生体機能計測技術の現状と未来

小嶋寛明

細胞やオルガネラなど、生体分子システムの機能を理解するためには、構成分子を直接観察し、 触れることで、それらの性質を詳細に調べることが重要である。ここでは、我々が研究の現場に おいて活用している、一分子および分子システム観測法、レーザートラップ法、ナノ精度の計測 法、および生体機能再構成法について、その原理、構成および応用例を主に技術的な観点から解 説する。

1 まえがき

生体システムは、常に変動する複雑な環境にうまく 対応して生存し続けるために、自律性、自己組織性、 低消費エネルギー、高度なロバストネス等、優れた特 性を進化の過程で手にしてきており、これらを実現す るために、人間が構築したシステムとは全く異なる戦 略を様々な局面で発揮している。我々は、生体システ ムのもつ優れた情報機能に学び、人間が扱うことので きる技術として手中に収めるために、システムの根本 をなす生体分子システムの階層を研究対象として扱っ ている。生体分子のうち、情報伝達や動きをはじめと したあらゆる生体機能の担い手として大きな役割を果 たしているのは、大きさがナノメータオーダーのタン パク質分子とその集合体である。生体においては物質 の移動はすなわち情報伝達である。細胞内情報伝達や ホルモンによる細胞間コミュニケーションがその典型 である。我々はこれまで、生体内の動きの担い手であ るタンパク質モータ分子とその関連分子に焦点を当て て研究をすすめてきた。

生物が発現する生体運動の種類は非常に多様である が、生体分子のレベルにまで遡るとそれはほんの数種 類の普遍的なタンパク質モータ分子系によって担われ ている(図1)。

運動の形式により、回転運動型の分子系(バクテリ ア鞭毛モータ、F1 ATPase)と直線運動型の分子系 (アクチン-ミオシン系、キネシン-微小管系、ダイ ニン-微小管系)に分類され、プロトン濃度勾配をエ ネルギー源とするバクテリア鞭毛モータ以外は ATP と呼ばれる化学物質(燃料分子)から得られるエネル ギーを用いて一方向性の運動を発生する。前者は分子 複合体中に存在する回転軸を回すことにより、回転運 動を発生するのに対し、後者はタンパク質分子が重合 したフィラメント状の 'レール' の上を、タンパク質 モータ分子が移動することにより、直線運動を発現す る。注目すべき特徴として、①入力エネルギーが、熱 揺らぎの10倍程度であり、エネルギー的に非常にノイ ジーな環境にさらされながら、高い効率で仕事を行う こと、②分子素子のスケールが現在の技術では到達が 困難なナノメートル程度であること、③高次の分子集 合体を自己組織的に形成し、高度な機能を発揮するこ となどが挙げられ、入力である ATP 分子の結合解離過 程と、出力である分子の運動および力発生過程が物理 量として計測しやすいため、生体分子機能発現の解析 対象として適している。また、これらの運動機能の再 構成系をうまくデザインすることによって、生体機能 を利用した情報伝達システムの構築を行うことも可能 である。

我々はこれまでに、生体分子機能再構築技術、顕微 観測技術、マニピュレーション技術を自前で開発し、 これらを駆使して、タンパク質モータ分子系の機能解 析と、タンパク質モータ分子系を利用した微小機械の 構築に関する試みを行ってきた。以下の節では、これ らの研究手法についての紹介を行いたい。

タンパク質分子システムの機能解析: 2 タンパク質モータを例として

2.1 生体分子機能計測に必要な条件

図2はタンパク質モータによって構成される生体シ ステムの例、真核生物の鞭毛とその内部構造の模式図 である。鞭毛は水中でミドリムシやクラミドモナスの ような微生物が移動するため、平泳ぎのように'かく' ことで推進力を得るための細胞小器官である。鞭毛内 では、長軸方向に張られた9対あるレールタンパク質 (微小管)の間に数万個存在するタンパク質モータ(ダ イニン)が隣り合う微小管の間にずりの力を発生する ことで、鞭毛の屈曲運動を発生させる。

