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1  Introduction

Information technology stands on the
modeling of information processing in terms
of the binary symbols 0 and 1.  That is, mes-
sages are represented by sequences of 0 and 1,
and their transitions correspond to transmis-
sion and processing of information.  Noise
effect disturbing these tasks is modeled as
probabilistic transitions between 0 and 1.

Physical entities conveying {0, 1} are macro-
scopic ensembles of electrons and photons.
In the ideal noiseless limit such 0- and 1-state
can be in principle distinguished from each
other.  In addtion such states can be copied
and amplified.  Under these basic assump-
tions, information theory quantifies informa-
tion as the uncertainty associated with proba-
bilistic events, and turn out to be a powerful
tool to design the optimal information trans-
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Light, main carrier in the present information technology, is electromagnetic wave, and
also an ensemble of energy quanta, photon as well.  At present only the fact is used that
light propagagtes as an energy flux, and the wave nature of light is never used any more so
far.  Conventional information theory is readily capable of designing communication system
based on the wave nature of light, and providing its performance limit.  However the uliti-
mate performace limit of optical communication is eventually given by the law of quantum
mechanics that governs photon dynamics.

Quantum channel capacity is then determined by the distinguishability of optical quan-
tum states.  In this article we consider one of the most basic quantum signal system, sym-
metric states of a single photon polarization, which is often used for quantum key distribu-
tiontion.  It is clarified what is the maximum amount of information that can be extracted
from that source and how one can implement the optimal detector for attaing it.  Conven-
tionally detection of polarization modulation signals is made by using a polarizer.  For a sin-
gle photon state, the binary output detection based on a polarizer is the standerd mesure-
ment, which is called the von Neumann measurement.  On the other hand the optimal solu-
tion in quantum information theory is given by the detector with three outputs at most
regardless of the number of the signal components.  This type of detector can be imple-
mented by the polarization interferometer.  We developed such a detector and could
demondtrate the 96% of the predected limit which is superior to the conventional von Neu-
mann limit.
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mission and processing systems.
Information technology has now started to

control directly quantum objects such as an
atom, electron, and photon.  {0, 1} conveyed
by these quantum entities can neither be in
general copied nor amplified[1][2].  Perfect dis-
crimination between quantum states is prohib-
ited in principle[3][4].  While this fact imposes
the new performance limit on information
technology, this provides us the new principle
for quantum cryptography that ensures the
perfect security.  More importantly, in transi-
tions among sequences of 0 and 1, there
appears quantum mechanical interference
effect inherent in a quantum system, and by
controling this effect optimally we are led to
the new performance limit that is much superi-
or to the one extraporated by direct application
of conventional theory.  Information theory
must include these limits and be modeled in
terms of quantum mechanics.  On the other
hand recent progress in quantum optics enable
us to extend quantum entanglement seen typi-
cally in atomic scale to a few 10km range, and
it is clarified that this new resource opens the
new paradigm such as quantum teleportation,
quantum cryptography and netork quantum
computing[5].  Namely conventional informa-
tion theory is just one of the possibilities for
modeling and definition of information.  Much
wider definition of information and new infor-
mation tasks are definitly possible.  The guid-
ing principle for information technology
should now be unified with quantum mechan-
ics.

The whole view of information technology
predicted by this new theory, quantum infor-
mation theory, is hardly seen yet.  We have
just started to study all kinds of possibilities in
information technology[6].  Once we turn to
the experimental research area, only a few
works have been made toward realization of
the theoretical predictions.  One of the most
important problems might be quantum detec-
tion problem because distinguishing quantum
states is at the root of any information tasks.
In this article, we focus on this problem from
the view point of maximization of the mutual

information, which plays an essensial role in
coding technology toward the ultimate chan-
nel capacity.  In particular we consider one of
the simplest quantum signals based on a single
photon system, and review our recent pro-
gress.

