{ct'}/M \qquad \qquad \cdots \cdots (127)$$

$$F_{ct}' \equiv 1 + (2/M) \sum_{k=1}^{M-1} (M-k) \rho_k \qquad \dots \dots (128)$$

(127)式は、 $\rho_k=0$ なら $F_{cl}'=1$ となるので、独立な測

第20図 状態を #1 と #2 に交互に変えたときの周波数変化

定値の場合のよく知られた,平均値の分散式となる.

(124)式の形のままでは、例えば第 16(b) 図のような場 合、 $\sum_{i} dy_i = (\bar{y}_1 - \bar{y}_2 M)$ のように中間項が全部消えてし まうので実際的でない.したがって、 dy_i の符号を中間 項が消えないように変えて和をとる必要がある.そのと きは(128)式の代わりに次式を用いることになる.

$$F_{ct}' = 1 + (2/M) \sum_{k=1}^{M-1} (-1)^{b} (M-k) \rho_{k} \cdots (129)$$

ただし、b は r_m 、k が同時に奇数のときは奇数、 それ 以外では偶数になる記号である. 5.2 の結果を用いると (129)式を計算できる⁽¹⁾. 結果を第4表に示す. $M \rightarrow \infty$ で $F_{ct'}$ は一定値になるので $\sigma_{dYM}^2 \rightarrow 0$ となり、 $dY_M \rightarrow$ dY_0 を得る.

(127)式の σ_{AYM} を用いて Δy_i の平均値 の 信頼限界 を定めることができる. もし、 Δy_i がガウス分布をする とすると、

$$\Delta Y_M - Z_c \sigma_{\Delta YM} < \Delta Y_0 < \Delta Y_M + Z_c \sigma_{\Delta YM}$$
.....(130)

ただし、Z。はガウス分布に対する係数である.

原子周波数標準器を使用する場合, 測定精度を上げる ため τ を長くすると FM 雑音が主に影響してくる. そ の場合, (127)式の Allan 分散は f^{0} FM 雑音に対して τ^{-1} に比例し, f^{-1} FM 雑音の場合は τ^{0} に比例するの で, この両者の雑音のみを考えてよい場合, τ を十分大 きくして f^{0} FM 雑音の影響を無視できるようにし, か つ測定個数 *M* を大きくすると $\sigma_{\Delta YM^{2}}$ を 小さくできる.

全観測時間 $T_M (\cong \tau M)$ が限られていて、一定の場合、

 $\sigma \Delta Y M^2 = (a\tau^{-1} + b)/M = (a + b\tau)/T_M \cdots (131)$ ただし、 a、 b は M、 \tau に無関係な定数である. (131)

式から, PM 雑音の影響の小さい範囲で τ を小さくし て, *M* を大きくした方がよい.

第4表

(a)—Factor for the variance of the average difference frequency; $Fct' = 1 + (2/M) \sum_{k=1}^{M-1} (-1)^{b} (M-k) \rho_{k}$, where b is an odd number for r_{m} and k odd and otherwise an even.

roise	f PM	f ⁻¹ PM	f FM	f ⁻¹ FM	f ⁻⁷ FM
1	$\frac{8}{3} - \frac{2}{H}$	(1)	$2 - \frac{1}{H}$	(b)	1
2	$\frac{4}{3} - \frac{1}{3M}$	sec (D)	1	see (b)	1
23	1	=1	1	=1	1

(b)-Numerical value of Fct for flicker-phase and frequency noises.

noise	f ⁻¹ FH			f ⁻¹ PM(2 ₁ f _h t=10 ⁷)		
L. H.	1	2	3	I	2	3
2	1,217	0.868	1.046	1.645	1.141	0.997
5	1.215	0.749	1.063	2.199	1.226	0.995
10	1.223	0.694	1.070	2.383	1.255	0.994
100	1.229	0.627	1.076	2.548	1,280	0.994

長期的な周波数安定度が比較的悪い周波数標準器の場合, f⁰ FM 雑音と f⁻² FM雑音の和として表すことも可能である.この場合,(127)式は次のように書ける.

