アンテナシステムの設計

藤野義之 濱本直和

STICS に望まれるアンテナシステムの設計について述べる。

1 まえがき

STICS は大型展開アンテナを有する S 帯の通信衛 星を用いてパーソナル衛星通信を行うシステムである。 プロジェクト開始時において、STICS における衛星 搭載のアンテナシステムは、アンテナ形式、開口径等 の基礎的な情報しか入力されていなかった。一方で、 衛星搭載アンテナとしてはその F/D やカバーエリア 等の詳細な情報が設計上必要となる。このため、当該 研究の実用化を見据えた形でベースとなるアンテナシ ステムに関し設計を行った。本稿ではこの部分に関し て説明を行う。

まず、アンテナ形式としては、離焦点給電フェー スドアレーアンテナを1次放射器に用い、反射鏡は 30mクラスの開口の展開型反射鏡1面を搭載するこ とが前提であった。このため、想定されるカバーエリ アをすべてカバーできる、鏡面の設計が必要であり、 特に焦点距離対開口直径比(以下F/Dと略す。)を適 切に取ることが必要となった。一方で衛星搭載アンテ ナとして実現可能なF/D値があり、これらを勘案し て最適な値を求めてきた。

本稿ではまず F/D とカバーエリア、アンテナ利得の関係等についての数値計算について、何例かを記述

図 1 アンテナ概形図

する。その検討結果を元に、STICS としてのアンテ ナのベースラインについて記述を行う。最後に、ベー スラインに基づいて1次放射器素子配列法や間隔の最 適化について検討を行った。

STICS アンテナの 2 ビーム指向特性について

2.1 計算に用いた諸元

最初の計算例として、STICSを想定した表1の諸 元を用いる。なおアンテナ直径は鏡面内接円のボアサ イト方向への投影直径として27mとし、衛星の東側 に図1のように搭載されると仮定した。また、ビーム 形成のための励振分布は、指定した方向のピーク利得 が最大になるように振幅及び位相を最適化した。1次 放射器の位置を焦点位置から反射鏡側に少し移動する ことでビーム形成を容易にするが、この値をデフォー カス量と定義し、焦点距離の0~15%に変化させた。

表1 計算に用いた諸元

東経 132 度
東経130度 緯度28度 (沖縄付近)
軌道上東側
2.0 GHz
14 モジュール
27 m
10.8 m (F/D=0.4) ~ 21.6 m (F/D=0.8)
50.3 度
127
cos^2.4
円偏波
焦点距離の 0~15 %

2.2 計算結果

ビーム指向方向範囲の目安として、図2に、デフォー カス量を10%、F/D=0.4,0.6、0.8にした場合で、衛 星ビーム方向を東西南北に指向させたときのビーム形 成が可能なおおよその範囲(エリア利得が47dBi以上 となるボアサイト方向のビームサイズと同程度のサイ ズのビームを形成できる領域)を示す。図が示すよう に、ビーム形成可能な範囲はF/D = 0.4で約±3度、 F/D=0.6で約±2.5度、F/D=0.8で約±2度になる。

2.3 最適パラメータの選定について

図2の結果をより詳細に検討するため、F/D及び デフォーカス量をパラメータにして東に振ったときの 各指向方向におけるピーク利得特性(図3)、及びビー ムに配分可能な EIRP(図4)を求めた。ここで、「ビー ムに配分可能な EIRP」とは次のような意味を持つ。

本検討では各指向方向に対するピーク利得を最大 にするため、127の各素子の位相のみならず振幅(電 力)も最適化する。その結果、各素子に給電される電 力は均一ではなくビーム指向方向に依存した電力分 布を持つ。1例として、図5にボアサイト及び東西南 北25度のビーム指向方向における127素子の電力分 布を示す(赤色に近づく程電力は大きい)。その結果、 1つのビームに対して全送信電力(= SSPA 最大電力 ×素子数)のすべてを配分することはできず、分布を 持った素子のSSPA 出力の和が限界となる。そこで、 各指向方向のビームに対して、

配分可能な EIRP

=ビームのピーク利得+各素子の電力分布の和 を定義する。

図3 ビーム指向方向に対するピーク利得特性 (F/D 及びデフォーカス量 をパラメータとする)