2  Basics of quantum detection
and mutual information

Primary concerns of information theory
are how to represent messages as effectively as
possible and how to transmit messages as pre-
cisely as possible.  In communications sys-
tems a sender, Alice, has a source of messages
S and selects one of a known set {a, b, ..., z}
with given prior probabilities {P(a), P(b), ...,
P(z)}.  This source may be characterized by
the random variable S = {a, b, ..., z; P(a),
P(b), ..., P(z)}.  The sender represents each of
these messages by a sequence of a given set of
letters {xi} such as {0, 1}.  These are the sym-
bols running through the transmission chan-
nel.  Each message is then represented by a
codeword formed from a sequence of letters.
This is source coding.  Information theory
tells us that the effectiveness of source coding
can be measured by the minimum of the aver-
age length required for a codeword and that it
is given by the Shannon entropy

This is a measure of uncertainty in the random
variable S.  It takes its maximum value when
all elements appear with equal probability, that
is, when we know nothing better than a ran-
dom guess for each element.  This measure of
uncertainty is regarded as the amount of infor-
mation required to represent S.

A channel is usually subject to various
types of noise disturbances.  Information theo-
ry provides means and limits for reliable infor-
mation transmission with such noisy channels.
The key idea is to introduce some redundancy
in the codeword representation prior to trans-
mission so as to allow the correction of errors
at the receiving side.  This entails adding some
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redundant letters to the codewords and hence
increases their length.  This is channel coding.
The mutual information quantifies how much
redundancy is required for error-free transmis-
sion.

The output from the source encoder is a
sequence of the letters forming the codewords
representing the messages.  For such
sequences one can find the frequencies of
appearance P(xi) for each letter xi.  Thus we
can de-fine a random variable X = {xi; P(xi)}
for the outputs from the source encoder.  This
is the set of inputs to the channel.  A mathe-
matical model for the channel is specified by
the set of possible outputs {yi} and the condi-
tional probability P(yi｜xi) for each input.
Given X, {yi}, and channel matrix [P(yi｜xi)],
we can determine the existence or nonexis-
tence of encoders and decoders that achieve a
given level of transmission performance.

The mutual information is defined
between the input and output random vari-
ables X and Y = {yi ; P(yi)}. Here

is the probability of having yi .  The uncertain-
ty of the input random variable X is measured
by the Shannon entropy

defined in a similar way to Eq. (1).
If the receiver detects the output signal yi ,

then he is now more certain about X.  The new
probability distribution conditioned by yi is
given as

One can then define the average conditional
entropy by

This quantifies the remaining uncertainty of X
after having the knowledge on the condition-
ing variable Y.  The information extracted by

the receiver is naturally defined by the reduc-
tion of the uncertainty,

This I(X : Y) is the mutual information
between X and Y.

Now let us consider a block coding of
length n.  The output from the source encoder
is a letter sequence, which is devided into
blocks (message blocks) of length k (<n).
Each block is supplemented by an additional
block (correction block) of n－k letters to
compose a transmission codeword {x p} :

where each x p
l (l = 1, ..., n) is an element of

possible letters {xi; i = 0, 1, ..., L－1}.  Note
that although there are Ln possible sequences
of length n in total, only part of them, i.e. Lk

sequences, are used as codewords.  This
redundancy, together with appropriate choice
of correction blocks, allows us to recover the
possible errors in transmission.

The input codeword xp will be disturbed in
the channel so as to come out as a different
sequence yq = yq

1y
q

2 ... yq
n.  The channel

decoder processes this output codeword to
assign an appropriate sequence which should
be the correct input codeword.  The average
error in this decoding should be as small as
possible, while the redundancy n－k should
also be as small as possible.  In other words,
keeping the ratio R = k/n, so-called the trans-
mission rate, as large as possible, we wish to
attain a small error in decoding.

Let us suppose that encoding is made
under the constraint that the frequency of xi’s
occurring in the set of codewords {xp} is
P(xi).  Information theory says that by an
appropriate design of the coding scheme it is
possible to transmit the messages with an error
probability as small as desired if R < I(X : Y) is
satisfied. For the fixed channel model [P(yi｜
xi)], one may further adjust prior probabilities
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{P(xi)} to maximize the mutual information.
The maximum value

is called the channel capacity.  Then the chan-
nel coding theorem tells us[7][8][9] that if R <
C holds there exists a coding scheme which
transmits messages with an error probability
as small as desired.  Thus the mutual informa-
tion is related to the ultimate use of the chan-
nel.  

The basic frameworks described above
also apply to a quantum limited channel.
However a new ingredient comes into play,
which is a quantum effect in the detection
process.  A detection process is represented
mathematically by the probability operator
measure (POM), which consists of nonnega-
tive (generally not normalized) Hermitian
operators satisfying the resolution of the iden-
tity[3][10][11]:

Each element Π^j is associated with the
measurement outcome j and hence implies the
output letter yi .  Let us consider the simplest
case where the letter set {xi} is conveyed by a
set of pure quantum states {｜ 〉}, letter state,
possibly a nonorthogonal set, through a noise-
less channel.  Then the channel model is spec-
ified by a POM {Π^j} and the channel matrix
P(yi｜xi) =〈 ｜Π^j｜ 〉.