 $\sigma_{dYM}^2 = (a\tau^{-1} + c\tau)/M$ ……(132) ただし, c は定数である. (132) 式は M を一定にする と, $\tau^2 = a/c$ のとき最小となる. a, c は $\tau = 1$ 秒のとき の Allan 分散と F_{ct} に関係している. 全観測時間 T_M ($\cong \tau M$) が一定のときは,

 $\sigma_{AYM}^2 = (a + c\tau^2)/T_M$ ……(133) となるから、 τ を小さくし、代わりに Mを大きくする 必要がある.

(2) 平均周波数の測定誤差

二次周波数標準器を基準の標準器で測定較正するとき などは、 τ 秒平均測定を何回か行ってその平均及び分散 を求めることになる(第21図).

測定値 $\bar{y}_i(i=1,2,...N)$ の平均値は,

$$Y_N = \sum_{i=1}^N \bar{y}_i / N \qquad \dots \dots (134)$$

また, YN の分散は(127)式のときと同様に,

$$\sigma_{YN^2} = F_{ct}'' \sigma_{\bar{y}^2} / N = F_{ct}'' < \sigma_y^2(\infty, T=\tau) > / N$$
.....(135)

$$F_{ct''} = 1 + 2\sum_{k=1}^{N-1} (N-k)\rho_{k'}/N \qquad \dots \dots (136)$$

ただし, $\sigma_{\bar{y}^2}$ は \bar{y}_i の分散 $\langle \bar{y}_i^2 \rangle$ である. また, ρ'_k は

$$\rho_{ij'} = \rho_{k'} = |_{i-j}| = \langle (\bar{y}_i - Y_0) (\bar{y}_j - Y_0) \rangle / \sigma_{\bar{y}}^2$$
.....(137)

であり、 $Y_0 = \langle Y_N \rangle$ は Y_N の真値であり、存在する と仮定している.

 f^{0} FM 雑音の場合, $\rho_{k'}=0$, $F_{ct}''=1$, $\sigma_{y}^{-2}=\sigma_{y}^{-2}(\tau)$

第5表

Correlation coefficient ρ_k' , factor *Fct*" and variance σ_{YN}^2 of average frequency for white-phase noise.

kr _m	°'k	Fct	σ ₂ σ ₂
1	-1/2	1/N	$\sigma_{\bar{y}}^2/N^2$
>1	0	1	$\sigma_{\overline{y}}^2/N$

となる. f^{0} PM 雑音については(114)式の関係を用いる と $\rho_{k'}$ と $F_{ct''}$ を計算できる.結果を,(135)式の $\sigma_{VN^{2}}$ とともに第5表に示す.また, f^{0} PM 雑音については $\sigma_{\bar{y}}^{2}=(2/3)\sigma_{y}^{2}(\tau)$ の関係がある. f^{-1} PM 雑音につい ても, f^{0} PM 雑音のときとほぼ同様の結果になると考 えられる.したがって,これらの雑音が影響している場 合でも無限個数測定で周波数の真の平均値を求めること が可能である.

一方, $f^{\alpha}(\alpha < 0)$ FM 雑音の場合, $\sigma_{y}^{2} = <\sigma_{y}^{2}(\infty, T=\tau) > \rightarrow \infty$ となってしまうから, これが物理的意味 をもつのは有限個数 N に限ったときだけである. その ときの分散は $<\sigma_{y}^{2}(N, T, \tau) >$ で与えられるが, これ は測定パラメータの N, T, τ に固有の量となり, τ 秒 平均測定値母集団 $\bar{y}_{i}(i=1,2,\dots\infty)$ の分散を意味 しな い. f^{α} FM 雑音による周波数変動は時間とともに周波 数が発散してゆく過程であるが, これは発振器の平均周 波数が時間とともに変動してゆく非定常過程としてとら えることができる⁽⁴⁴⁾. したがって, 無限時間観測で真 の平均値を見いだそうということは無意味なわけ であ る. $(f^{0}+f^{\alpha})$ FM 雑音 ($\alpha < 0$) のある場合, N 個の τ 秒平均測定値の平均値 Y_{N} の分散は次式のよう書け る.