これを例にして、分子の動作を観測するために必要 な条件を概観してみよう。鞭毛の動きを発生する最小 ユニットであるダイニン分子の大きさは20ナノメー タ程度、微小管の太さは25ナノメータと非常に小さく、 光の回折限界を超えたナノメータ分解能をもつ観測法 が必要となる。また、一般にタンパク質分子の屈折率 は水に近く、水中ではほぼ透明であるので、分子像の コントラストを上げる工夫が必要である。さらに、 1 サイクルあたりの消費エネルギーは 20 kT (k: ボル ツマン定数、T:絶対温度、kT は熱ゆらぎのオーダー) であるので、1分子が発生する力は数ピコニュートン という大変微弱なものとなり、これを検出する感度の 高い'はかり'が必要となる。そして、これを機能さ せるためには、生体内に近い環境(溶液環境、表面状 態等)を整える必要があり、これに対応できる顕微観 測技術は光学顕微鏡技術に限られる。これらの壁をク リアすると、ようやく計算機やエンジンの構造や機能 を解析するような感覚で、生体分子を直接見て触れる ことによる機能解析が可能となるわけである。

2.2 生体分子の動きを直視する:インビトロ運 動アッセイ

インビトロ運動アッセイとは、生体からタンパク質 モータ分子系を取り出し、ガラス基板等の人工基板上

図2 鞭毛の構造とダイニン分子

に展開して運動機能を再構成する手法である(図3)。 分子の抽出法の確立に始まり、溶液条件の設定、表面 への吸着法の検討などの末、生体試料から取り出した タンパク質モータ分子でのアッセイの実現に至ること ができる。インビトロ運動アッセイ系はそのジオメト リーから、いくつかのバリエーションがある。図3に はサーフェスアッセイとビーズアッセイと呼ばれる方 法を示した。

いずれも光学顕微鏡下では十分なコントラストが 得られず直接観察ができない生体分子に、量子収率 の 高 い 蛍 光 色 素 (Cv3, TMR, GFP 等) や ビ ー ズ (polystyrene, silica 等)、金コロイドなどの背景とのコ ントラストを増強するタグをつけることで、その動き を追跡して分子の動態を計測するというものである。 光学顕微鏡としては、開口数の大きな(N.A.=1.3で 十分)対物レンズを備えた蛍光顕微鏡、あるいは暗視野 顕微鏡を用意し、感度の高い CCD カメラを用意すれば 十分である。一旦アッセイ系が確立されると、基板表 面へ吸着させる分子の密度や、ビーズに対する分子の 混合比をコントロールすることで、運動に関与する分 子の数を変化させることができ、密度や混合比を極限 まで小さくすることで、統計的に運動に関与する分子 数を1個レベルにして、その挙動を観測することも可 能となる。この手法を発展させて、統計に頼ることな く1個の分子の挙動を直接観測することも可能となる。 そのためには、顕微鏡側にもうひと工夫必要である。

2.3 生体分子1個を直視する:全反射蛍光顕微 観察法

分子1個を直視するためには、見たい分子を光らせ ることから始める。これは、対象となるタンパク質分 子や生理活性物質に蛍光標識を行うことに対応する。 標識は明るくかつ退色しにくいものを選択することと なり、Cy3, GFP, 量子ドット等が目的に応じて使い分

(a) サーフェスアッセイ (左) とビーズアッセイ (右)の模式図 (b) ダイニン - 微小管系によるサーフェスアッセイの1秒毎のビデオ シーケンス

けられる。これらを1分子に1個だけ導入することに より、顕微鏡下で観察される光点の蛍光強度からそこ に存在する分子の数が判定できるようになる。これら の蛍光強度は大変微弱であり、通常の蛍光顕微鏡観察 では背景光に埋もれてしまう。そのため、全反射照明 法という特殊な照明法によってエバネッセント場をガ ラス基板表面に発生させ、励起光が表面近くの100 nm 程度の範囲にのみ局在するようにして背景光の低い状 態を実現する(全反射蛍光顕微観察法: TIRFM)。こ の状態では、表面付近にやってきてエバネッセント場 に飛び込んだ分子のみが輝点として観察される。全反 射照明法にはプリズム型、対物レンズ型の2通りがあ るが、図4には対物レンズ型の全反射照明法と実際の 1分子観測像を示した。対物レンズにはガラスと水の

界面において全反射照明が可能なように、大開口数 (N.A. = 1.45)のものを用い、カメラには高感度かつ ノイズの少ない EMCCD カメラを用いる。レーザ励 起光強度はサンプル面で1 mW あれば十分である。 TIRFM の理論的考察については^{[1][2]} に詳しい。