In the conventional (classical) context, the
channel matrix [P(yi｜xi)] is given and fixed.
In quantum domain, however, one may ask
what is the best possible POM for the given
set of letter states {｜ 〉}.  This is actually a
nontrivial problem.  The problem can be
decomposed into several steps.  First we can
consider the maximization of the mutual infor-
mation with respect to a POM {Π^j } for the
fixed {｜ 〉} and prior probabilities {P(xi)}.
The maximum value

is called the accessible information of {｜

〉; P(xi)}.  We can then consider the maximiza-
tion of the accessible information over prior
probabilities {P(xi)}, and may define the
quantity C1 as

This would be a natural extension from the
conventional idea.  However, this C1 is not in
general the maximum bound for the transmis-
sion rate for error-free communication, and
hence it is not the channel capacity.  In fact,
there is the peculiar quantum interference
effect in quantum detection of codeword
states, which was not taken into account in the
conventional theory.  The true capacity for a
pure state channel is given by Hausladen et
al[12].  The general theory for a mixed state
channel is given by Holevo[13] and by Schu-
macher and Westmoreland[14].

To realize reliable transmission ensured by
quantum theory of the channel capacity, one
may need quantum computation for the decod-
ing process[15][16].  This is, however, far
beyond present technologies.  If only a quan-
tum detection on each letter state is available,
then IAcc and C1 practically specify the limit of
communication ability.  Let us suppose again
that encoding is made such that xi (i.e.｜ 〉)
occurs in the set of codewords {xp} (i.e.{｜ 1〉
○×・・・○×｜ n〉}) with the probability P(xi).  We
further suppose that {Π^j} is the POM attaining
the accessible information for X ={｜ 〉; P(xi)}
and the receiver applies this detection sepa-
rately on each letter states to get output
sequences {yi1yi2 ... yin}.  If R < IAcc holds, then
a reliable transmission of the letters with an
arbitrarily small error is possible by an appro-
priate classical coding.  The optimum POM
for the accessible information is thus an
important concern for devising a good code
for a quantum limited channel.

To find the optimal solution for the acces-
sible information closely related to the other
kinds of optimization tasks.  The simplest
requirement is that Bob wants to decide
which letter state he has received among the
set {｜ 〉} with the smallest error.  This usually
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means minimizing the average error probabili-
ty, or bit error rate Pe[17][18].  A second possi-
bility is for Bob to eliminate all errors by
allowing the possibility of inconclusive results
by means of unambiguous state discrimination
[19]～[26].  The optimum strategy in this case
will be the one that minimizes the probability
Pi of inconclusive outcomes.  This type of
detection has been proposed for quantum key
distribution[27].

For the communication of messages, how-
ever, Bob does best by devising a detection
strategy so as to retrieve Alice’s message with
the greatest probability.  This does not neces-
sarily mean minimizing either Pe or Pi, but
instead means reducing the uncertainty in
some random variable X = {xi, P(xi)}.  Such a
detection strategy is directly related to reliable
communication by coding technique and is
actually used as a basic building block for
effective decoding procedures of codeword
states formed from the letter states {｜ 〉}.  (A
more detailed explanation of this point is
given in Appendix.)

The reduction of the uncertainty caused by
a detection is quantified by the Shannon mutu-
al information I (X : Y) between the input
(Alice’s) and output (Bob’s) random variables,
X = {xi, P(xi)} and Y = {yi , P(yi)}.  This
mutual information I (X : Y) can be regarded
as the amount of information extracted from
X.  Bob’s optimum strategy will be the one
that maximizes I (X : Y).  Other figures of
merit have also been considered and these
include the fidelity[28][29].

