3 有線・無線シームレスアクセス技術

3 Seamless Access Technology for Wired and Wireless Communications

3-1 マッシブ集積オールバンド ICT ハードウェアの研究開発

3-1 **R&D** of Massive Integrated All-band ICT Hardware

松本 敦 赤羽 浩一 山本 直克

MATSUMOTO Atsushi, AKAHANE Kouichi, and YAMAMOTO Naokatsu

近年、様々な分野の技術が進展し、将来のサイバーフィジカル社会の実現が大いに期待される ようになってきている。そのような中、様々な情報処理を行った膨大なデータの高速・大容量、 低遅延通信の重要性が増し、特に中短距離通信ネットワークでは、光ファイバとミリ波やテラへ ルツ波を用いたモバイル無線通信においてシームレスな信号転送・接続する光ファイバ無線など の技術を用いた大容量通信ネットワークが重要になる。ミリ波やテラへルツ波、光波などの多様 な伝送メディアと光ファイバや空間などの多様な伝送路を組み合わせた大容量情報通信やこれを ワンチップ内で処理・利活用できるような光・電波融合デバイスが非常に重要である。

本稿では、1.0~1.6 µm の各波長帯の光やミリ波/テラヘルツ波という多様な伝送メディアとしての「波」を調和的に利用した大規模集積による光・電波融合デバイスの実現に向けて、III-V 族化 合物半導体を用いた量子ドット光デバイスの高性能化とシリコンフォトニクスによる光集積回路を 用いた異種材料光集積回路に関して、現在の研究開発状況を概説し、将来の展望について述べる。

In recent years, technologies in various fields have advanced, and the realization of the future cyber-physical society has been greatly expected. Under such circumstances, the importance of high-speed, high-capacity, and low-latency communications of massive data processed in various ways has increased. In particular, in moderate range distance communication, high-capacity communication networks using technologies such as radio over fiber that seamlessly transfer and connect signals between mobile wireless communications with millimeter and terahertz waves and optical fibers will become important. Large-capacity information and communications that combine various transmission media such as millimeter, terahertz, and light waves with various transmission paths such as optical fibers and space, and "optical and radio frequency convergence devices" that can process and utilize these within a single chip are extremely important.

In this paper, we outlines the current status of R&D for the enhancement of the performance of quantum dot optical devices using III-V compound semiconductors and heterogeneous photonic integrated circuits using silicon photonics, and discusses future prospects with the aim of realizing optical / radio frequency convergence devices through large-scale integration that harmoniously utilizes "waves" as various transmission media, such as light in each wavelength band from 1.0 to 1.6 µm and millimeter/terahertz waves.

1 まえがき

近年の 5G / B5G モバイル通信技術や自動運転、拡 張現実や AI 技術の発展、IoT デバイスなどによるセ ンシングデータの利活用など、様々な分野における技 術が進展し、将来的には物理・サイバー空間の融合に よるサービスの創出、サイバーフィジカル社会の実現 といったことが大いに期待されるようになってきてい る[1]。そのような中、様々な演算・信号処理を行った 膨大なデータを高速・大容量、低遅延に通信すること が一層不可欠になり、光ファイバとミリ波やテラヘル ツ波を用いたモバイル無線通信においてシームレスな 信号転送・接続する光ファイバ無線[2]などの技術を用 いた大容量通信ネットワークが重要になる。このよう な情報通信ネットワークを構築するために、ミリ波や テラヘルツ波、光波などの多様な伝送メディアと光 ファイバや空間などの多様な伝送経路を組み合わせた 大容量情報通信やこれをワンチップ内で処理・利活用 できるような光・電波融合デバイスがキーデバイスと なると考えられる。さらにそのような膨大なデータ[3] が行きかう通信ではネットワーク機器の消費電力も桁 違いに増大するものと考えられている[4]。その観点に おいても、従来よりも圧倒的に低消費電力で駆動する ようなデバイスが求められている。

本稿では、1.0~1.6 µm の各波長帯の光やミリ波/ テラヘルツ波という多様な伝送メディアとしての「波」 を調和的に利用した大規模集積による光・電波融合デ バイス、すなわちマッシブ集積オールバンド ICT ハー ドウェアの実現に向けて、要素技術として III-V 族化 合物半導体を用いた量子ドット光デバイスの高性能化 とシリコンフォトニクスによる光集積回路を用いた異 種材料光集積回路に関して、現在の研究開発状況を概 説し、将来の展望について述べる。