デフォーカス量=5%

デフォーカス量= 10%

図 4 ビーム指向方向に対する最大 EIRP 特性 (F/D 及びデフォーカス量を パラメータとする)

図5 給電素子(127素子)の振幅分布(赤い色ほど電力が大きい)

特に、送信アンテナではアンテナ利得が高くても、 配分可能な EIRP が小さい (ビーム形成に寄与する素 子が少ない) とそのビームに収容されるチャンネル数 が大きく取れないため、送信アンテナの最適パラメー タを選定するためには重要なパラメータとなる。な お、本検討では全送信電力 (127 素子の総和電力)を 1 W (= 0 dBW) に規格化した EIRP を用いる (例えば、 全送信電力が 1 kW の場合は本検討結果に 30 dB を加 える)。一方、受信アンテナの場合は、地上端末の所 要 EIRP を下げるために、寄与する素子数にこだわら ずに搭載アンテナ利得が高い方を優先するべきである。

図2と図3から定性的には以下の傾向が見られる。

- 指向方向が約 1.5 度以内では、F/D が大きいほど ピーク利得、配分可能な EIRP は高い。
 - ▶ デフォーカス量 =5~ 10%で F/D=0.8 は 0.4 に 比べピーク利得は約 1.5 dB 程度、EIRP は 2~ 3 dB 高い
- ・指向方向が約 1.5 度以上外側では上述と逆転し、
 F/D が小さいほどピーク利得、配分可能な EIRP
 は高い。
 - ▶ 2.5 度でまともなビームを作るためには、F/D を 0.6 以下、3 度では、F/D を 0.4 以下にする ことが望ましい。
- デフォーカス量が小さい程、ピーク利得、配分可 能な EIRP は総体的に高くなる
 - ▶しかし、デフォーカス量が小さいと、外側の ビームでの急激な利得低下や EIRP の低下があ りビーム形成が難しくなる。

以上の結果から、サービスエリアの条件やアンテナ 利得、1ビーム当たりの最大チャンネル数、送受共用

図6 ビーム形成領域

を考慮して最適パラメータを決める必要があるが、適 度なサービスエリアと利得としては、F/D = 0.5~0.6、 デフォーカス量 = 10%前後が1つの目安になると思 われる。

地上/衛星共用携帯電話システムに最適な F/D や、 オフセット角の最適化の評価を行った。ビーム形成 領域を±2°とした場合、オフセット角 60°、F/D=0.4 程度が、給電アレーの直径が最小となる最適な値であ ることが分かった。この値は、ETS-WILにおける F/D の値 (0.8) より小さい値であり、ETS-WILよりも良好な 特性を示すことが確認できた。この評価結果の詳細を 以下に示す。

3.1 ビーム形成に関する検討

ユーザ側で必要とされるサービスエリア(以下ビーム形成領域)に対して給電アレーが最小となる展開 鏡面のオフセット角や、F/Dの最適化の検討を行った。なお、オフセット角とF/Dは1対1の関係があり、 どちらかが決まるともう1つは決定される。

本節での検討は、開口径は30m、ビーム径は0.4°、 EOC 利得47 dBi としている。図6に大阪をボアサイ ト方向とし、最大ビーム走査角(ビーム形成領域)を 変えた場合の領域を示す。図7にビーム形成領域を変 化させた場合のオフセット角に対する給電アレー径の 関係を示す。ビーム形成領域を大きくすると、大きな 給電アレー径が必要となることが分かる。同じオフ セット角で比較すると、ビーム形成領域に対して給 電アレー径がほぼ比例していることが分かる。幾何 学的にはビーム形成領域*δ*に対して給電アレー径は

図7 オフセット角に対する給電アレー径 (ビーム形成領域を変化させた場合)

(ビーム形成領域を変化させた場合)

 $\delta = \pm 2^{\circ}$ に比例するが、波動的にも同程度の関係があ ることが分かる。オフセット角が 60° から 70° 程度で 給電アレー径が最小となり、ビーム形成領域が大きく なると最小となるオフセット角が多少大きくなる傾向 が分かる。また、オフセット角から F/D (焦点距離/ 開口径)は一意に決まるため、図8に横軸を F/D と したものを示す (D=30 m 一定)。オフセット角を大き くすると焦点距離が短くなるため、大きなオフセッ ト角は小さな F/D に相当する。よって、ビーム形成 領域 tan δ の場合に選定したオフセット角 60° は F/D で 0.36 に相当する^[1]2]。

