2 地上レーダーによる気象現象の観測

2 Observation of Meteorological Phenomena by Terrestrial Radars

2-1 偏波化されたフェーズドアレイ気象レーダー (MP-PAWR) 開発

2-1 Development of Multi-Parameter Phased Array Weather Radar (MP-PAWR)

花土 弘 高橋暢宏 中川勝広 佐藤晋介 川村誠治 岩井宏徳

Hiroshi HANADO, Nobuhiro TAKAHASHI, Katsuhiro NAKAGAWA, Shinsuke SATO, Seiji KAWAMURA, and Hironori IWAI

ゲリラ豪雨や竜巻・突風などの早期検知や予測を目指して開発されたフェーズドアレイ気象 レーダー (Phased Array Weather Radar: PAWR) が有する高時間・空間分解能に加え、送受信を二 重偏波化 (水平・垂直偏波)、偏波降雨観測することで高精度な降雨強度推定・降雨減衰補正を実 現する、偏波化されたフェーズドアレイ気象レーダー (Multi-Parameter Phased Array Weather Radar: MP-PAWR) 開発の紹介を行う。

A phased array weather radar (PAWR) has an innovative high temporal and spatial resolution by applying electronic scanning and digital beamforming technology, as compared with a conventional parabolic antenna type weather radar, which is expected to be useful for early detection and prediction of local heavy rainfall, tornado, and gust. It is MP-PAWR (Multi-parameter Phased Array Weather Radar: MP-PAWR) that adds dual polarization function to this PAWR and enables highly accurate rainfall intensity estimation and rainfall attenuation correction. This paper introduces the outline of MP-PAWR development.

1 まえがき

短時間で急速に生成・発達する積乱雲による豪雨に よる被害が発生している[1]-[3]。従来型の気象レー ダーはパラボラアンテナを機械的に方位方向と仰角方 向に走査し降雨を観測するため、上空を含む三次元的 な観測を行うのに必要な時間が5~10分であり、前 述の急激に高く発達する積乱雲の観測に適していない。 時間高度分解能の向上を目的にフェーズドアレイ 気象レーダー (Phased Array Weather Radar:以下 PAWR) が開発され [4]-[6]、2012 年に大阪大学吹田 キャンパス、2014年に NICT の未来 ICT 研究所 (兵庫県神戸市)と沖縄電磁波技術センター(沖縄県 恩納村)、2015年に気象庁気象研究所(茨城県つくば 市)と日清紡ホールディングス(株)中央研究所(千葉 県千葉市)[7]に新型気象レーダーが設置観測開始して いる。これら5台の新型レーダーは水平偏波を使用す る単偏波気象レーダーで、国土交通省・自治体等で使 われている二重偏波型の気象レーダーに比べ、降雨強 度推定精度、降雨減衰補正精度の点で劣る欠点がある。 この欠点の解消を目的として、二重偏波機能を有し降

雨強度推定精度・降雨減衰補正精度が優れ、フェーズ ドアレイアンテナによる高速ビーム走査による高い時 間高度分解能を備えた、更なる新型のPAWRが戦略 的イノベーション創造プログラム (SIP) 第1期「レジ リエントな防災・減災機能の強化」(2)豪雨・竜巻予 測技術の研究開発「マルチパラメータフェーズドアレ イレーダー等の開発・活用による豪雨・竜巻予測情報 の高度化と利活用に関する研究」で開発され、2018年

図2 積乱雲の生成・発達過程(時間スケールと観測方法)

3月から埼玉大学で観測を開始した [8] [9]。本稿では この偏波化されたフェーズドアレイ気象レーダー (Multi-Parameter PAWR:以下 MP-PAWRと略す) を紹介する。MP-PAWRの開発コンセプトを図1に、 積乱雲の生成・発達過程の時間スケール、従来気象 レーダーと PAWR, MP-PAWR の観測方法の違いを 図2に示す。従来、気象レーダーは地表付近の雨層の 下層の水平分布の観測を中心に行い、上空の降雨の観 測は限定的であったのに対し、PAWR, MP-PAWR で は、最下層から上空までの雨雲全体を高頻度で観測す ることで上空に発生する大雨の素 [10] をより早い時間 にとらえ、局所的な豪雨の予測を的確に実施すること を目的としている。