$$\sigma_{YN^2} = \sigma_y^2(\tau)_{f^0}/N + \langle \sigma_y^2(N, T, \tau) \rangle_{f^\alpha}$$
.....(138)

(138) 式では、 Y_N の分散 σ_{YN²} を最小にする N 及び τ が存在する.

f⁻¹FM 雑音のとき,(138)式は第1表から, $\sigma_{YN^2}/\sigma_y^2(\tau=1_s)_{f^{-1}}=K/N\tau+NlnN/c(N-1)$(139)

ただし, $K = \sigma_y^2 (\tau = 1s) f^0 / \sigma_y^2 (\tau = 1s) f^{-1}$, $c = 2 \ln 2$. (139)式は τ が大きいほど小さくなるから, 第1項が無 視できるとすると N = 2 が最適となる. そのとき, 最 小値は

σ_{V N²}=σ_{y²}(τ)_f-1 ······(140) (139) 式で τ を任意にとれば最適の N が存在 する. (139)式を N で微分して,

 $cK(N-1)^2+N^2 \ln N-N^2(N-1)=0$ ……(141) 数値計算で(141)式を解いた結果を第6表に示す. $\langle \sigma_y^2$ $(N, T, \tau) \rangle \infty \ln N$ であり, Nに対して鈍感であるから,最適 Nも厳密である必要はない.

全観測時間 $T_N (\cong N\tau)$ が一定のときは、(139) 式の 代わりに

$$\sigma_{YN^2}/\sigma_y^2(\tau)_{f^{-1}} = K/T_N + N l_n N/c(N-1)$$
.....(142)

すなわち, N=2, $\tau=T_N/2$ で最小となる. 最小値は,

K	<u>∠2</u>	5	10	50	100
N	2	2~3	6~7	21~22	37~38
$\overline{(\sigma_{Y_N}^2 \sigma_y^2 (\tau = 1 s)_{f^{-1} FM}]_{min}}$	<i>≟</i> 2.3 3	3.8 3~2.9 1	3.2 2~3.0 5	5.68~4.60	5.37~5.32

第6表 (f⁰+f⁻¹) FM 雑音のときの最適 N 値

$$(\sigma_{YN^2})_{min} = \sigma_y^2(\tau = 1s)_f^0 / T_N + \sigma_y^2(\tau)_{f^{-1}}$$

.....(143)

f-2 FM 雑音のとき, (138)式は

 $\sigma_{YN^2}/\sigma_y^2(\tau=1s)_{f^{-2}}=K'/N\tau+N\tau/2$ ……(144) ただし、 $K'\equiv\sigma_y^2(\tau=1s)_{f^0}/\sigma_y^2(\tau=1s)_{f^{-2}}$. (144) 式 か ら、最適条件は $N\tau=\sqrt{2K'}$ となり、そのときの 最小 値は $\sqrt{2K'}$ となる、全観測時間 $T_N\cong N\tau$ が一定のと きは、(144)式も一定となる.

6.まとめ

周波数安定度尺度が定義されるに至った背景と意義, その後の進展等について触れるとともに,定義された安 定度尺度と種々の安定度尺度間の変換について述べた. また,定義された Allan 分散を離散的雑音の場合に適 用し,周波数測定や周期測定における影響の仕方を連続 スペクトル雑音のときと対比させながら検討した.更 に,Allan 分散の推定値の一般形式を設定し,相関係数 及び推定値の分散を計算するとともに,シミュレーショ ンによって分布を調べた.これらの結果を周波数測定誤 差の評価に適用し,測定値の分散が最小となるような条 件を明らかにした.

