有機 EO 材料の開発と評価技術

山田俊樹 青木 勲 三木秀樹 大友 明

有機電気光学(EO)材料の開発と評価に関する最近の進展について述べる。電気光学定数を大きくするための、重要なパラメータとして EO 色素分子の超分極率(β)に着目し、それを大きくするための1つの分子設計について述べる。新規に設計・合成された幾つかの EO 色素分子のβを、ハイパーレーリー散乱法(HRS 法)を用いて評価を行ったところ、その値に改善が見られた。その要因について検討し、これらの色素の優位性に関して議論する。

1 まえがき

電気光学効果は物質に電場を印加した時に屈折率が 変化する現象であり、一次の電気光学効果(EO)はポッ ケルス効果とも呼ばれる。EO効果は光通信のキーデ バイスである電気信号を光信号に変換する光変調器に 使われている物理現象であり、有機電気光学(EO)ポ リマーは超高速光変調器や光スイッチ、高速デジタル シグナル伝送、光配線、センサーなど様々な応用が期 待されている^{III-ISI}。

EO 効果は光変調帯域 f_{max} と性能指数 (n³r) (n は光波 に対する屈折率、r は電気光学定数) で特徴づけられ る。EO ポリマーは一般的にマイクロ波領域の誘電率 が小さいため、光波に対する実効的な屈折率と変調の マイクロ波に対する実効的な屈折率の差を小さくする ことができ、100 GHz 以上の超高速変調が可能である ため、光変調帯域 f_{max} に関しては特別な工夫を要しない。 一方、性能指数 (n³r) は低電圧駆動に対する指標であ る。本稿ではr に関する EO ポリマーに関する表式を 述べた後、その中の重要なパラメータの1つである超 分極率 (β) を大きくするための指針について述べる。

2) EO 色素分子の設計と評価

2.1 EO ポリマーの電気光学定数

図1はEOポリマーの概要図を示している。ここで は、主鎖がポリマー鎖で側鎖がEO 色素分子からなる 側鎖型ポリマー(サイドチェーンポリマー)を代表例 として示した。EO 効果は2次の非線型光学効果の一 種で、反転対称中心を持つ系においては発生しないた め(a)のような状態ではEO 効果は発現せず、(b)の ような状態においてEO 効果が発現する。(a)のような 状態から(b)のような状態にするためにポーリング という処理をする必要があり、具体的にはポリマーの ガラス転移温度付近に温度をあげ、そこで比較的高い 電圧を印加し、EO 色素の双極子の方向を揃え、その まま温度を下げてその配向を凍結させる。

$$r_{33} = -\frac{2}{n^4} L N_0 < \cos^3 \Theta > \beta_{zzz, E0}$$
(1)

式1は電気光学定数(r)の中で重要な成分である r_{33} を表している^[6]。 r_{33} を大きくするには単位体積中の EO 色素の数(N_0)を大きくし、EO 色素の配向を揃え ($(\cos^{34}\Theta)$ を大きくし)、EO 色素分子の超分極率(β_{EO}) を大きくする必要がある。L は各周波数での局所場補 正因子をまとめて表したものでここでは議論しない。

図 2 本研究で用いた EO 色素分子の例

EO デバイス作製の際には、これらのパラメータは独 立ではなく複雑に絡み合っているが、本稿では超分極 率(β_{EO})を大きくするための EO 色素の分子設計と超 分極率の評価法について述べる。

2.2 EO 色素分子の設計

図2の試料(a)は代表的なEO 色素分子であるDR1 という分子である。EO 色素分子は一般に電子ドナー (D)と呼ばれる電子を押し出す性質を持つ基、電子ア クセプター(A)と呼ばれる電子を引っ張る性質を持 つ基、それをつなぐπ共役系から構成され、D-π-Aと いう非対称構造を持っている。試料(b)はワシント ン大学のグループにおいて開発された非常に大きな超 分極率を持つEO 色素分子であり、トリシアノフラン 誘導体からなる電子アクセプター部位、アミノベンゼ ンからなる電子ドナー部位、チエニルジビニレンから なるπ共役系部位から構成されている。特にトリシア ノフラン誘導体からなる電子アクセプター部位はEO 色素開発の大きなブレークスルーとなった^[71]8]。試料

図3 ハイパーレーリー散乱(HRS)測定の光学系

(c)、(d)はNICTにおいて新規に設計・合成されたEO
色素分子の一例を示している。アクセプター部位と
π 共役系部位は同じであるが、ドナー部位のアミノベンゼンのメタ位をアルキルオキシ基(メトキシ基
(OCH₃)、ベンジルオキシ基(OCH₂Ph))で置換した
構造を持っている。