2 フェーズドアレイ気象レーダー (PAWR)

2.1 フェーズドアレイアンテナによる高速ビー ム走査

従来型気象レーダーはパラボラアンテナによる鋭い ペンシルビームを方位角方向に回転させ、1回転ごと に仰角方向を変更し、複数の仰角のデータを合成して レーダーを中心とする領域の三次元観測を実施してい る。PAWR では、送信時のワイドビームの電子走査 と受信時のデジタルビームフォーミングによる同時複 数のペンシルビームを合成することでほぼ瞬時に鉛直 断面での観測を実施し、方位角方向の1回転で三次元 観測が可能なところが大きな違いである。X帯の気象 レーダーとして国土交通省が全国に 39 台(平成 30 年 8月時点)整備している X バンド MP レーダー雨量計 の場合には、方位角の回転速度は約2 RPM で、5分 間の1シーケンスで15周、12方向の仰角での観測*1 を行う。それに対し、MP-PAWR では、方位角方向 には比較的低速度による回転で、観測半径80kmの 場合:1分、観測半径 60 km の場合:30 秒で三次元 観測が可能である。X バンド MP レーダー雨量計と

図 3 観測仰角の比較 (X バンド MP レーダーと MP-PAWR)

図4 電子走査の送信ビームとデジタルビームフォーミングによる同時受 信ビームの関係

PAWRの仰角の違いを図3に示す。図3(a)は、Xバ ンドMPレーダー関東局の12方向の仰角と、MP-PAWRの2つの観測モード:観測半径80kmと観測 半径60kmの全仰角を示している。XバンドMPレー ダー雨量計の場合、複数のレーダーでのネットワーク 的な観測を行う配置でもあり、最大仰角は20度まで であるのに対し、MP-PAWRは観測半径が80kmと XバンドMPレーダー雨量計同様の場合に最大仰角 60度、少し観測半径が小さい60kmの場合には天頂 方向まで観測可能な最大仰角90度と仰角範囲の大幅 な拡大が可能なのは仰角方向のビーム走査を機械的で

^{*1 2} つの低い仰角については、1 分間隔で交互に観測し、5 分間の 1 シー ケンスで5 周行い、残りの 10 周で異なる仰角での観測を行うため、5 分間で 15 周、12 方向の仰角での観測となる。

なく、電子走査を採用しているためである。受信時の デジタルビームフォーミングによる同時複数ビームの 採用は仰角数の向上に大きく寄与し、観測半径 80 km で仰角数 77、観測半径 60 km で仰角数 114 と仰角方 向のビーム幅1度弱に対して、仰角20度以下では、 その半分の0.5度、仰角20度以上で1度の間隔での 観測を行い、仰角方向について抜けのない観測が可能 である。図3(b)は図3(a)を低い仰角について拡大 したものであり、上述の MP-PAWR が仰角方向に抜 けのない観測が可能であることが確認できる。また、 一番低い仰角についても、X バンド MP レーダーの 場合、仰角番号3が0.79度であるのに対し、それよ り小さな仰角0度、0.5度のビームでの観測を行なっ ていて、低い仰角の場合には地表物からの反射(ク ラッター)の影響が大きくデータの解析が難しくなる が、地表付近の観測データ取得が高い時間間隔で実施 できることは特筆すべきことである。図4に示したの は、電子走査を行う送信ビームとそれぞれの送信ビー ム内をデジタルビームフォーミングで同時に形成され