2 異種材料光集積回路

現在、シリコンフォトニクス (SiPh: Silicon photonics) 技術を用いた超微細な光集積回路 (PIC: Photonic integrated circuit)の研究が盛んにされている [5][6]。 これは LSI の作製・製造に用いられる CMOS 製造ライ ンと相互互換性が高く、極めて効率よく低コスト化が 可能であり、また LSI との集積も容易なために、超小 型・低消費電力化、電気・光通信の融合が可能となる という点が理由である。しかしながら材料が Si である ため、発光デバイスは実現ができない。通信用の近赤

図1 RSOA と SiPh-PIC を端面結合した構造の典型的な異種材料集積回路

外波長の半導体レーザは InP や GaAs といった化合物 半導体を用いる必要がある。そのため、Si や化合物半 導体を適材適所で使った集積技術(異種材料集積)の研 究 が 重 要 で あ る。 異 種 材 料 集 積 技 術 (HG: Heterogeneous integration)には、端面結合、垂直結 合、ウェハ・チップボンディング、マイクロトランス ファープリンティング、ヘテロエピタキシーというよ うな様々な方法があるが、我々は端面結合による異種 材料集積を採用している[7]。この方法は、III-V 族化 合物半導体による RSOA (Reflective Semiconductor Optical Amplifier)やLD (Laser diode)と SiPh-PIC の それぞれのチップ端面を接続した構造のデバイスであ る。図1は RSOA と SiPh-PIC を端面結合した構造の 典型的な異種材料集積回路の写真である。この方法の 特徴としては以下のような点がある。

- III-V 半導体デバイスをできるだけシンプルな構 造にできる
- ・複雑な構造や多数の光要素素子は SiPh-PIC に集 約することができる
- ・新しい設計の新規レーザ光源を新しいアプリに応 用可能
- ・波長ロッカー、変調器、フォトレシーバなどを
 レーザ光源に集積することができる

また、我々はこれまでに III-V 族化合物半導体によ る量子ドット (QD: Quantum dot)構造を用いた LD や 半導体光増幅器 (SOA: Semiconductor optical amplifier) の研究開発を行い、高い温度特性や高速動作といった 良好な特性を実証してきた [8]-[11]。また、QD 構造に より、低位相雑音、高い動作安定性という特性も期待 できる。この QD 構造を用いた LD や RSOA/SOA と SiPh-PIC を集積することにより、非常に高性能な PIC の実現が期待される。本節では、高性能光集積回路の 実現に向けた各要素技術について概説する。

2.1 量子ドット光デバイスの高性能化

QD 光デバイスと SiPh-PIC を集積した異種材料光集 積回路 (HG-PIC) において、QD 光デバイスの高性能化 がその特性向上に向けて非常に重要な点である。そこ で、QD 光デバイス、特に QD-LD の素子構造の見直し と作製条件・プロセスの変更を行った。図2(a) 一般的 なリッジ型 FP (Fabry-Perot)構造 LD の模式図であり、 (b) は結晶成長後の加工する前の STEM (Scanning transmission electron microscope) 画像、(c) はレーザ の発光層である活性層の模式図、そして (d) は典型的 な QD の AFM (Atomic Force Microscope) 画像をそ れぞれ示したものである。作製した QD-FP-LD の光出 力特性を図3(a)、レーザ発振スペクトルを図3(b) に 示す。図3(b) に示したように、1.55 μ m帯でのレー

図 2 (a) 一般的なリッジ型 FP-LD の模式図、(b) 結晶成長後の STEM 画像、 (c) レーザの活性層模式図、(d) 典型的な QD の AFM 画像

図 3 (a) 新たに試作した QD-FP-LD の光出力特性と (b) レーザ発振スペクトル

ザ発振を確認し、閾値電流は図3(a)に示したように 9.5 mAと非常に小さな値での室温連続発振(CW)動作 を実現した。この閾値電流は端面出射型1.5 μm帯 QD-LDでは世界最小であり、低消費電力な特性を実 現することができた[12]。また図4はパルス動作時に おける光出力特性の温度依存性を示したものである。