TIRFM で検出した蛍光色素の位置は、ナノメータ レベルの高精度で検出することができる。原理的には、 蛍光色素の像の重心を精度良く検出することで、光の 回折限界を超えた位置検出精度を実現するものである。 顕微鏡の対物レンズによって形成される蛍光色素 (波長: λ nm)すなわち点光源の像は Airy disc パター ンとなる(図4)。この中心部付近のプロファイルは標 準偏差 σ が 0.5 λ /N.A. \approx 250 nm の 2 次元ガウス関数 で近似できる (式(1))。

$$P(x,y) = \frac{1}{\sigma_x \sigma_y \sqrt{2\pi}} \exp[\frac{-(x-\Delta x)^2}{2\sigma_x^2}] \cdot \exp[\frac{-(y-\Delta y)^2}{2\sigma_y^2}]$$
(1)

これは点像分布関数(point spread function)とし て知られており、EMCCDカメラによって検出するこ とができる。色素の位置の決定は点像の重心の検出、 または点像へのガウス関数の最小2乗フィッティング によって行う。位置検出の精度は、画像検出システム のノイズレベルとカメラに到達する光子数nによって 規定される標準誤差 σn⁻⁰⁵で決まる。この手法を用い ることで、一般的な実験条件において、数ナノメータ の精度で蛍光色素の位置を決定できる。技術的背景に ついては^{[3]-[5]}を参照いただきたい。

2.4 生体分子をつかむ:レーザートラップ法

レーザートラップ法とは、光を利用してマイクロ メータスケールの微小物体を捕まえ、操作する実験手 法である。ガウシアンプロファイルをもつレーザを開 口数の大きな対物レンズで集光すると、焦点では光が 集中し、光の強度が非常に大きくなる。焦点から少し でも離れると、光強度は急激に減少する。すなわち、 焦点近傍では光の電場勾配が非常に大きくなる。そこ に、球状の小さな誘電体(直径数ミクロンから数十ナノ メータのビーズなど)が近づくと、強力な電場勾配の 作用で捕えられてしまうというものである(図5)^{[6][7]}。

この作用は、光線光学的にも説明できる。微小物体 と水の屈折率の違いにより、その界面でレーザは屈折 する。この際発生する光の運動量変化の反作用として ビーズには力がおよぼされる。ビーズに向かって円錐 状に入射される光により、ビーズに働く力は焦点付近 に位置した時に釣り合い、そこに捕捉されることとな る。光子1個が鏡の表面で全反射する際に、表面にお よぼす力は10⁻¹⁵ pN 程度であり大変微弱なものである が、100 mW- 1W 程度の光源を用いれば、30 pN 程度 の力を発生することができる。これはタンパク質モー タ分子の発生する力や DNA の塩基対を引きはがすの と同じレベルであり大変都合がよい。生体試料は可視 光域に高い吸収を持つ一方、近赤外領域では吸収が少 ない。高強度のレーザ照射による試料へのダメージを 避けるため、通常は近赤外のレーザ(波長1064 nmの YAG レーザまたは 1047 nm 等の YLF レーザ) をレー ザートラップ用光源として用いる[8]。試料内に発生し たレーザートラップの位置は、レーザ照射光学系の開 口絞り位置に設置したガルバノミラーや回折格子 (AOD や EOD) をスキャンすることで、高速移動す ることができる。これにより、トラップによって捕捉 した粒子を試料中で自在に操作することができる。こ うして捕捉されたビーズは、近似的に安定点からの変 位に比例した復元力を受けることが知られており、微 小なバネばかりとして利用することが可能である。

生体分子は直接レーザートラップで捕らえるには小 さすぎる。そこで、先に述べたビーズアッセイを応用 し、ビーズの表面に活性を失わないように分子を固定 し、ビーズをハンドルとして操作を行う。この系に よって観測できる現象の速さの限界を規定する時間分 解能は、ビーズへの粘性抵抗とレーザートラップのバ ネ定数の比で決まり、直径 0.2 ミクロンのビーズを 0.004 pN/nm のバネ定数で捕捉した場合 1 ms 程度と なる。