表 2 MP-PAWR の主要諸元

	名称	MP-PAWR (偏波化されたフェーズドアレイ気象レーダー)										-)	
	中心周波数(占有帯域幅)	9425 MHz (4.4 MHz)											
	送信偏波	偏波面45度の直線偏波(水平・垂直同時送信)											
	送信尖頭出力	4.8 kW (水平: 2.4 kW + 垂直 2.4 kW)											
	送信アンテナ	偏波共用平面パッチアンテナから構成された長方形アンテナ										ナ	
	受信アンテナ	偏波共用平面パッチアンテナから構成された八角形アンテナ										ナ	
	レドーム	直径 4.3 m											
	観測モード	通常観測			研究観測								
	観測範囲	半径 80 km			半径 60 km								
	観測仰角範囲	0度~60度			0度~90度								
	時間分解能	60 秒			30 秒								
	短パルス幅	1.0 µsec											
	仰角数	77			114								
	送信ビーム数	4				7							
	送信ビーム番号	#0	#1	#2	#3	#0	#1	#2	#3	#4	#5	#6	
	DBFによる同時受信ビーム数	14	18	17	28	12	12	22	11	12	19	26	
	観測ヒット数	68	78	63	122	48	20	20	20	20	20	36	
	長パルス幅	74 // sec			48 µ sec				32 µ sec				

る受信ビーム数と仰角の関係で、図4(a)が観測範囲 80 km、図4(b)が観測範囲 60 km の場合である。

2.2 フェーズドアレイアンテナの構成の違い

1「まえがき」で記述した、(株)東芝と日本無線株式 会社による2種類のPAWRとMP-PAWRで使用され ているフェーズドアレイアンテナは、送受信のアンテ ナビームを送信時に仰角方向にワイドビーム、受信時 にはデジタルビームフォーミングによるペンシルビー ムという点では全て同一であるが、アンテナの構成は 異なる。表1にその違いを示す。2種類のPAWRで は水平偏波だけでよいため、効率が良く、工作精度で アンテナ性能を設計どおり得ることが容易な導波管ス ロットアンテナが利用された。偏波を使った降雨レー ダー観測では反射強度に加えて、位相情報を使用する ため、偏波間の相関を確保する必要があり、水平偏波 と垂直偏波の位相中心を同一にし、ビームの形状を一 致させることを実現するため、MP-PAWRでは偏波共 用の素子アンテナを用いることにした。この偏波共用

図5 埼玉大学に設置された MP-PAWR と観測範囲

図 6 MP-PAWR の観測例 (X バンド MP レーダーとの比較)

アンテナの開発は、平成24~26年に実施された電波 利用料"周波数の有効利用を可能とする協調制御型 レーダーシステムの研究開発"の成果[11]が利用され た。

偏波化されたフェーズドアレイ気象3 レーダー (MP-PAWR)

3.1 MP-PAWR の諸元と観測範囲

表2に MP-PAWR の主要な諸元を示す。MP-PAWR は国土交通省に整備されている X バンド MP レーダー雨量計と同様の観測範囲 80 km の通常観測 モードと、それより少し狭い観測範囲 60 km の研究 観測モードの2つのモードを有する。前者は複数の気 象レーダーから構成される観測網を想定し、自局の真 上の観測は行わず、周囲の他局による横方向からの観 測を利用することを想定し、観測仰角範囲は0~60 度と仰角 60 度以上の観測は行わない。また、偏波観 測の測定精度の向上を図るために、同一観測体積の観 測に利用するヒット数を60ヒット以上確保するため、 方位角方向の回転を一周60秒とし、仰角方向のビー ム数を77としている。それに対し、研究観測モード では一台のレーダーで、自局の真上を含む周囲の降雨 三次元観測を行うため、観測仰角範囲は0~90度とし、 三次元観測の時間分解能を通常観測モードより良い 30 秒とするために、方位角方向の回転は一周 30 秒で ある。これらのことにより、観測ヒット数が少なくな るビームがあり、20 ヒットとかなりヒット数が少な い場合がある。今後、これら2つにモードを適宜変更 して降雨観測を行い、目的に応じた観測モードの最適 化を行うことを計画している。