定義された周波数安定度尺度,パワースペクトル密度 と Allan 分散は関係分野に受け入れられ,統一的な尺 度として十分普及しているようである.特に,パワース ペクトル密度は基本的な量であり,形式的には何ら問題 はない.したがって,測定方法などでいろいろ工夫され てきたが、フーリェ周波数 f が 1Hz 以上の PM 雑音 の影響する領域ではスペクトル分析器も進歩し $S_{\varphi}(f)$ を十分高い精度で測定できるようになった.しかし, f < 1Hz では結局時間領域の測定に依存 することにな り,しかも原子発振器の大きな特長の一つは長時間安定 度が優れていることであるから,時間領域の尺度として の Allan 分数の方が手軽に頻繁に使われているといっ ても過言でない.

Allan 分散の弱点は f° PM 雑音と f^{-1} PM 雑音を 区別して表現できないということ、及び f^{α} 型のスペク トルで $\alpha > -3$ までしか使用できないため、時間変動の 直接的尺度にはならないということである. した がっ て、時間変動を評価するのにいちいち周波数 (\hat{s}) に直 してから Allan 分散で表現するという方法をとってい る. これらの問題点について、今後も検討が続けられて いくと思われる.

なお、増幅器や周波数逓倍器などの影響は位相雑音と して、短時間領域における $S_{\varphi}(f)$ の測定に解消してい るきらいがあるように思われるが、温度変動等による比 較的長時間の位相変動を測定したり、これを軽減したり することの意義は依然として失われていない^{(45) (46)}. な ぜなら、これらの装置が原子発振器の制御ループ内に存 在すれば、それは発振器の出力周波数の長期変動成分と して影響するし、また、周波数比較システムや高い周波 数の供給源などに使用された場合も見掛け上周波数変動 として影響するからである. この場合、尺度 として は Allan 分散や[67]式の形式の方が適しているわけである.

謝 辞

有益な議論をしていただいた当研究所の安田部長,い ろいろお励ましいただいた宇都宮前東京大学教授に深く 感謝いたします.

参考文献

- Barnes, J.A. et al.; "Characterization of Frequency Stability", NBS Tech. Note 394, Oct. 1970.
- (2) IEEE-NASA Symposium on Short-term Frequency Stability, Nov. 23~24, 1964.
- (3) "Special Issue on Frequency Stability", Proc. IEEE, 54, 2, Feb. 1966.
- (4) Cutler, L. S. and Searle, C. L.; "Some Aspects of the Theory and Measurements of Frequency Fluctuations in Frequency Standards", (3) に同 じ, p. 136.
- (5) Allan, D. W.; "Statistics of Atomic Frequency Standards", (3)に同じ, p. 221.
- (6) Barnes, J. A.; "Atomic Time-Keeping and the Statistics of Precision Signal Generators", (3)に同 じ, p. 207.
- (7) 吉村; "周波数安定度の定義",電気学会技術報告
 (Ⅱ部)第41号,周波数安定度とその測定,pp.8-54, 昭 51-2.