タンパク質モータ分子の機能を詳細に調べるために は、分子の大きさ(10 nm 程度)と単位ステップ発生 時間(数ms)にくらべて十分高い分解能を確保して おく必要がある。そのため、レーザートラップによっ て捕捉されたビーズの動きは、ビデオカメラを用いる よりもフォトダイオードを用いたアナログ計測によっ て検出することが多い。よく用いられるのは4分割 フォトダイオードセンサ (QPD) 上に、ビーズの像を 投影し、その差動出力を検出してビーズの位置を決定 する方法である。背景ノイズに比べて十分強い出力を 得るためには、コントラストの十分高いビーズ像を得 ることが必要であり、使用するビーズの大きさや材質、 顕微鏡システムの構成に応じて、レーザを光源とした 明視野照明法や暗視野照明法などから適切なものを選 択して用いる。ナノメトリーと呼ばれるこの方法によ り、サブミリ秒、サブナノメータ程度の分解能は容易 に達成できる[9][10]。

我々はこれまで、前述のダイニン - 微小管系^{[11]-[13]}や、 植物の中で物質の輸送を行うミオシン - アクチン 系^{[10][14]}、細胞内の物質輸送にとって重要なキネシン -微小管系^[15]に、レーザートラップ法とナノメトリーを 応用し、その動き・力を分子スケール(ナノメート ル・ピコニュートン)の精度で検出する顕微力学計測

(a) レーザートラップナノメトリーの光学系の例 (b)レーザートラップ時にビーズにかかる力の説明 (c)タンパ ク質モータ分子の発生力測定

を行ってきた(図5)。その結果、タンパク質モータ 分子がレール分子上を進む時の単位ストローク、最大 発生力、負荷による運動活性の変化、分子が集団となっ た際の協同性等を調べ上げることに成功し、分子エン ジンとしてのスペックを同定するとともに、タンパク 質分子の機能発現モデルの提案などメカニズムに関す る新しい知見を得ている。

2.5 生体分子システムの設計図を手に入れる: タンパク質モータ分子系の構造解析

生体分子系のグランドデザインを知るためには、生 体分子とその集合体の設計、すなわち構造を詳細に調 べ、機能と構造の関連を調べることが重要である。 我々は、これまでに、電子顕微鏡技術等、高い空間分 解能をもつイメージング手法を駆使し、タンパク質 モータ分子の内部構造とその変化、分子複合体内の分 子の3次元配置を順次同定してきた。

一分子構造の詳細な解析は、前述のダイニン分子に 関して行った。ダイニン分子は、ATP 分子の結合解離 にともなって、微小管の一方向性の運動を引き起こす。 このときに、ダイニン分子自体がどのような構造変化 を起こし、それが運動機能へどのようにつながってい くかを検証するためには、ダイニン分子のサイズより もさらに高い分解能で分子形状を計測する必要がある。 我々は、電子顕微鏡観察によって得られる形状分布を もったダイニン分子の生画像を、似た形状を持ついく つかのグループに分類し、それぞれのグループに属す る画像を平均化処理することで、高品質な分子画像を 得る、単粒子解析法を駆使し、ATP 結合状態の違いに よる分子形状の変化を高分解能で同定した(図6)^[16]。 この観測に基づき、ダイニン分子の運動発生を、その 構造変化から説明するモデルを提唱しているが、これ は現在のダイニン研究分野における重要な作業仮説と して広く認知されている。

鞭毛由来のダイニン分子は、鞭毛という大規模構造 体の中に整然と配置されることにより、一分子レベル で見られる単なる一方向滑り運動だけではなく、さら に高次の鞭毛振動運動の発生を行う。このように多数 の素子が集合し、高次元のシステムとして働く際の機 能発現メカニズムを解析するには、システム内での素 子の3次元配置、すなわち設計図に関する知見を得る ことが重要である。このような観点から、我々は、電 子線トモグラフィの技術を用い、真核生物鞭毛内での ダイニン分子の3次元配置に関する知見を得ている (図7)^{[17][18]}。この研究で得られた結果は、鞭毛システ ムを構成する素子の間の空間的・機能的連携に関する 情報を与え、素子からシステムに至るギャップを埋め る研究をデザインする際に大いに役立っている。

図6 ダイニン分子の電子顕微鏡端粒子解析像と運動モデル

2.6 生体分子のフロー制御:タンパク質モータ によって駆動する微小機械の構築

我々は、インビトロ運動再構成系とナノ機構構築技 術とを組み合わせることによって、生体分子自体の機 能を利用した微小機械を構築することが可能であると 考え、その構築原理の探求を行ってきた。