The optimum conditions are already
known for minimizing the error probability
[17][18].  It is not an easy task, however, to find
the optimum detection strategies from these
conditions.  In fact, optimum strategies are
only known for some special cases such as the
set of binary states, sets of symmetric states
[15][17][18][30][31] and multiply symmetric
states[32].  Unambiguous state discrimination
is possible if and only if the letter states are
linearly independent and an explicit method
for constructing the optimum strategy has
been given in this case[25][26].  Finding opti-

mum solutions for I (X : Y) is much more dif-
ficult than those for Pe and Pi due to the nonlin-
earity of logarithmic function of I (X : Y) with
respect to a POM.  Optimum solutions are
known only for the set of binary pure states
[33][34] and for sets of real symmetric qubit
states with equal prior probabilities[35][36].

It seems intuitively reasonable that we
might obtain most information by minimizing
either the average error probability Pe or the
probability of inconclusive outcomes Pi.  In
fact, the maximum mutual information for
binary states is attained by the same strategy
that realizes the minimum average error prob-
ability.  There are, however, cases where the
maximum information must be obtained nei-
ther by minimizing Pe nor Pi[35][37].

Devices capable of demonstrating near
optimum detection at the single photon level
have been demonstrated in the laboratory.  The
simplest of these is discrimination between the
set of binary photon polarization states with
the minimum allowed average error probabili-
ty[38].  Unambiguous discrimination between
two non-orthogonal polarization states has
also been demonstrated[39][40].  A set of more
than three polarization states is linearly
dependent and hence it is not possible to carry
out unambiguous state discrimination.  Clarke
et al.  have demonstrated state discrimination
with near minimum error probability for both
the trine and tetrad polarization states[41].
They have also demonstrated the ability to
extract more information than is possible by
the best, standard von Neumann measurement
(a projection onto binary orthogonal polariza-
tion states).

In this paper we describe our experimental
implementation of a class of optimum strate-
gies for maximizing the mutual information,
as predicted by Ref[36].  One of these is the
ternary or trine set of states discussed by
Clarke et al.[41].  We have improved upon the
information yield obtained by these authors
and have also measured the information
obtained from signals formed from five and
seven possible polarizations.  Our letter states
are implemented physically as single photon
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polarizations.  The required equiprobable real
symmetric qubit states are then states of linear
polarization.  Such sets of states have previ-
ously found application in quantum key distri-
bution[42][43].  From the view point of funda-
mental interests, they might be the simplest
system with which to test the peculiar effect
predicted by Davies’ theorem.  According to
the theorem, there must exist at least one solu-
tion, that maximizes the mutual information,
which has N possible outputs, where N is
bounded by d ＜― N ＜― d2 with d being the
dimension of the Hilbert space s supported
by Alice’s set[35].  For real state sets, this
bounding inequality becomes d ＜― N ＜―
d(d+1)/2[36].  Thus for a single photon polar-
ization system, one can always optimize the
mutual information by constructing a device
with just three possible outputs.  This is true
regardless of the number of letter states.  In
the case of ternary or trine signals, the opti-
mum measurement consists of three symmet-
ric state vectors with the length less than the
unity, and has been demonstrated experimen-
tally in Ref.[41].  In the cases of quinary and
septenary signals, the optimum strategies con-
sist of three nonorthogonal state vectors with
different lengths.  In the septenary case, there
are two different configurations of measure-
ment state vectors.  We study how each of
these strategies work and the extent to which
they allow us to access the theoretical maxi-
mum amount of mutual information.

3  Real symmetric qubit sets and
optimum detection

Let be the orthogonal basis of
linear polarizationstates of a single photon.
Then the real symmetric qubit states are
defined as

We assume that each state is selected with
equal prior probability 1/M.  This set is one of
the few quantum state sets for which optimum
strategies for the accessible information are
explicitly known[33]～[36].

For M > 2, the signal states cannot be dis-
tinguished perfectly, thus Pi = 1.  The mini-
mum average error probability is

which is attained by the POM {Π^j}[3][31]

This POM is unique in leading to the mini-
mum error probability and has the same num-
ber of POM elements, corresponding to the
measurement outcomes, as the letter states.

In contrast, maximizing the mutual infor-
mation requires a POM with three rank-one
elements at most, corresponding to just three
measurement outcomes[36].  Although it is
also possible to construct optimum POMs
with elements more than three, a strategy with
minimum outputs is often the one desired in
practice.