図4 QD-FP-LDのパルス動作時における光出力特性の温度依存性

図 5 新たに試作した QD-DFB-LD の SEM 画像

150 Cまでのレーザ発振動作を実証し、非常に高い温度安定性であった。その指標となる特性温度 T₀の値は室温から 50 Cまでの温度領域では $\cong \infty$ であり、世界最高クラスの温度特性が得られた [13]。これらの結果は従来の我々の報告してきた結果を大きく向上するものとなった。

次に単一波長でレーザ発振動作する QD-DFB-LD (DFB: Distributed feedback)について示す。今回、一 般的な回折格子の構造ではなく、光導波路側面に回折 格子を形成した構造を採用した。図5はその SEM 画 像である。図5に示したように245 nm 周期の微細構 造を非常に良好な形状に加工し作製することができて いることが分かる。図6はこの QD-DFB-LD のチップ を16 ピンバタフライパッケージに実装した写真であ

図 6 QD-DFB-LD のチップを実装した 16 ピンバタフライパッケージ

図 7 QD-DFB-LD に直流電流を 50 mA 流した時のレーザ発振時の出力光 スペクトル

る。図7は直流電流を50 mA流した時のレーザ発振時 の出力光スペクトルである。サイドモード抑圧比 (SMSR: Side mode suppression ratio)は50 dBであり、 非常に良好な単一モード性を得ることができた。また この QD-DFB-LD においても閾値電流は小さく、CW 室温発振時の閾値電流は、Ith = 15.0 mA であった [14]。 以上に示したように、QD-FP-LD や DFB-LD の特性を 大幅に向上することに成功した。これにより、SiPh チップとの HG-PIC の特性に関してもさらに向上させ ることができ、その高機能・高性能化が期待される。

2.2 異種材料集積波長可変レーザ

次に QD-RSOA と SiPh-PIC チップの端面接合型の 集積デバイスである 1.5 μm 帯波長可変レーザを紹介 する [15]。上述したように 1.5 μm 帯の QD 構造を有す る RSOA についても一般的な従来構造の RSOA と比 較し、高い特性が期待される。

図8 QD-RSOA と波長選択フィルタとして直列二重リング共振器を作製し た SiPh チップによる波長可変レーザの模式図

図9 異種材料集積型の波長可変レーザにおける注入電流と出力光強度の関係

図10 異種材料集積型の波長可変レーザにおいて、QD-RSOA への注入電 流を80 mA とした場合で、1つのリング共振器のヒータを駆動した 時における光スペクトル

図8はQD-RSOAと波長選択フィルタとして直列二 重リング共振器を作製したSiPhチップによる波長可 変レーザの模式図である。SiPhチップ側で選択した波 長の光がミラーを介してRSOAに戻る外部共振器型 の構成であり、QD-RSOAで閾値利得を超える電流を 注入することでレーザ発振する。直列二重リング共振 器では、2つのリング共振器の共振器長を微妙に異な る長さに設計することによってバーニア効果を利用す ることができ、それにより任意の単一波長を選択し、 大きな波長可変範囲を得ることができる。波長可変動 作としては、2つのリング共振器上にはマイクロヒー タが装荷されており、そのヒータによりリング共振器 を加熱し、屈折率を制御することによってレーザ発振 波長を制御する。

図9、10はそれぞれこの異種材料集積型の波長可変 レーザにおける注入電流と出力光強度の関係(I-L 特 性)とQD-RSOAへの注入電流を80 mA で一定とした 状態において、1つのリング共振器のヒータを駆動し た場合における発振波長の変化を示した光スペクトル

2.5 mm

図 11 多チャネル送信器デバイスとして異種材料集積に用いる SiPh-PIC の 顕微鏡写真

図 12 III-V 族化合物半導体の QD-LD/SOA, 強誘電体材料の LN 光変調器、 SiPh-PIC からなる異種材料集積 PIC の模式図

である。この時の閾値電流は約65 mA であり、飽和出 力光強度は約3 mW であった。I-L 特性でリップルが 見られるのはモードホップが生じているためと考えら れる。レーザ発振スペクトルから SMSR は35 dB 以上 得られており、十分良好な単一モード性が得られた。 この素子の波長可変範囲としては40 nm であり、ほぼ C-band 通信波長帯全域をカバーするような特性が得 られた。波長可変範囲は QD-RSOA の利得帯域幅と SiPh チップ内の二重リング共振器型波長選択フィル タによって設計することができるため、更なる帯域幅 の拡大も可能である。