タンパク質モータ分子が、ランダムな運動の向きを 示すインビトロ運動再構成系を出発点として、我々が 利用可能な形で運動を取り出し、微小機械を構築する ためには、①運動の軌道を制御する、②運動の向きを 制御する、③運動を利用した機能の設計を行う、④機 能をシステム化するという流れで研究を発展させてい くことになる。現在までに②から③に至る所まで到達 している。

我々は、運動の軌道を制御するために有効な戦略と して、フォトリソグラフィの手法を用い、対象とする タンパク質モータ分子が失活せずに吸着できる表面を、 基板表面に描画することによって提供する手法を見い だした。この方法により、描画を行ったミクロンス ケール幅の'ハイウェイ'上でのみフィラメントの運 動を再構成する技術を手に入れた。

これと並び、タンパク質モータ分子によって駆動さ れる、微小管と呼ばれるフィラメントが壁に当たった 際に、それまでの運動の方向を変化させ、壁に沿った 運動を行うという性質を利用した運動制御の方法も実 現した。この手法により、矢尻状パターンを仕込んだ 運動軌道を利用して、微小管の運動の向きを高い確率 で制御する手法を見出し、微小機械構築に必須な一方 向性運動の抽出に成功した^{[19]-[21]}。

現在では、さらに複雑な形状の'壁'を基板表面に 築くことが可能となり、運動を行っている微小管の捕 獲、濃縮、一方向運動の抽出、パターン内のスキャン 等の機能を持ったミクロンスケールの回路ブロックを 構築することを可能としている(図8)。

このような、ナノ機構構築技術とインビトロ運動再 構成系を融合した新規デバイスの構築の試みは、 KARC(未来ICT研究所)が発祥の地であり、現在、

図7 電子線トモグラフィによる鞭毛内分子の3次元配置解析結果

図8 タンパク質モータ分子の運動制御 上から順に、①運動軌道制御、②運動の向きの制御、③機能素子の構築のアッセイ例。左コラムが 基板のデザイン、右コラムが微小管の運動制御蛍光像。

世界各国の研究者が同様のアプローチによる取り組み を開始している。

3 将来に向けて

我々は、生体分子系の動作原理探求と生体分子系そ のものによって駆動される微小機構の構築原理追求を 柱とし、次代の情報通信技術にイノベーションを起こ す種を求めて研究を進めてきた。

前者のアプローチにおいては、生体分子構造の高精 度計測技術を用いることにより、生体分子1個レベル から生体分子システムに至るまでの真核生物鞭毛の設 計図を手にするところまで到達した。また、機能計測 に関しては、生体分子機能再構成系、高度な計測技術 の開発を通じ、生体分子1個レベルでの振る舞いや、 入出力の相関を、分子に直接触れるような感覚で調べ 上げることを可能とし、タンパク質モータ分子をはじ めとした生体分子の動作機構に迫る多くの結果を手に してきた。

後者のアプローチにおいては、様々なナノ構造構築 技術と生体分子のハンドリング技術を組み合わせて、 タンパク質モータ分子による運動の制御を実現し、こ れを駆動源とした超微小機械の構築に繋がる知見を蓄 積してきた。

2 生命の基本原理の探求

これらの技術を用いた研究成果により、タンパク質 モータの機能と構造に関する知見は一挙に深まった。 ここで開発された計測技術および得られた成果は、タ ンパク質モータの研究という狭い領域を超えて、分子 レベルでの生命現象を理解することに大いに役立ち始 めている。

生命科学の発展は、常に何らかの技術革新に裏打ち されている。様々な背景をもった研究者が集う情報通 信分野に身を置きながら生命科学に取り組むバイオ ICT 研究の状況は、斬新な計測技術の創出には大変適 していると考える。

これらの研究を通じて生物がすでに何十億年も前か らごく普通に用いている生命機能の精緻さを理解し、 その設計図を手に入れることによって、将来の新しい テクノロジーの発展への足がかりとしていければ幸せ である。