If M is even, a von Neumann measure-
ment, i.e. a pair of orthogonal projectors, can
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The measurement state vectors for the
optimum strategy (solid line) and the
signal state vectors in the case of the
ternary (trine) signals

Fig.1

｜�2〉｜�1〉｜�0〉
0.50.50｜ω0〉
0.500.5｜ω1〉
00.50.5｜ω2〉

Table 1 The channel matrix of the optimum 
POM for the ternary signals
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be the optimum strategy with minimum out-
puts.  If M is odd, then at least three outputs
are required and a standard von Neumann
measurement fails in maximizing the mutual
information.  The three rank-one elements
required for the optimum POM {Π^j } are
specified as follows:

whereγis determined from

for an integer parameter m within the range
M—
4

< m < M—
2 .  

We will refer to the unnormalized
vectors given in Eq. (17) as measurement
state-vectors.

In the case of M = 3 (ternary or trine), the
optimum POM is given by m = 1 which
results in the set of three measurement state-
vectors with equal norms.  The signal and
measurement state-vectors are schematically
shown in Fig.1. In this figure, each arrow rep-
resents the polarization direction where the
horizontal and the vertical directions corre-
spond to the two unit bases and , re-
spectively.  The length of each arrow repre-
sents the norm of the associated state vector,
e.g.｜ 〉or｜ωj〉.

The optimum measurement in this case
means that the state vectors｜ j〉and｜ωj〉are
orthogonal, and thus

The other two possible measurement out-
comes occur with equal probabilities.  This
situation is summarized in Table 1.

In the cases of M = 5 (quinary) and M = 7
(septenary), Eq. (17) results in the three meas-
urement statevector with two distinct norms.
The relationship between the quinary letter
states and the three measurement state-vectors
(with m = 2) is depicted in Fig.2.  The channel
matrix in this case is summarized in Table 2.
In the septenary case, there are two different
POMs with three elements given by Eq. (17),
with m = 2 and m = 3 in Eq. (18) respectively.
They are depicted in Fig. 3 and summarized in
Tables 3 and 4. In either case, there are combi-
nations of (i, j) that give P(yj｜xj) = 0, although
j is not necessarily equal to i (a difference
from the ternary case).

The method to implement the optimum
POM with minimum outputs, as given in Eq.
(17), is prescribed in detail in Ref.[36].  In
short, the nonorthogonal measurement basis
{｜ωj〉} is considered as the projection of a
three-dimensional orthonormal basis in an
enlarged space.  Such an enlarged space is
achieved by introducing another independent
binary basis.

In practice, the concept described above is
realized as the polarization Mach–Zehnder
interferometer shown in Fig.4.  The four-
dimensional space is composed of

, where subscripts represent the
optical paths (a, b) indicated in Fig.4.  Our let-
ter states present in the subspace spanned by
the first two of these vectors.  The additional
port (at b in Fig.4) with an input of vacuum
state｜0〉enlarges the space.

The unitary operation of the Mach–Zehn-
der part (indicated as Û in Fig.4) can be writ-
ten as
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The measurement state vectors for the
optimum strategy (solid line) and the
signal state vectors in the case of the
quinary signals (M = 5)

Fig.2

｜�4〉｜�3〉｜�2〉｜�1〉｜�0〉
0.3090.8090.8090.3090｜ω0〉
0.50.19100.1910.5｜ω1〉
0.19100.1910.50.5｜ω2〉

Table 2 The channel matrix of the optimum 
POM for the quinary signals
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whereγ/2 is twice the angle of HWP1. (This
γ/2 represents the angle of one of the unit
basis in the enlarged space relative to the sig-
nal plane.) In our setup, the inputs are BH = BV

= 0 and hence B′V = 0.  Thus the apparatus of
Fig.4 actually couples a three-dimensional
state space.

PD0 detects components whose
amplitude is given by

Its null result guarantees that the signal was
not｜ o〉.  On the other hand, and 
components are further mixed at HWP2 and

PBS3, resulting in amplitudes of

which are then detected at PD1 and PD2.  By
inspecting Eqs. (21) and (22), it can be seen
that｜ωj〉given in Eq. (17) were reproduced.
When the condition Eq. (18) is satisfied, the
null result at PD1 or PD2 excludes one of the
possible signals (｜ k±〉with k+ = M－m and k
＿ = m).

4  Experiment

The principle described in the previous
section is realized in an actual setup to con-
firm the theoretical results.  In the experiment,
the polarization basis correspond to
P- (within the paper plane in Fig.5) and S-
(perpendicular to the paper plane) polariza-
tions, respectively.