ここでの鏡面設計は、給電アレーの搭載性、素子数 低減の観点から、給電アレーを最小化するという条件 の下で設計した。一方、反射鏡の構造的な観点からは、

図9 オフセット角と F/D の最適化と鏡面形状

焦点距離が短くなると鏡面の曲率が大きく(鏡面が深 く)なり、オフセット角が大きくなると、アンテナボ アサイト方向から見た電気的開口径に対し物理的な鏡 面サイズが大きくなる。この説明図を図9に示す。こ れら総合的な観点から最適な鏡面形状を検討していく 必要がある^{[3-[8]}。

本節の検討はデフォーカス量をゼロとしているため に、給電方法がクラスタ給電に近い。このため、1ビー ムの形成に要する素子数が少なく、冗長性の観点で問 題が生じる可能性がある。

4 給電部ベースライン

以上の検討例から、STICS について、給電部に 関する各機関(衛星開発メーカ、衛星通信事業者、 JAXA、NICT 等)で共通として以下の認識に至った。 表2にそのベースラインを示す。

カバーエリアに関しては ± 2°(最小値)、 ± 4°(目 標値)とした。また、いずれの場合でも南鳥島のカバー が問題となるため、これらを勘案しておくことが必要 である。F/D については、電気的には3での検討の 通り、0.36~0.4 程度が適当であるが、ETS-WIにおい て検証された F/D が 0.8 であり、これを一挙に 0.4 程 度とすることには衛星搭載上の問題点があると考えら れる。すなわち、図9に示すように、鏡面の曲率が非 常に大きくなるため、収納時の衛星構体への収納性が 悪く、展開時のリスク等が大きいことが想定される。 このため、F/Dとして 0.6 を前提として以降の検討を 実施することとした。また、離焦点距離としては、0.5m から1mとした。アンテナ利得はSTICSの回線が 成立する 47 dBi とマージンを考慮して 49 dBi とした。 給電素子数は大きいと SSPA の数が増加し、結果的 に衛星の成立性に影響を及ぼすため、少ないに越した

表 2 給電部ベースライン

(1) カバーエリア	± 2°(最小値)、± 4°(目 標値) 南鳥島を考慮しておく
(2) F/D	0.6
(3) 反射鏡開口径の内接円 直径	27 m¢
(4)離焦点距離	$0.5 \sim 1 \text{ m}$
(5) 補償機能の範囲	1ビーム分以上
(6)アンテナ利得	最低 47 dBi 以上。設計上 49 dBi を目安とする。
(7) 給電素子数	最大(127/130/144)素子 とする。
(8)素子間隔	120 mm を最小とするが実 現性を考慮して最適解を見 出す。
(9)陸域/海域の利得分割	陸域、海域の利得分割はせ ずキャパシティ(周波数帯 域幅)に差をつける。海域 でのアンテナは陸域と同じ とする
(10) サイドローブレベル	
(10) -1 自システム内サイ ドローブの C/I レベ ル	20 dB 以上
(10)-2 隣接帯域へのサイ ドローブレベル	TBD
(11) EIRP	 衛星全体の送信電力は 2kW程度を目安とする。 災害時には特定のビームに 能力を集中できること。
(12) G/T	21 dB/K 程度
(13) 給電素子放射パターン 近似式	cos^1.7 (電界表記、120 mm 径の場合の暫定式)

ことはないが、最大値として 144 程度の値とした。ま た、海域陸域で所要利得に差をつけるということはし ないこととした。これは、海陸の双方で共通の地上ア ンテナを使うことができるためである。ただし、海陸 に関してはチャネル容量(帯域幅)に差をつけること で成立性を確保することとした。

- 一次放射器の開口面積最適化に 5 関する検討

5.1 前提条件

4のベースラインに沿って、離焦点距離を0.8 m と した場合の一次放射器の構成、特にその開口面積を最 適化し、ビーム特性の所望値を満たした上で、一次放 射器素子の数をなるべく減少させることで、後段の ディジタル中継器部のコストを低減させる必要がある。

図10 サービスエリアとビーム配置

このために開口面積を最適化した送受共用放射素子について、素子径、素子間隔、素子配列を評価した。^[9]10]