- (8) Mccoubrey, A. P.; "A Survey of Atomic Frequency Standards", (3)に同じ, p. 116.
- (9) Lesage, P. and Audion, C.; "Characterization of Frequency Stability; Uncertainty due to the Finite Number of Measurments", IEEE Trans., IM-22, 2, p. 157, June 1973.
- (10) Tausworthe, R. C.; "Convergence of Oscillator Spectral Estimators for Counted-Frequency Measurments", IEEE Trans., COM-20, p. 214, April 1972.
- Yoshimura, K.; "Characterization of Frequency Stability: Uncertainty due to the Autocorrelation of the Frequency Fluctuations", IEEE Trans., IM-27, 1, p. 1, March 1978.
- (12) 吉村; "周波数安定度尺度 Allan 分散の推定値の評価:周波数変動の自己相関による不確定性",信学論, 59-C, 2, p. 115,昭 51-2.
- Rutman, J.; "Characterization of Phase and Frequency Instabilities in Precision Frequency Sources: Fifteen Years of Progress", Proc. IEEE, 66, 9, p. 1048, Sept. 1978.
- (14) Allan, D. and Barnes, J.; "A Modified Allan Variance with Increased Oscillator Characterization Ability", Proc. 35 th Annu, Frequency Control Symp., p. 470, May 1981.
- (15) Rutman, J.; "Oscillator Specifications: A Review of Classical and New Ideas", Proc. 31 st Annu. Frequency Control Symp., p. 291, June 1972.
- (16) Percival, D. B.; "Characterization of Time and Frequency Instabilties: Prediction Error Variance", Digest CPEM '82, p. N-7, June, 1982.
- (17) Baugh, R. A.; "Frequency Modulation Analysis with the Hadmard Variance", Proc. 25 th Annu. Frequency Control Symp., p. 222, April 1971.
- (18) Barnes, J. A.; "Models for the Interpretation of Frequency Stability Measurements", NBS Tech. Note 683, Aug. 1976.
- (19) Percival, D. B.; "Prediction Error Analysis of Atomic Frequency Standards", Proc. 31 st Annu. Frequency Control Symp., p. 319, June 1977.
- (20) Percival, D. B.; "A Heuristic Model of Long-Term Atomic Clock Behavior", Proc. 30 th Annu. Frequency Control Symp., p. 414, June 1976.
- (21) 周波数精密測定回路専門委員会; "周波数安定 度 と その測定", 電気学会技術報告(Ⅱ部)第41号, 昭

51—2.

- (22) Tryon, P. V. and Jones, R. H.; "Estimations of Parameters in Models for Cesium Beam Atomic Clocks", 2 nd Symp. of Atomic Time Scale Algorithms, June 1982.
- 23 Barnes, J.A.; "Time Scale Algorithms Using Kalman Filters-Insights from Simulation", 22と 同じ.
- 24 Snyder, J. J.; "An Ultra-High Resolution Frequency Meter", Proc. 35 th Ann. Freq. Contro. Symp., p. 464, May 1981.
- 25 吉村, 篠塚, 鈴木, 峯野, 島田; "降雨減衰をうけた 衛星電波強度の Allan 分散", 信学技報, A・P 82-6, 昭 57-2.
- (26) Hellwig, H.; "A Review of Precision Oscillators", NBS Tech. Note 662, Feb. 1975.
- (27) Barnes, J. A.; "The Generation and Recognization of Flicker Noise", NBS Report 9284, June 1967.
- [28] Richards, P. I.; "Computing Reliable Power Spectra", IEEE Spectrum, Jan. 1967.
- (29) Sauvage, G. and Rutman, J.; "Analyse Spectrale de Bruit de Fréquence des Oscillateurs par la Variance de Hadmard", Ann. Télécom., 28, 7~8, p. 301, July 1973.
- (30) Rutman, J.; "Relations between Spectral Purity and Frequency Stability", Proc. 28 th Ann. Freq. Control Symp., p. 160, May 1974.
- (31) Halford, D., Shoaf, J. H. and Risley, A. S.; "Frequency Domain Specification and Measurements of Signal Stability", NBS Tech. Note 632, Jan. 1973.
- (32) Barnes, J. A.; "Tables of Bias Functions, B₁ and B₂, for Variances based on Finite Sample of Process with Power Law Spectral Dencities", NBS Tech. Note 357, Jan. 1969.
- (3) Jones, R. H. and Tryon, P. V.; "Estimating Time from Atomic Clocks", 2nd Symp. on Atomic Time Scale Algorithms, June 1982.
- (34) 吉村,小林; "周波数合成器の離散的雑音による周 波数安定度",信学論,54-C,6,p.507,昭46-6.
- 35 Noordanus, J.; "Frequency Synthesizer—A Survey of Techniques", IEEE Trans., COM-17, No. 2, p. 257, April 1969.
- (36) Bendat, J. S., Principles and Applications of Random Noise Theory, New York, Wiley, 1958.