【参考文献】

- 1 D. Axelrod, "Total internal reflection fluorescence microscopy," Methods Cell Biol, Vol. 30, pp. 245–70, 1989.
- D. Axelrod, "Total internal reflection fluorescence microscopy in cell biology," Methods Enzymol, Vol. 361, pp. 1–33, 2003.
- 3 E. Toprak and P. R. Selvin, "New fluorescent tools for watching nanometer-scale conformational changes of single molecules," Annu Rev Biophys Biomol Struct, Vol. 36, pp. 349–69, 2007.
- 4 A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, "Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization," Science, Vol. 300, pp. 2061–2065, June 27 2003.
- 5 M. K. Cheezum, W. F. Walker, and W. H. Guilford, "Quantitative comparison of algorithms for tracking single fluorescent particles," Biophys J, Vol. 81, pp. 2378–88, Oct. 2001.
- 6 A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Methods Cell Biol, Vol. 55, pp. 1–27, 1998.
- 7 A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt Lett, Vol. 11, p. 288, May 1 1986.
- K. Svoboda and S. M. Block, "Biological applications of optical forces," Annu Rev Biophys Biomol Struct, Vol. 23, pp. 247–85, 1994.
- 9 M. Nishiyama, E. Muto, Y. Inoue, T. Yanagida, and H. Higuchi, "Substeps within the 8-nm step of the ATPase cycle of single kinesin molecules," Nat Cell Biol, Vol. 3, pp. 425–8, April 2001.
- 10 M. Tominaga, H. Kojima, E. Yokota, R. Nakamori, M. Anson, T. Shimmen, et al., "Calcium-induced mechanical change in the neck domain alters the activity of plant myosin XI," J Biol Chem, Vol. 287, pp. 30711–8, Aug. 31 2012.
- 11 H. Kojima, M. Kikumoto, H. Sakakibara, and K. Oiwa, "Mechanical properties of a single-headed processive motor, inner-arm dynein subspecies-c of Chlamydomonas studied at the single molecule level," J Biol Phys, Vol. 28, pp. 335–345, 2002.
- 12 N. Kotani, H. Sakakibara, S. A. Burgess, H. Kojima, and K. Oiwa, "Mechanical properties of inner-arm dynein-f (dynein I1) studied with in vitro motility assays," Biophys J, Vol. 93, pp. 886–94, Aug. 1 2007.
- 13 H. Sakakibara, H. Kojima, Y. Sakai, E. Katayama, and K. Oiwa, "Innerarm dynein c of Chlamydomonas flagella is a single-headed processive motor," Nature, Vol. 400, pp. 586–90, Aug. 5 1999.
- 14 M. Tominaga, H. Kojima, E. Yokota, H. Orii, R. Nakamori, E. Katayama,

et al., "Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity," Embo J, Vol. 22, pp. 1263–72, March 17 2003.

- 15 K. Furuta, A. Furuta, Y. Y. Toyoshima, M. Amino, K. Oiwa, and H. Kojima, "Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors," Proc Natl Acad Sci U S A, Vol. 110, pp. 501–6, Jan. 8 2013.
- 16 S. A. Burgess, M. L. Walker, H. Sakakibara, P. J. Knight, and K. Oiwa, "Dynein structure and power stroke," Nature, Vol. 421, pp. 715–8, Feb. 13 2003.
- 17 T. Ishikawa, H. Sakakibara, and K. Oiwa, "The architecture of outer dynein arms in situ," J Mol Biol, Vol. 368, pp. 1249–58, May 18 2007.
- 18 T. Movassagh, K. H. Bui, H. Sakakibara, K. Oiwa, and T. Ishikawa, "Nucleotide-induced global conformational changes of flagellar dynein arms revealed by in situ analysis," Nat Struct Mol Biol, Vol. 17, pp. 761– 7, June 2010.
- 19 Y. Hiratsuka, T. Tada, K. Oiwa, T. Kanayama, and T. Q. P. Uyeda, "Controlling the direction of kinesin-driven microtubule movements along microlithographic tracks," Biophysical Journal, Vol. 81, pp. 1555– 1561, Sep. 2001.
- 20 H. Suzuki, A. Yamada, K. Oiwa, H. Nakayama, and S. Mashiko, "Control of actin moving trajectory by patterned poly (methylmethacrylate) tracks," Biophys J, Vol. 72, pp. 1997–2001, May 1997.
- 21 N. Ashikari, Y. Shitaka, K. Fujita, H. Kojima, K. Oiwa, H. Sakaue, et al., "Climbing Rates of Microtubules Propelled by Dynein after Collision with Microfabricated Walls," Japanese Journal of Applied Physics, Vol. 51, Feb. 2012.

小嶋寛明 (こじま ひろあき) 未来 ICT 研究所バイオ ICT 研究室室長 博士(工学) 生物物理学