2.3 EO 色素分子の超分極率の評価

EO 色素分子の超分極率(β_{EO})は分子1つの電気光 学応答の大きさの指標となる値である。この値を評価 するためにハイパーレーリー散乱(HRS)法を用いた^[9]。 図3はHRS測定の光学系を示している。この手法では EO 色素の溶液を準備し、その溶液に基本光となるパ ルスレーザーを照射し、溶液中のEO 色素分子の時間 的、空間的な配向揺らぎから生じる光第2次高調波の 散乱光(HRS光)を検出する。HRS光強度(I_{HRS,2ω}) は式2で表され、入射光強度(I_ω)の2乗に比例し、 溶質の超分極率($\beta_{HRS} \equiv \sqrt{\beta_{HRS}^2} = \sqrt{\beta_{HRS,20}^2}$)の2乗 に比例し、溶質の濃度(N_{solute})に比例する。式2中の 溶媒(solvent)に関する項は本研究では無視できる程 小さい。従って超分極率が既知の分子(本実験では試 料(a)のDR1)があれば^[10]、HRS光強度の比較から、 測定したい試料分子の超分極率(β_{HRS})の値が求まる。

$I_{HRS,2\omega} = g \left(N_{solvent} \langle \beta_{solvent}^2 \rangle + N_{solute} \langle \beta_{solute}^2 \rangle \right) I_{\omega}^{-2} \quad (2)$

実際の測定の際には HRS 光と多光子励起蛍光が重畳す るので、周波数領域測定により多光子励起蛍光の寄与を 見積もり、補正した。表1に試料(a)、(b)、(c)、(d)のクロロ ホルム溶液に対して、1952 nmの基本光を用いた場合の HRS 測定の結果をまとめた。表1中の各種β値には以下 の関係が成り立っている。

$$\beta_{\rm HRS} \equiv \sqrt{\langle \beta_{\rm HRS}^2 \rangle} = \frac{6}{35} \beta_{\rm zzz} \qquad (3)$$

$$\beta_{zzz} = \frac{\omega_{eg}^4}{(\omega_{eg}^2 - 4\omega^2)(\omega_{eg}^2 - \omega^2)}\beta_0 \quad (4)$$

$$\beta_{\rm EO} = \frac{\omega_{\rm eg}^2 (3\omega_{\rm eg}^2 - \omega_{\rm EO}^2)}{3(\omega_{\rm eg}^2 - \omega_{\rm EO}^2)^2} \beta_0 \tag{5}$$

Sample	β _{HRS} (@1952nm)	β_{zzz} (@1952nm)	βo	β _{εο} (@1.55μm)	$\lambda_{max}[nm]$
(a)	22.3	53.8	37.8	45.1	488
(b)	1090	2630	798	1310	780
(c)	1570	3790	922	1610	819
(d)	1660	4010	950	1670	823
	00				

表 1 EO 色素の各 β 値と最大吸収波長 (λ max)

unit for β: x10⁻³⁰esu

ここで ω_{eg} は基底状態と励起状態間の遷移に関する角 周波数で、通常吸収スペクトルの最大値から得られる。 β_0 は周波数がゼロの極限での β_{exz} の値を意味している。 ω_{eo} は変調の際に用いる光波(1.55 μ m)に対する角周 波数であり、 β_{eo} はその時の超分極率である。EO 色素 に関して1つの支配的な成分 β_{exz} を仮定し、更に2準 位モデルを仮定した^[11]。このようにして、HRS 測定か ら β_{eo} の値を見積もることができる。

2.4 アルキルオキシ基を持つ EO 色素の特徴

表1にあるようにアルキルオキシ基を持つ EO 色素 は持たない EO 色素と比べて、 β_{EO} の値として 1.3 倍程 度の大きさが得られた。このように大きくなった原因 として、図4のような分子内の弱い水素結合(CH…O 型)が、 π 共役系の揺らぎを抑制し、その構造的な安 定化に寄与し、実行的な π 共役系の長さを長くしてい るのではないかと考えている^[12]。図2のような大きな 分子は自由度も大きく、その構造は置かれている環境 の中で揺らいでいると考えられる。図4のような分子 内の弱い水素結合の存在はプロトン核磁気共鳴スペク トル(¹H-NMR)からも示唆されている^[12]。