The light source is a He–Ne laser (Spec-
tra–Physics, model 117A) operating at the
wavelength of 632.8 nm.  The laser light of
1mW is first attenuated by the attenuator
ATN1 by a factor of 10-6, purified to the hori-
zontally polarized state by the polarizing beam
splitter PBS0.  The half waveplate HWP0,
driven by a stepping motor, works as a modu-
lator to produce the set {｜ 〉}.  Then the beam
is further attenuated by ATN2 by a factor of
10-4.  At the input of the Mach–Zehnder inter-
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The two optimum strategies in the
case of the septenary signals (M = 7)

Fig.3
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Principle of the detector that realizes
the optimum POM

Fig.4

Here PBS stands for a polarizing beam
splitter, HWP for a half waveplate whose
axis is rotated byθ, and PD for a photode-
tector.

The left figure corresponds to the choice m
= 2, while the right one corresponds to the
other choice m = 3.
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ferometer, the light power is of order 100fW
(≈ 3・105 photon/sec).  In other words, the
beam contains about 10-3 photons in one
meter, whereas our detecting circuit is shorter
than that.

The polarization Mach–Zehnder interfer-
ometer is composed of two PBSs, PBS1 and
PBS2.  Each PBS is carefully mounted so as
to operate with an extinction ratio of 1 : 1000
(see below and Ref.[44]).  Each path of the
Mach–Zehnder contains one half waveplate,
HWP1 and HWP1′.  The angle of HWP1 is
adjusted to a quarter ofγin Eq. (18) so that
the polarization of the light is rotated by γ/2,
whereas HWP1′is inserted for symmetry and
thus adjusted not to affect the polarization
state.

The beams from the two paths are super-
imposed at PBS2, resulting in two output
beams from the Mach–Zehnder.  The one cor-
responds to path b in Fig.4 is detected directly
at Port 0.  The beam in path a in Fig.4 is deliv-
ered to HWP2 at an angle ofπ/=8 and then to
PBS3, in order to visualize the interference of
the beams from the two paths.  The two out-

puts from PBS3 are detected at Ports 1 and 2.
The relative path length of the

Mach–Zehnder is adjusted to be a proper oper-
ating point (which is the minimum at either of
Port 1 or 2) by a PZT actuator through a feed-
back system utilizing the modulation-demodu-
lation method.  Once the relative path length is
adjusted, a sample-and-hold circuit keeps the
mirror position fixed during a measurement
sequence (see below) which lasts typically
20–30 seconds.

There are two photodetectors at each port,
a silicon photodiode and an APD (avalanche
photodiode, EG & G, SPCM–AQ–141–FC)
guided through a multimode optical fiber.  The
former is for alignment purpose (with
increased light) and the photon counting
process is carried out with the latter, by
mechanically switching the beam between
them.  The coupling efficiency of the fiber is
measured to be 0.75–0.8, including the cou-
pling lens and the connectors before the APD.
The output from each APD is sent to a pulse
counter (EG & G ORTEC, model 995) to
count the number of photon-induced pulses.

The counters are activated simultaneously
by a common trigger, typically of one-second
duration and fivetime repetition.  The numbers
of counts in each duration are read by a com-
puter from all counters, so that we can analyze
statistical errors.  This procedure is repeated
for each signal｜ 〉with i = 0, ..., M–1, com-
posing a full sequence of measuring the mutu-
al information.  The ratio of counts in the
three APDs provides the channel matrix P(yj｜
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Experimental configurationFig.5
The same symbols as in Fig.4 and ATN for
an attenuator are used. Each of Ports 0, 1,
and 2 contains an APD and a silicon photo-
diode with a mechanical shutter to switch
the beam between them. All PBS are adjust-
ed for the maximum separation of two
polarization, resulting in a slightly (≈ 0.02
rad) slanted parallelogram arrangement for
the Mach–Zehnder.

The relation between the measure-
ment state vectors (left, quinary case
M = 5 in this example) and the signal
state vectors (right) with an initial off-
set angleθ0

Fig.6
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xi) from which the mutual information is
derived.

As is discussed in Section 3, in the opti-
mum detection scheme proposed, the mutual
information is increased by excluding one of
the possible signals.  Thus, realizing zero
probabilities at the output ports is essential in
achieving a high mutual information.  In prac-
tice, however, there are several causes that
increase the probability at the output where
ideally zero is expected.  Among them, the
most pronounced ones are the pulses from an
APD without any light (APD error), the finite
extinction ratio of a PBS (PBS error), and the
finite contrast of interference (interferometer
error).