3 光集積回路の大規模化

シリコンフォトニクスにより高密度・高集積光回路 の作製が可能である。図11に一例として示した PIC は、多チャネル送信器デバイスとして異種材料集積に 用いる SiPh-PIC の顕微鏡写真である。光導波路で接続 された様々な光素子・構成要素部品を数 mm サイズの チップ中に高密度に組み込むことができる。この高集 積化はシリコンフォトニクスにおけるシリコン光導波 路のコアとクラッド層の屈折率差が大きいことに起因 しており、光導波路曲げ半径を小さくさせられること による。ただし PIC のサイズは光導波路を伝搬する光 の波長と屈折率差に依存していることから、LSIのス ケーリング則に沿うようなダウンサイズは難しいと考 えられる。リング共振器、対称・非対称マッハツェン ダー、光フィルタ、MMI (Multi-Mode Interference)型 光カプラ、方向性結合器などのパッシブ光導波路デバ イスを中心に、それらを組み合わせることで複雑な光 機能集積が期待される。

将来的な光電融合光集積回路では、1 チップ内で光 と電波をそれぞれ信号処理すること、さらに光と電波 を相互に変換することが求められ、異種材料集積の観 点がより一層重要になる。図12はIII-V族化合物半導 体の QD-LD/SOA、超高速 PD・二次元アレイ PD [16] [17]、強誘電体材料の超高速 LN 光変調器 [18]、SiPh-PIC といった NICT で研究が進む超高性能なデバイス 技術からなる異種材料集積PICを想定した模式図であ る。この図に示したような異種材料 PIC にさらに光/ 電気・電気/光変換部、光電入出力、III-V アクティブ、 光回路、というような各種機能ブロックが構成され、 高密度・大規模集積の高機能光・電波融合デバイスは 光とミリ波/テラヘルツ波などの高周波無線をチップ 内でシームレスに接続・相互変換し、サイバーフィジ カル社会を具現化するための基盤技術になると期待さ れる。

3 有線・無線シームレスアクセス技術

4 まとめ

本稿では、各波長帯の光、ミリ波/テラヘルツ波と いう多様な伝送メディアとしての「波」を調和的に利用 した大規模集積による光・電波融合デバイスに向けて、 III-V 族化合物半導体を用いた量子ドット半導体レー ザの高性能化に成功し、その特性を示した。また、QD-RSOA とシリコンフォトニクスによる異種材料集積デ バイスにおける波長可変光源としての機能実証の結果 についても示した。今後、異種材料光集積技術の重要 性は更に高まり、光・電波融合デバイスがサイバー フィジカル社会の基盤技術になると期待される。

謝辞

本研究の一部は、総務省の「無線・光相互変換によ る超高周波数帯大容量通信技術に関する研究開発」 (JPJ000254)、国立研究開発法人新エネルギー・産業技 術総合開発機構(NEDO)(JPNP20017)の一環として実 施され、また先端 ICT デバイスラボの設備・協力によ り実施された。

【参考文献】

- 1 総務省、令和2年版 情報通信白書, 2021.
- 2 A. Kanno, K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, and K. Kitayama, "40 Gb/s W-band (75–110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission," Opt. Express, vol.19, no.26, pp. B56–63, 2011.
- 3 総務省、令和3年版 情報通信白書, 2022.
- 4 JST 低炭素社会戦略センター, "情報化社会の進展がエネルギー消費に与 える影響 (Vol.2)," 2022.
- 5 T. Shi, T.-I Su, N. Zhang, C.-Y. H0ong, and D. Pan, "Silicon Photonics Platform for 400G Data Center Applications," Proc. OFC2018, M3F.4, 2018.
- A. Malik, O. Guo, M. A. Tran, G. Kurczveil, D. Liang, and J. E. Bowers., "Widely tunable, heterogeneously integrated quantum-dot O-band lasers on silicon," Photon. Research, 8, 10, 1551, 2020.
- 7 T. Kita, N. Yamamoto, A. Matsumoto, T. Kawanishi, and H. Yamada, "Heterogeneous quantum dot/silicon photonics-based wavelength-tunable laser diode with a 44 nm wavelength-tuning range," Jpn. J. Appl. Phys., vol.55, p.04EH11, 2016.
- 8 N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, H. Fujioka, and H. Takai, "Broadband light source using modulated quantum dot structures with sandwiched sub-nano separator (SSNS) technique," Phys. Status Solidi C, vol.8, no.2, pp.328–330, 2011.
- 9 N. Yamamoto, K. Akahane, T. Umezawa, and T. Kawanishi, "Monolithically integrated quantum-dot optical modulator with semiconductor optical amplifier for 1.3-µm waveband error-free 10-km-long transmission," Proc. OFC2015, WA2.24, 2015.
- K. Akahane, N. Yamamoto, and M. Tsuchiya, "Highly stacked quantumdot laser fabricated using a strain compensation technique," Appl. Phys. Lett., vol.93, pp.041121, 2008.
- 11 A. Matsumoto, K. Akahane, T. Sakamoto, T. Umezawa, A. Kanno, and N. Yamamoto, "Dynamic characteristics of 20-layer stacked QD-SOA with strain compensation technique by ultrafast signals using optical frequency comb," Phys. Status Solidi A, vol.214, no.3, pp.1600557, 2017.
- 12 A. Matsumoto, K. Akahane, T. Umezawa, S. Nakajima, N. Yamamoto, and A. Kanno, "Low Threshold 1.55 μm-Band Quantum Dot Laser Diode with InP(311)B Substrate," Proc. ISLC2022, TuP-20, 2022.
- 13 R. Yabuki, A. Matsumoto, R. Katsuhara, S. Heinsalu, K. Akahane,