- (37) Yoshimura, K.; "The Generation of an Accurate and Uniform Time Scale with Calibrations and Prediction", NBS Tech. Note 626, Nov. 1972.
- (38) 宮脇, 雑音解析, 朝倉書店.
- (39) How, D. A., Allan, D. W. and Barnes, J. A.; "Properties Signal Sources and Measurement Methods", Proc. 35 th Ann. Freq. Control Symp., p. Al, May 1981.
- (40) Percival, D. B.,; "The Distribution of the Allan Variance", to be published.
- (41) 吉村 ""Allan 分散の共分散について",標準周波数 委資 10-3,昭49-3.
- (42) Barnes, J. A. and Jarvis, S.; "Efficient Numerical and Analog Modeling of Flicker Noise Processes", NBS Tech. Note 604, June 1971.
- (43) Allan, D. W. et al.; "Some Performance Data for the Standards in the National Bureau of Standards Atomic Time Scale System", Proc. 27 th Ann. Freq. Control Symp., June 1973.
- 44 Box, G. E. P. and Jenkins, G. M., Time Series Analysis and its Applications, Holden-Day, San Francisco, Calif., 1970.
- (45) 安田,原田,佐分利,小林,島田;"周波数逓倍器 の位相変動",電波研季報,9,40,昭 38-1.
- 46) 吉村,宇都宮;"可変容量ダイオードを用いた周波 数逓倍器の位相変動の改善",信学誌,50,3, p.409.
 昭42-3.

付録A

PM 雑音の場合の相関係数 (a=1,2) の計算

(116)式各項は n(n-1)<σy²(n,τ)> の形をしており、a=1 及び2に対する計算は n=1 及び2に対する計算と同じである.

 $n(n-1) < \sigma_y^2(n,\tau) > = [n^2 U_x(\tau) - U_x(n\tau)]/\tau^2$

(A1)式で $U_x(\tau)$ が存在するなら、 $n \rightarrow 1$ でn(n-1)< $\sigma_y^2(n,\tau) > \rightarrow 0$ となる.

のとき、(A1)式は、
$$n(n-1) < \sigma_y^2(n,\tau) > \rightarrow -U_x(n\tau)/\tau^2$$

 $\equiv n^2 U_x(\tau')/\tau'^2 = -n^2 < \sigma_y^2(\infty,\tau') >$

n→0

·····(A2)

ただし、 $\tau' \equiv n\tau$, 及び U_x は有限と仮定した. $< \sigma_{y^2}$ (∞, τ')> は、帯域制限された f^0 PM 雑音のときは τ' によらないから⁽⁴⁾,

$$n(n-1) < \sigma_y^2(n \rightarrow 0, \tau) > \rightarrow 0$$
 ……(A3)
 f^{-1} PM 雑音では $U_x(\tau')$ は次のように書ける⁽⁶⁾.

 $U_{\mathbf{x}}(\tau') \circ [2\beta^2 \ln \beta - (1+\beta)^2 \ln (1+\beta)]$

 $-(1-\beta)^2 \ln|1-\beta|]$ ……(A4) ただし、 $\beta=2\pi f_h \tau'$. (A4)の右辺は $\tau' \rightarrow 0$ で $2\beta^2(\beta-2)$ に近づく. したがって、 f^{-1} PM 雑音に対しても(A3)式 を得る. これらの結果を (116) 式の計算に適用すると次 のようになる.

$$\langle x_i x_j \rangle \cong -2 \langle \sigma_y^2(2,\tau) \rangle + (3/2)$$

$$\langle \sigma_y^2(3,\tau) \rangle \quad (a \to 1) \quad \dots \dots (A5)$$

(107), (108)式から,

$$\rho_k(kr_m \to 1) = -2/3 \quad (a \to 1) \quad \dots \dots (A6)$$

$$\langle x_i x_j \rangle = 3 \langle \sigma_y^2(2,\tau) \rangle - 6 \langle \sigma_y^2(3,\tau) \rangle$$

$$+ 3 \langle \sigma_y^2(4,\tau) \rangle \quad (a \to 2) \quad \dots \dots (A7)$$

$$\rho_k(kr_m \to 2) = 1/6 \quad (a \to 2) \quad \dots \dots (A8)$$