Without any light at all, the average dark
counts of the APDs were measured to be
slightly less than 100 count/sec.  Although the
whole interferometer is enclosed in a box, the
environmental light increases the number of
counts to around 300 count/sec, even if no
laser light is injected.  When the laser light is
injected, the leak light due to the imperfection
of the interferometer is added, and was meas-
ured to the average count of around 1000
count/sec for the output port at which no count
is expected ideally (see Tables 1–4).  The last
increment is considered as the contributions
from the PBS errors and the interferometer
error.  At the ports for which finite counts are
expected, we had the counts of order 105

count/sec at most, which is within the linear
range of APDs.

In general, a PBS has an angular-depend-
ent separation of two polarization compo-
nents.  In our case, it turned out to be possible
to achieve the separation better than 1 : 1000
for both polarization components, by carefully
aligning the angle of incidence slightly (≈ 0.02
rad) different from the standard value π—

4
.

Then the expected contrast is ≈ 0.998, which
we thought sufficient for our experiment.  We
adopted this angle in our polarization
Mach–Zehnder interferometer, resulting in a
parallelogram arrangement (see Fig.5).

The actual contrast obtained with this
interferometer can be as high as

though the typical values under normal experi-
mental conditions were slightly lower than
this.  Thus, this is limited not by the PBS
imperfection but by, e.g., the spatial mode
mismatch of the two beams.

In order to analyze the performance of our
detecter circuit, we measured not only the
mutual information of the optimum detection
scheme but also its dependence on the relative
angle between the signal set {｜ 〉} and the
measurement state vectors {｜ωj〉}.  This is rele-
vant to, for example, the possible rotation of
polarization in the transmitting fiber.  We
measured the mutual information against the
signal set { } where

as a function of the initial offset angleθ0 (the
optimum detection corresponds toθ0 = 0).
The relation between and｜ωj〉is depict-
ed in Fig.6 for the case of quinary signals.  In
the experiment, θ0 was changed in steps of π—

90
radian (two degrees).

5  Results

We carried out the optimum measurements
described in Section 3 for the sources com-
prising the ternary (trine), quinary and septe-
nary states.  For the septenary signal states,
both of the two optimum detection schemes
(with m = 2 and m = 3 in Eq. (18) ) were test-
ed.

Fig.7 shows the relative output counts at
the three detectors as the polarization of the
input light is varied in the ternary case.  This
relative power corresponds to the probability
for the measurement outcome to occur for a
single input photon.

For the polarization angles {–π—
6 , 
π—
6 , 
π—
2 }

we are performing the state discrimination
with the minimum error probability, while for
the angles {–π—

3 , 0 , π—3} we are realizing a

Journal of the Communications Research Laboratory Vol.49 No.1   2002
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measurement that allows unambiguous elimi-
nation of one possibility among the three letter
states.  These measurements were referred to
as the trine and anti-trine measurements in
Ref.[41].  These authors found an rms devia-
tion of 3.8% from the theoretical value given
in Table 1.  Our results indicate a lower value
of 1.1 %.  The reason for our lower value is
that we have been able to achieve a smaller
PBS error.

The data depicted in Fig.7 leads to the
mutual information presented in Fig.8.  At the
optimum operating point, corresponding to the
best detection strategy, we clearly find that the

mutual information exceeds that attainable
with the best von Neumann measurement.
Our value also exceeds that obtained earlier by
Clarke et al.[41] represented as triangles in our
figure.  The reason for this is again the smaller
PBS error.  Our experimental value is slightly
lower than the theoretical maximum and this
is due mainly to a residual PBS error of
approximately 0.1% and also to the imperfect
contrast of interference.  It was found[44] that
despite the PBS error is not the limiting factor
of the interference contrast, it has non-negligi-
ble effects on the mutual information.

Fig.9 shows the relative output counts at
our three detectors for the quinary case.  These
provide the data with which to calculate the
mutual information depicted in Fig.10.  Our
data show a marginal increase in the mutual
information beyond the value that may be
attained with the best von Neumann measure-
ment.  The diffierence between our experi-
mental result and the theoretical value is again
principally attributable to the PBS error and
the imperfect contrast.