図5に埼玉大学に設置された MP-PAWR の外観の

写真と、2つの観測モードでの観測範囲について違い を地図上に示す。通常観測モードでは、半径80km の範囲で降雨観測が可能であり、首都圏の大規模河川 である一級河川の荒川流域を上流の秩父地方から下流 までほぼカバーする。研究観測モードでは、半径 60kmの範囲と少し観測領域が狭くなるが、2020年 度夏季に開催される東京オリンピック・パラリンピッ クの開催会場の多くをカバーし、夏季に多い活発な積 乱雲の生成・発達を30秒という高い時間分解能で観 測できる。

3.2 孤立積乱雲の観測例(2018年8月2日)

図6に、2018年8月2日に観測された孤立した積 乱雲の観測結果の例を示す。図6の下段の5枚の図は、 MP-PAWR の 30 秒ごとの観測結果を、2 分間隔(15:07 ~15:15:8分間)に間引き示している。これらには、 上空、高度4~6km付近で生成された降雨域が、短 時間で成長、地上に向かって落下してくる様子が明瞭 にとらえられている(図6下右図の赤色の矢印で示す)。 図6中央の写真は埼玉大学から撮影された15:10:46 の東~南方向の写真で、赤色と黄色の矢印で示されて いる積乱雲が、図6下右図の15:15のMP-PAWRで の観測結果のレーダーエコーに対応している。写真と レーダー観測結果と比べると、写真の15:10:46の時 点で積乱雲としては明確に生成・発達されている状況 がわかるが、レーダーエコーではまだとらえられてい ない。積乱雲の生成段階では、まだ雲中の水滴が小さ く、X帯のマイクロ波レーダーでは観測できず、水滴 が大きく、雲粒から雨粒程度になり、観測可能になる (雲粒を観測するにはより高い周波数で波長の短いミ リ波の雲レーダーが必要)。図6の左上と右上に示し た三次元のレーダーエコーは、関東域に設置された4

台のXバンドMPレーダー雨量計の観測結果を5分 のシーケンス(15:05~15:10が左上図、15:10~ 15:15が右上図)で合成された三次元画像で、左上の 図で赤矢印に対応する小さな雨域が上空に観測されて いるが、その次となる5分後には一気に成長し、地上 まで達する降雨となっている。従来型の気象レーダー は地表付近の降雨の水平分布を測定する観点で、低い 仰角での観測は約1分間隔での時間更新がなされてい るが、上空の降雨観測の時間更新間隔は5分程度と大 きく、急速に発達する積乱雲の状況把握には十分とは 言えず、フェーズドアレイ気象レーダー開発で可能と なった、30秒または1分という高い時間分解能が必 要であることが分かる。

4 まとめ

MP-PAWR は降雨観測を開始し1年余りで、現時 点では初期的観測機能確認は行えているがその性能を 十分に測定し、最大限の観測性能が確保できるための 調整作業は実施できていない。2019年度は MP-PAWR の性能確認のための観測、外部校正測定を行 い、最大限の観測性能の確保に注力するとともに、 SIP 第2期「国家レジリエンス(防災・減災)の強化」 『V.線状降水帯の早期発生および発達予測情報の高度 化と利活用に関する研究』の中心観測機器として安定 した運用とデータ配信を実現する。

謝辞

本開発は、内閣府 総合科学技術・イノベーション 会議のSIP(戦略的イノベーション創造プログラム) 「レジリエントな防災・減災機能の強化」(2)豪雨・竜 巻予測技術の研究開発「マルチパラメータフェーズド アレイレーダ等の開発・活用による豪雨・竜巻予測情 報の高度化と利活用に関する研究」管理法人:国立研 究開発法人 科学技術振興機構(JST)で実施された。