5.2 検討内容

100素子100ビーム級を想定した衛星搭載送受共用 小型高密度実装フェーズドアレー給電部を開発するに あたり、更なるアンテナ性能向上を目的として、開口 面積をアレー素子間隔で定義される面積に最適化した 送受共用放射素子の検討を実施する。本節では、5.1 の前提条件を受けて、開口面積最適化送受共用放射素 子の評価の流れを説明する。

衛星に搭載する際に重量及び制御回路の複雑さ低減 のため、給電アレー全体で最小の素子数となる素子配 列(三角配列・四角配列)・素子間隔について検討す る。その際、図10に示す日本本土及び排他的経済水 域における99ビーム(陸域:20ビーム、海域:79ビー ム、本検討において陸域・海域は区別しない)で検討 する。図10に示すエリアに100ビーム程度を配置す ることから、各ビーム径は0.4deg、ビーム間隔0.346deg で正三角配列となる。衛星は東経136°の静止軌道と し、アンテナの正面方向(ボアサイト)は大阪方向(東 経135.5°、北緯34.6°)のビームとする。給電アレーの 各素子は、各ビームにおける受信帯域での最小利得が 目標利得を満足するように決定する。

アンテナ方式は、4の給電部ベースラインの検討 を受けて、図11に示す離焦点給電のアレー給電パラ ボラアンテナとする。ビーム径に対応して開口径を 27 m、F/Dを0.6とするオフセットパラボラ反射鏡と し、給電アレーは鏡面の焦点から0.8 m 鏡面側に離焦 点した位置に配置する。アレーの素子配列は、三角配

図11 アレー給電反射鏡アンテナ

列及び四角配列とする。本検討において素子形状は 正方形のキャビティ装荷パッチアンテナとし、素子 間に隙間の生じる正三角配列及び素子間に隙間のな い二等辺三角配列・四角配列を想定する。図11にお いて、Wは素子の中心間距離を示しており、キャビ ティ内径Wcと壁厚tの和である。Wcは120mm~ 220mmまでの範囲で検討する。

W=Wc + 2t(Wc: キャビティ内径、t: 壁厚)

次に検討の流れを示す。1~4の手順はそれぞれの 素子配列・素子間隔に対応して検討する^{[10][11]}。

最初に「(1)素子アンテナの概略検討」として、素子 配列・素子間隔に対応するアレー状態における素子パ ターンを計算する。まず、素子の占有面積に対して、 利得が最大となるように素子の形状を概略設計し、そ の素子をアレー状態に配列してアレー素子パターンを 計算する。

次に、「(2) 給電アレーの励振係数の最適化」として、 1 で計算したアレー素子パターンを用いて各素子の反 射鏡を介した放射パターンを計算する。その各素子の 放射パターンを合成し、各ビーム方向で目標の利得が 得られるように各素子の励振係数を数値的に最適化す る。

次に、「(3)給電アレー素子数の最適化」として、所 望の利得が得られる最小の素子数を決定する。2の検 討においては、十分に多くの素子を用いてビームを形 成するが、励振振幅の小さい素子を取り除き、各ビー ムで目標の利得が得られる最小の素子数を決定する。 給電アレー全体は、各ビームに対する素子の和集合と することにより、各ビームで目標利得が得られる最小 の給電アレー全体の素子数を計算する。

さらに、「(4) 最適な素子径を決定」において、給電 アレー素子数を最小とする観点で最適な素子径(素子 間隔・素子配列)を決定する。

5.3 放射素子の実現性検討

ここでは、素子間隔(素子径)に対して利得が最大 となる送受共用放射素子の実現性の検討を行う。ここ でアンテナ効率は、規定された素子間隔及び素子配列 で定義される1素子あたりの物理開口面積と、当該素 子の指向性利得で規定される実効開口面積の比で定義 し、指向性利得は隣接素子が存在するアレー状態での 値とする。

(1)素子単体における検討

図12に放射素子であるキャビティ付近接結合給電 パッチアンテナの構造を示す。キャビティ開口幅を Wcとし、これを大きくすると、物理開口面積が大き くなるとともに、指向性利得の増加により、実効開口 面積も増加する。このときの Wc と指向性利得及びア ンテナ効率の関係を図13に示す。ここでの放射効率 は、アレー状態において規定された素子間隔及び素子 配列で定義される1素子あたりの物理開口面積から算 出される指向性利得(以降、物理開口面積利得と呼ぶ)