As mentioned earlier, the optimum detec-
tion scheme increases the amount of the mutu-
al information by excluding one of the possi-
ble signals.  With three detectors, only three
signals can be excluded at most, and the
remaining signals do not contribute the mutual
information very much.  This fact reduces the
maximum mutual information in quinary case
(and in septenary case as well) from that in
ternary case.  Although the absolute difference
(of ≈ 0.02) between the experimental and ideal
values in the quinary case is similar to that in
the ternary case, the excess from the von Neu-
mann measurement became only marginal.

Fig.11 shows the mutual informations
derived with the two possible optimum detec-
tion schemes for the septenary case.  Even in
an ideal case, the increase in the attainable
mutual information over that found using the
best von Neumann measurement is quite
small.  In both cases our experimental values
failed to reach even the value attainable by
means of the best von Neumann measurement.

The result with m = 3 shows a higher

Masahide SASAKI et al.

The dependence of the relative out-
puts at the three APDs on the polariza-
tion angle of the injected beam in the
ternary experiment

Fig.7

The dependence of the mutual infor-
mation on the initial offset angleθ0 in
the ternary experiment (“experiment”,
pluses)

Fig.8

The ideal case (“ideal”, solid curve) and the
ideal von Neumann case (“Neumann”,
dashed curve) are shown for comparison.
The values in an earlier experiment[41]
(“Clarke”, triangles atθ0 = 0 and –π/6) are
also shown.
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mutual information than that with m = 2.  This
difference is not by an experimental failure,

but due to the difference in the influences of
inperfect contrast between the two cases.  The
reduced contrast increases the light leaking
towards the port where ideally no light is
expected, which in turn reduces the mutual
information.  The absolute amount of leak
light is proportional to the amount of light
interfering.  This qualitatively explains the dif-
ference of experimental results with m = 2 and
m = 3.  In the former case the interfering light
is greater than the latter, thus the influence on
the mutual information is larger.

6  Discussion and Concluding
Remarks

Our ability to communicate classical infor-
mation by means of a quantum channel is lim-
ited by the existence of non-orthogonal quan-
tum states and the associated restrictions in
discriminating among them.  These factors are
fundamental to quanta as distinct from classi-
cal information theory and make quantum key
distribution possible[42][43].

The optimum use of a quantum communi-
cation channel is closely related to the maxi-
mization of mutual information, as discussed
in Appendix.  The accessible information is
obtained by maximizing the mutual informa-
tion through the selection of the detection
process.  There are only a very few examples
of signal states for which the accessible infor-
mation is known[33]～[36].  One such example
is that of the real symmetric qubit states[36].

In this paper we have described our polar-
ization Mach–Zehnder interferometer that was
designed to extract the accessible information
from signals formed from symmetric polariza-
tion states.  For the ternary (trine) states, our
results proved an amount of information close
(96 %) to the theoretical limit.  Our value for
the mutual information exceeds that reported
in an earlier experiment[41].  The difference
between our measured value for the mutual
information and the theoretical limit is due
principally to the leakage of the ‘wrong’ polar-
ization through our polarizing beam splitters
and also to the imperfect contrast.  The effect
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The dependence of the mutual infor-
mation on the initial offset angleθ0 in
the quinary experiment

Fig.10

The symbols are the same as in Fig.8.

The dependence of the relative out-
puts at the three APDs on the polariza-
tion angle of the injected beam in the
quinary experiment

Fig.9

The dependence of the mutual infor-
mation on the initial offset angleθ0 in
the septenary experiment with m = 2
(crosses) and m = 3 (pluses). Other
symbols are the same as in Fig.8

Fig.11
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of this leakage is more pronounced when we
consider the quinary and septenary signal
states.  Our experiments suggest that optimum
quantum communication based on the ternary
(trine) polarization states, for example the
quantum key distribution by the Phoenix–Bar-
nett–Chefles protocol[43], should be feasible.
Schemes based on the quinary and septenary
states will present a greater challenge.

In the light of fundamental interests, the
quinary and septenary states meet with the
simplest cases where the maximum amount of
information can be extracted by a detection in
which the number of possible outputs is less
than that of input states.  Davies’ theorem pre-
dicted that a device with three possible outputs
suffices for any real polarization system of a
single photon.  In our experiment, Davies’ the-

orem has been tested within the PBS error.
For the complete confirmation, further study
might be necessary, e.g.  comparing the mini-
mum-output optimum detection with the one
corresponding the group covariant optimal
solution which consists of the same number of
outputs as inputs.
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