図5は試料(b)と試料(c)のEO色素のクロロホ ルム中における吸収スペクトルを示している。アルキ ルオキシ基を持つEO色素(c)は持たないEO色素 (b)と比べて、吸収が低エネルギー側(長波長側)に シフトし、吸収のバンドの幅も狭くなっており、特に 低エネルギー側が鋭く減衰している。このことも分子 内の弱い水素結合に起因しているものと考えている。 β_{EO} の値が大きいだけでなく、上で述べた吸収スペクト ルの特徴はこの色素を用いてEOデバイスを作製する 際に大きな利点を持っている。通常 β_{EO} の大きさと吸 収の低エネルギー化(長波長化)の間にはトレードオ フの関係があるが、試料(c)では吸収のバンドの幅も 狭くなっており、特に低エネルギー側が鋭く減衰して いるため、吸収による伝搬損失を低減できる可能性を 持っている。

ここではチエニルジビニレンからなる π 共役系部位 からなる EO 色素についてのみ述べたが、ポリエン、 フェニルジビニレンなどの長い π 共役系部位からなる

図 4 アルキルオキシ基を持つ EO 色素における分子内の弱い水素結合

図 5 アルキルオキシ基を持たない EO 色素(試料(b))(実線)と持つ EO 色素(試料(c))(点線)の吸収スペクトル

EO 色素についてもアルキルオキシ基による分子内の 弱い水素結合の効果を確認している。アルキルオキシ 基をアミノベンゼンのメタ位に導入するという比較的 単純な分子設計により、様々な側面から有効な EO 色 素を開発することができた^[12]。

3 まとめ

EOポリマーは性能指数(n³r)としては、代表的な 無機系 EO 材料の LiNbO₃の性能指数と比べても大き な値を持つものが多数報告されている。本稿で述べた ような新規 EO 色素の開発や配向制御を行うことによ り更なる性能指数の向上が期待される。EO ポリマー はマイクロ波領域の誘電率が小さいため変調帯域に関 しても、LiNbO₃と比べて優れている。作製プロセス、 耐熱性、寿命など改善・改良していかなければならな い部分は多々あるものの EO ポリマーは有望であると 考えられる。

【参考文献】

- D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, "Demonstration of 110GHz electro-optic polymer modulators," Appl. Phys. Lett., Vol. 70, pp. 3335–3337, 1997.
- 2 T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, "Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V," Appl. Phys. Lett., Vol. 92, pp. 163303-1-3, 2008.
- 3 Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, "Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm," Appl. Phys. Lett., Vol. 91, pp. 093505-1-3, 2007.
- 4 B.-J. Seo, S. Kim, H. Fetterman, W. Steier, D. Jin, and R. Dinu, "Design of Ring Resonators using Electro-Optic Polymer Waveguides," J. Phys. Chem. C, Vol. 112, pp. 7953–7958, 2008.
- 5 T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express, Vol. 13, pp. 5216–5226, 2005.
- 6 Ch. Bosshard, K. Sutter, Ph. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, "Organic Nonlinear Optical Materials", Amsterdam B.V., Gordon and Breach Science Publishers SA, 1995.
- 7 G. Melikian, F. P. Rouessac, and C. Alexandre, "Synthesis of substituted dicyanomethylendihydrofurans," Synth. Commun., Vol. 25, pp. 3045–3051, 1995.
- 8 L. R. Dalton, "Polymeric electro-optic materials: optimization of electrooptic activity, minimization of optical loss, and fine-tuning of device performance," Opt. Eng., Vol. 39, pp. 589–595, 2000.
- 9 K. Clays and A. Persoons, "Hyper-Rayleigh scattering in solution," Phys. Rev. Lett., Vol. 66, pp. 2980–2983, 1991.
- J. L. Oudar and D. S. Chemla, "Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment," J. Chem. Phys., Vol. 66, pp. 2664–2668, 1977.
- 11 C. Wang, J. Woodforld, J. Zhang, and L. Dalton, "Resonant and Nonresonant Hyper-Rayleigh Scattering of Charge-Transfer Chromophores," J. Appl. Phys., Vol. 89, pp. 4209–4217, 2001.
- 12 T.Yamada, I.Aoki, H.Miki, C. Yamada, and A. Otomo, "Effect of methoxy or benzyloxy groups bound to an amino benzene donor unit for various nonlinear optical chromophores as studied by hyper-Rayleigh scattering", Mater. Chem. Phys., Vol. 139, pp. 699–705, 2013.

山田俊樹 (やまだ としき) 未来 ICT 研究所ナノ ICT 研究室主任研究員 博士(工学) 有機材料物性・光計測、ナノ材料

青木 勲 (あおき いさお) 未来 | C T 研究所ナノ | C T 研究室有期 研究員有機合成化学と分子設計

三木秀樹 (みき ひでき) 未来 ICT 研究所ナノ ICT 研究室有期研究員 博士(薬学) 有機合成化学と分子設計

大友 明 (おおとも あきら) 未来 ICT 研究所ナノ ICT 研究室室長 Ph.D. ナノフォトニクス、非線形光学