図 12 キャビティ付近接結合給電パッチアンテナのモデル

と、素子単体の指向性利得の比である。ここでの検討 は素子単体での評価であるので厳密には本節前文に示 したアンテナ効率の定義とは異なる。ただし、素子間 結合や実効開口面積の重なり(素子間隔が小さい場合) によりアレー状態の利得は単素子での値に比べて小さ くなる傾向にあるため、一次評価として有効である。 図 13 から、Wc が 170 mm 以上の場合はアンテナ効 率70%以上が得られないことが分かる。したがって、 キャビティ開口幅として160mmが第1候補となる^[12]。

図 13 キャビティ開口幅と指向性利得、アンテナ効率の関係

表3 アレー状態における指向性利得とアンテナ効率の計算結果						
	1.995 GHz			2.185 GHz		
	指向性利得 [dBi]	物理開口 面積利得 [dBi]	アンテナ 効率 [%]	指向性利得 [dBi]	物理開口 面積利得 [dBi]	アンテナ 効率 [%]
四角配列	11.40	11.75	92.2	11.62	12.54	80.9
正三角配列	11.30	12.38	78.1	11.87	13.17	74.2
二等辺三角配列	11.11	11.75	86.3	11.66	12.54	81.6

(2) アレー状態における検討

次に、Wc=160 mm でのアレー状態における利得を 評価する。素子配列は図 11 に示すように正三角配列、 二等辺三角配列、四角配列の3種類とする。それぞれ の素子配列におけるアンテナ効率を表3に示す。正三 角配列のみ隣接素子の間隔が他より大きいためアンテ ナ効率が低くなるが、いずれの素子配列においてもア レー状態におけるアンテナ効率70%以上となってお り、Wc=160 mm において満足できる値となる見通し が得られた。

5.4 最適な素子径、素子間隔及び素子配列の検討

本節では、給電アレー全体の素子数を最小となる最 適な素子径(素子間隔・素子配列)を決定する。

前節で検討した素子を配列して給電アレーを構成し、 給電アレーの各素子単体を励振したときの反射鏡を介 した放射パターンを計算する。その各素子の反射鏡を 介した放射パターンを合成し、各ビーム内で最小の利 得が目標の利得以上となるように各素子の励振係数 (振幅・位相)を数値的に最適化する。

各素子の放射パターンとしては、前項にて解析した アレー状態の放射パターンを用いる。素子の放射パ ターンはおおむね回転対称であるため、15°間隔のカッ ト面の放射パターンを周方向で平均したパターンを用 いる。

反射鏡を含むアンテナ全体の利得は、給電アレー全体の主偏波の放射パターンを積分し規格化する。また、 素子単体で主偏波・交差偏波のパターンを積分し、偏 波損を計算する。前節での放射パターンの絶対値は指 向性利得であり、円偏波励振回路等の給電回路損、素 子の反射損、隣接素子との結合損として、0.5 dBの損 失を考慮する。

次に、所望の利得が得られる最小の素子数を決定す る。前段階の検討においては、十分に多くの素子を用 いてビームを形成するが、励振振幅の小さい素子を取 り除き、各ビームで目標の利得が得られる最小の素子 数を決定する。給電アレー全体は、各ビームに対する 素子の和集合とすることにより、各ビームで目標利得 が得られる最小の給電アレー全体の素子数とする。

以上の検討をそれぞれの素子配列・素子径について 実施し、給電アレー素子数を最小とする観点で最適な 素子径を決定する。

図 14 に、素子間隔 (素子径) に対する各素子配列 (正 三角配列、二等辺三角配列、四角配列) での給電アレー の素子数を示す。"-"で示した箇所は、目標利得を達 成できない。このとき、目標利得を RX帯(1,995 MHz) で 47 dBi とした。アレー給電反射鏡アンテナにおい て、ビーム範囲 (カバーエリア) と給電アレーの大き

素子径	正三角配列	二等辺三角配列	四角配列
Wc (mm)			
120	166	180	183
130	153	164	164
140	158	151	159
150	134	142	138
160	130	130	126
170	-	160	154
180	-	-	162
200	-	-	-
220	-	-	-