【参考文献】

- 1 平成 21 年度河川水難事故防止策に関する担当者会議, "兵庫県 都賀川 事故概要,"
- http://www.thr.mlit.go.jp/sendai/kasen_kaigan/river-attention/pdf/02.pdf. 2 土木学会都賀川水難事故調査団, "都賀川水難事故調査について,"
- http://www.dpri.kyoto-u.ac.jp/ndic/bunkakai/fujita2008.pdf.
 3 東京都下水道局, 雑司ヶ谷幹線再構築工事事故調査委員会, "雑司ヶ谷幹線再構築工事事故調査報告書," 平成 20 年 9 月 1 日 https://www.mlit.go.jp/common/000024056.pdf.
- 4 情報通信研究機構:プレスリリース,"日本初「フェーズドアレイ気象 レーダ」を開発,"2012年8月31日, https://www.nict.go.jp/press/2012/08/31-1.html.
- 5 佐藤晋介, 牛尾知雄, 水谷文彦, "フェーズドアレイ気象レーダの研究開発," NICT News 2013 年 1 月号 no.424, pp.3–5, 2013.
- 6 F. Mizutani, T. Ushio, E. Yoshikawa, S. Shimamura, H. Kikuchi, M. Wada,

S. Satoh, and T. Iguchi, "Fast-scanning phased-array weather radar with angular imaging technique," IEEE Trans. Geosci. Remote Sens., 56, pp.2664–2673, 2018. doi: 10.1109/TGRS.2017.2780847.

- 7 日本無線:ニュース、"展示会情報:『Meteorological Technology World Expo 2016』に気象レーダを出展、"https://www.jrc.co.jp/jp/about/ news/2016/0912-1.html.
- 8 情報通信研究機構:プレスリリース,"世界初の実用型「マルチパラメータ・ フェーズドアレイ気象レーダ (MP-PAWR)」を開発・設置,"2017 年 11 月 29日,

https://www.nict.go.jp/press/2017/11/29-1.html.

- 9 N. Takahashi, T. Ushio, K. Nakagawa, F. Mizutani, K. Iwanami, A. Yamaji, T. Kawagoe, M. Osada, T. Ohta, and M. Kawasaki, "Development of Multi-Parameter Phased Array Weather Radar (MP-PAWR) and Early Detection of Torrential Rainfall and Tornado Risk," Journal of Disaster Research, vol.14, no.2, pp.235–247, March 2019.
- 10 中川勝広、片山勝之、増田有俊、是津耕司、中北英一, "渦管を用いた局 地的豪雨探知手法に関する研究," 土木学会論文集 B1 (水工学)、vol.74, no.5, pp.I_265-I_270, 2018.
- 11 総務省電波利用料, 電波資源拡大のための研究開発の実施, 平成26年 度終了課題, "周波数の有効利用を可能とする協調制御型レーダーシステ ムの研究開発,"
 - https://www.tele.soumu.go.jp/resource/j/fees/purpose/pdf/H26_RD06.pdf.

花土 弘 (はなど ひろし)
 電磁波研究所
 リモートセンシング研究室
 研究マネージャー
 理学修士
 マイクロ波リモートセンシング

高橋暢宏 (たかはし のぶひろ)
 名古屋大学
 宇宙地球環境研究所
 飛翔体観測推進センター
 教授
 博士(理学)
 レーダー気象学

中川勝広 (なかがわ かつひろ) 電磁波研究所 リモートセンシング研究室 室長 博士 (工学) レーダー水文学

佐藤晋介 (さとう しんすけ) 電磁波研究所 リモートセンシング研究室 研究マネージャー 博士 (理学) レーダー気象学

川村誠治 (かわむら せいじ) 電磁波研究所 リモートセンシング研究室 主任研究員 博士(情報学) レーダーリモートセンシング

岩井宏徳 (いわい ひろのり) 電磁波研究所 リモートセンシング研究室 主任研究員 博士(理学) 電波・光リモートセンシング、 メソスケール気象