Y. Matsushima, H. Ishikawa, and K. Utaka, "Temperature-Insensitive pulse and 120°C CW Operation of 1550nm-Band p-doped InAs/InGaA-IAs Quantum Dot Lasers on InP(311)B Substrate," Proc. OFC2023, Th2A.6, 2023.

- 14 松本 敦, 中島 慎也, 勝原 龍海, 矢吹 諒太, 梅沢 俊匡, 松島 裕一, 宇高 勝之, 赤羽 浩一, "1.55 μm 帯量子ドット DFB レーザの低閾値化," 第70回応用物理学会春季学術講演会、16p-B409-5, 2023.
- 15 A. Matsumoto, W. Masuda, K. Akahane, T. Umezawa, N. Yamamoto, and T. Kita, "1.55-µm Si-Photonics-Based Heterogeneous Tunable Laser Integrated with Highly Stacked QD-RSOA," Proc. CLEO2021, SM1H.5, 2021.
- 16 T. Umezawa, A. Kanno, K. Kashima, A. Matsumoto, K. Akahane, N. Yamamoto, and T. Kawanishi, "Bias-free operational UTC-PD above 110 GHz and its application to high baud rate fixed-fiber communication and W-band photonic wireless communication," J. Lightwave Technol., vol.34, no.13, pp.3138–3147, 2016.
- 17 T. Umezawa, Y. Yoshida, A. Kanno, A. Matsumoto, K. Akahane, N. Yamamoto, and T. Kawanishi, "FSO Receiver with High Optical Alignment Robustness Using High-Speed 2D-PDAand Space Diversity Technique," J. Lightwave Technol., vol.39, no.4, pp.1040–1047, 2021.
- 18 P. T. Dat, Y. Yamaguchi, M. Motoya, S. Oikawa, J. Ichikawa, A. Kanno, N. Yamamoto, and T. Kawanishi, "Transparent Fiber-Millimeter-Wave-Fiber System in 100-GHz Band Using Optical Modulator and Photonic Down-Conversion," J. Lightwave Technol., vol.40, no.5, pp.1483–1493, 2022.

松本敦(まつもとあつし)

ネットワーク研究所 フォトニック ICT 研究センター 光アクセス研究室 主任研究員 博士 (工学) 光デバイス、レーザ、光集積

ネットワーク研究所 フォトニック ICT 研究センター 光アクセス研究室 室長/ ネットワーク研究所 先端 ICT デバイスラボ 副ラボ長 博士 (工学) 化合物半導体結晶成長、光デバイス 【受賞歴】 2012 年 E-MRS Best Poster Award 受賞 2007 年 応用物理学会 講演奨励賞 受賞

山本直克(やまもとなおかつ)

 ネットワーク研究所
 フォトニック ICT 研究センター
 副研究センター長/
 ネットワーク研究所
 先端 ICT デバイスラボ
 ラボ長
 博士(工学)
 半導体ナノ材料、光デバイス、光・電波融合
 【受賞歴】
 2021 年 電子情報通信学会通信ソサイエティ チュートリアル論文賞
 2015 年 ITU Kaleidoscope Academic Conference 2015 最優秀論文賞