図14 素子径に対する給電アレー素子数

农 4 电X时任时 Ш 和木			
項目	計算值	測定値	
反射特性	-19.3 dB 以下	-16.7 dB以下	
偏波	左旋円偏波	左旋円偏波	
ピーク利得 (指向性利得)	1. 995 GHz : 11.1 dBi 2. 185 GHz : 11.5 dBi	1. 995 GHz : 10.9 dBi 2. 185 GHz : 11.4 dBi	
放射効率 (給電回路の損失を含む)	_	1. 995 GHz : -0.40 dB 2. 185 GHz : -0.21 dB	
軸比3dB以下となる角度範囲	1. 995 GHz \div 66° 2. 185 GHz \div 50°	1. 995 GHz : 74° 2. 185 GHz : 46°	

表 4 電気特性評価結果

(a) 正三角配列 (130 素子)

(c) 四角配列 (126 素子)

図 15 Wc=160mm における素子配列

図16 試作放射素子の外観写真

さは対応しており、素子径を大きくすると同じ給電ア レーの大きさに対する素子数(同じ範囲にビームを形 成するための素子数)が少なくなる。しかし、前節で 示したように素子を大きくしていくと各素子の専有面 積に対する利得(アンテナ効率)が低下するため、図 14でWc=160 mm以上では素子数が多くなるか、目 標の利得が得られなくなる。特に正三角配列において は、素子間に隙間があるため素子径が小さいときは少 ない素子数で目標の利得を満足できるが、素子径が大 きくなるとアンテナ効率が他の素子配列よりも低く給 電アレーの素子数を増やしても目標の利得を満足で きない。いずれの素子配列でも素子径Wc = 160 mm のとき、給電アレー素子数は最小となった。図15 に Wc=160 mmにおける素子配列を示す。

これの結果に基づいて、Wc=160 mm の放射素子を 試作した。この写真を図 16 に示す。

また、表4に試作放射素子の反射特性、放射特性の 測定結果と計算値の比較をまとめて示す。

指向性利得の測定値は、計算値に対して 1.995 GHz で 0.2 dB、2.185 GHz で 0.1 dB の差異となっている。 今回の試作ではアレー素子パターンの実測による評価 はできないが、アレー素子パターンの計算値に上記 のアンテナ単体における計算値との差異を考慮する と、表5のようになる。この結果から、アンテナ効率 70%以上の目標を満足できる見通しである。

6 まとめ

本稿ではまず F/D とカバーエリア、アンテナ利得 の関係等についての数値計算についての検討を複数行 い、その検討結果を元に、STICS としてのアンテナ のベースラインを検討した、カバーエリアとしては±2° を最小値とし、±4°を目標値とした。また、F/D に

	1.995 GHz			2.185 GHz		
	指向性利得 [dBi]	物理開口 面積利得 [dBi]	アンテナ 効率 [%]	指向性利得 [dBi]	物理開口 面積利得 [dBi]	アンテナ 効率 [%]
四角配列	11.20	11.75	88.1	11.52	12.54	79.0
正三角配列	11.10	12.38	74.5	11.77	13.17	72.5
二等辺三角配列	10.91	11.75	82.4	11.56	12.54	79.8

表5 測定値と計算値の差異を考慮したアレー状態における指向性利得とアンテナ効率見積り

ついては 0.6 を基本とすることとした。

最後に、ベースラインに基づいて1次放射器の素子 配列法や間隔の最適化について検討を行い、離焦点距 離 0.8 m の場合の素子として、素子間隔 160 mm 程度 の素子が最適であることを示した。

謝辞

本研究は総務省の研究委託「地上/衛星共用携帯電 話システムの研究開発」により実施した。関係各位に 感謝する。

【参考文献】

- 山本伸一,内藤出,宮下裕章, "離焦点アレー給電反射鏡アンテナにおける励振素子範囲の検討",2008年電子情報通信学会総合大会,p.140, B-1-140,2008年3月.
- 2 山本 伸一,稲沢 良夫,内藤 出,"離焦点アレー給電反射鏡アンテナにお ける素子数と EOC 利得の関係,"2008 年電子情報通信学会通信ソサイ エティ大会,通信講演論文集 I, p.169, B-1-169,2008 年 9 月.
- 3 藤野 義之, 浜本 直和, 蓑輪 正, 鈴木 龍太郎, 辻 宏之, 内藤 出, 山本 伸一, 住吉 秀夫, 小西 善彦, 名取 直幸, "アレー給電反射鏡アンテナにおける ビーム走査範囲に対する給電アレー径の検討," 2009 年電子情報通信学 会総合大会, p.335, B-3-17, 2009 年 3月.
- 4 藤野 義之, 浜本 直和, 三浦 周, 鈴木 龍太郎, 辻 宏之, 山本 伸一, 内藤 出, 住吉 秀夫, 小西 善彦, 名取 直幸, "超マルチビーム通信衛星における アンテナ方式の検討," 2009 年電子情報通信学会通信ソサイエティ大会, p.280, B-3-28, 2009 年 9 月.
- 5 藤野 義之,浜本 直和,三浦 周,鈴木 龍太郎,稲沢 良夫,内藤 出, 小西 善彦,名取 直幸,"超マルチビーム通信衛星におけるアンテナ方式 の検討,"電子情報通信学会衛星通信研究会,pp.31-35,SAT2009-59, 2010年2月.
- 6 藤野 義之,浜本 直和,三浦 周,鈴木 龍太郎,稲沢 良夫,内藤 出, 小西 善彦,名取 直幸,"超マルチビーム通信衛星におけるアレー給電反 射鏡アンテナの給電アレー位置の検討,"2010年電子情報通信学会総合 大会,p.321,B-3-8,2010年3月.
- 7 Yoshiyuki Fujino, Naokazu Hamamoto, Amane Miura, Ryutaro Suzuki, Yoshio Inasawa, Izuru Naito, Yoshihiko Konishi, and Naoyuki Natori, "Tradeoff Study on Array-Fed Reflector Antennas for 100-Beam-Class Multibeam Communications Satellite," International IEEE AP-S Symposium, 512.3, July 2010.
- 8 藤野 義之,浜本 直和,三浦周,織笠 光明,鈴木 龍太郎,稲沢 良夫, 内藤 出,舟田 雅彦,名取 直幸,"超マルチビーム通信衛星向けアレー給 電反射鏡アンテナの励振条件の比較,"電子情報通信学会衛星通信研究 会,pp.41-46,SAT2010-36,2010年8月.
- 9 藤野 義之,浜本 直和,三浦周,織笠 光明,鈴木 龍太郎,稲沢 良夫, 内藤 出,舟田 雅彦,名取 直幸,"超マルチビーム通信衛星向けアレー給 電反射鏡アンテナの励振条件の比較,"2010年電子情報通信学会ソサイ エティ大会,p.288, B-3-17,2010年9月.
- 10 藤野 義之, 浜本 直和, 三浦 周, 織笠 光明, 若菜 弘充, 柳 崇, 小島 央任, 舟田 雅彦, 名取 直幸, "超マルチビーム通信衛星向けアレー給電反射鏡 アンテナの最適素子数に関する検討," 2011 年電子情報通信学会ソサイ

エティ大会, p.286, B-3-4, 2011年9月.

- 11 藤野 義之,浜本 直和,三浦周,織笠 光明,若菜 弘充,柳 崇,稲沢 良夫, 舟田 雅彦,名取 直幸,"超マルチビーム通信衛星向けアレー給電反射鏡 アンテナの素子サイズの最適化の検討,"2012年電子情報通信学会総合 大会,p.323,B-3-29,2012年3月.
- 12 藤野 義之,浜本 直和,三浦周,織笠 光明,若菜 弘充,柳 崇,稲沢 良夫, 舟田 雅彦,名取 直幸,"超マルチビーム通信衛星向けアレー給電反射鏡 アンテナの素子サイズの最適化の検討,"電子情報通信学会衛星通信研 究会,pp.49–54,SAT2012-16,2012年7月.

藤野義之 (ふじの よしゆき)

東洋大学理工学部電気電子情報工学科教授/ 元ワイヤレスネットワーク研究所宇宙通信シ ステム研究室主任研究員 (~ 2013 年 4 月) 博士 (工学) 衛星通信、アンテナ、無線電力伝送

濱本直和 (はまもと なおかず)

有人宇宙システム株式会社宇宙機システム部 主幹技師/元新世代ワイヤレスネットワーク 研究センター推進室研究マネージャー (2006 年4月~2012年3月) 衛星通信