4-4 BFN Operating System

IDE Toshiyuki and OKUMURA Minoru

Numerous parameters are required for the setup of Beam-Forming Networks used in phased-array antenna systems. For this reason, a fixed BFN operating system was established with the aim of increasing efficiency and saving labor. This system manages the various parameters required for the employment of a BFN unitary, resulting in the more efficient use of BFN.

Keywords

Beam-forming network, Command, Telemetry, Operation

1 Introduction

The ETS-VIII (Engineering Test Satellite-VIII) is equipped with phased array antennas that use large deployable reflectors as primary mirrors. Setup commands must be executed for the controller (BFC) of the beam-forming network (BFN1; for related details, see an article "3-6-3 Beam-forming network" of this special issue.) used. Setup of the BFC involves a variety of data, including phase and amplitude parameters required for beam formation, necessitating the execution of a large number of commands. To render BFN operation more efficient and to save labor in the setup process, a fixed BFN operating system (BFNOS) has been established. The BFNOS manages, in a unified manner, the various parameters required to run the BFN1. The BFNOS controls the BFN1, constructs array weight tables, and displays beam pattern simulations. Together these functions combine to yield greater operational efficiency.

2 System configuration

The hardware for the BFNOS consists of a commercially available personal computer running under a JAVA-based software development environment. The BFNOS is a dedicated element for an experimental telemetry and command system (T&C system, see an article "4-3 Telemetry and command processing system for experiments" of this special issue.) and is connected via LAN to the T&C system through a TCP/IP network adapter. RAID-based network storage within the T&C system ensures the coordination of data between the BFNOS and the T&C system, incorporating the commands generated from within the BFNOS and the telemetry data transmitted from the satellite.

3 Main functions

Numerous parameters must be set to enable operation of the BFN1, including the phase and amplitude parameters required for beam formation, BFN1 error correction data, reflector data, and antenna coordinate data. The BFNOS manages these various types of data via personal computer, generates the necessary command streams, and transmits the commands through the T&C system. The BFNOS also displays the telemetry data for the BFN1 and the BFC, calculates array weight, and simulates beam patterns. In short, the BFNOS controls nearly all of the data required for operation of the phased array antennas of the ETS-VIII. However, BFNOS manages only a packet command. The power on/ off operations for the BFN1 and BFC are executed by the T&C system.

The BFNOS has five main functions as follows. The parameter input and settings of each function are input via a graphical user interface (GUI) for a simplification over traditional command-line input troublesome.

3.1 Command generation

This function involves the generation of commands required to transmit data to the

satellite. Data to be transmitted include settings for the operation mode of the antenna feed system, various operational parameters, the array weight table, and the on-board software. Table 1 lists the various BFC commands.

In the MMIC used to set array weight the main circuit component of the BFN1 there are numerous semiconductor switches to control phase and set amplitude. Accurate setup of the BFN1 requires advance recording, in the BFN error correction table, of phase and

Tai										
ID	ID Sub ID S		Size	ze contents		Sub ID		Size	contents	
1	1~5	1~ 31	80	MMIC correction table	10	0	0	1	Beam operation start	
				Phase correction					Beam N scan ON∕ OFF	
				Gain correction	11	0	0	0	Forced termination of beam scan	
				Attenuation	12	0	0	8	REV parameters	
2	1~2	0	248	SSPA(LNA) correction					Phase rotation step (deg)	
				Phase-temperature gradient					Phase rotation time interval	
									(multiples of control period)	
				Gain-temperature gradient	13	1~5	1~ 31	0	REV start	
3	0	0	62	MMIC for fixed weight	14	0	0	0	Forced termination of REV	
				Phase, Attenuation	15	0	0	27	Operation control parameter	
4	1~5	0	248	Initial weight of MMIC					Operation mode	
2				Phase, Attenuation			-		Temperature compensation for beam #i ENA/ DIS	
5	1~5	0	248	Gain-temperature curve of BFN					Attitude compensation for [#] beam #i ENA/ DIS	
				coefficient of temperature					Temperature sensor #i ENA/ DIS	
6	1~5	0	248	Phase-temperature curve of BFN					Output port for Beams #i ENA/ DIS	
				coefficient of temperature	16	0	0	310	MMIC control bit setting	
7	1~2	0	336	Antenna parameters					Phase shifter and attenuator statuses	
				Focal length	17	0	0	MAX	Reprogramming	
				Defocus length				724	Reservation	
				coefficient of beam tilt(x)					Number of patches	
				coefficient of beam tilt(y)					Address	
				coordinates of feed element(x)					Number of data	
				coordinates of feed element(y)					Data	
				coordinate conversion matrices					Check sum	
				$(SAT. \rightarrow reflector)$						
				$(reflector \rightarrow feeder)$	18	0	0	1	Telemetry mode switching	
				(attitude \rightarrow SAT.)					Telemetry mode	
8	1~5	0	8	Beam tilt angle	19	0	0	2	Telemetry request	
				Az、El					Telemetry ID	
9	1~5	0	14	Program tracking parameters					Telemetry Sub ID	
			~602	Number of beam scan replications	20	0	0	6	Memory dumping	
				Number of beam scan angle data					Address	
				step intervals					Data size	
				Beam tilt angle (Az, El)	21	0	0	0	Reprogramming execution	

amplitude errors attributable to these switches. This data must be transmitted prior to operation of the BFN1, with the initial transfer characteristics as the initial setting parameters. Thus, the command for each parameter setting is generated in advance using the GUI command generation and edit function and stored in the hard disk as a command file. Fig.1 shows a screen shot of the MMIC error correction table of an example command generation and edit screen. It is also possible to generate array weight setup commands for beampattern formation and to verify this pattern using the antenna beam simulation function described below.

相量校正值	振幅偏差校正伯	直滅衰量校正	正值			
	校正値	減衰量		校正値	減衰量	
減衰 1	3	0	減衰 2	0	0	
減衰 3	4	0	減衰 4	0	0	
減衰 5	5	0	減衰 6	0	0	
減衰 7	6	0	減衰 8	0	0	
減衰 9	7	0	減衰 10	0	0	
減衰 11	8	0	減衰 12	0	0	
減衰 13	9	0	減衰 14	0	0	
減衰 15	10	0	減衰 16	0	0	
減衰 17	11	0	減衰 18	0	0	
減衰 19	12	0	減衰 20	0	0	
減衰 21	13	0	減衰 22	0	0	
減衰 23	14	0	減衰 24	0	0	
減衰 25	15	0	減衰 26	1	0	
減衰 27	0	0	減衰 28	1	0	1
減衰 29	1	0	減衰 30	1	0	

Other command files are also created for other commands in addition to those for the MMIC settings. Fig.2 shows the antenna system coordinate setup screen.

3.2 Command transmission

The command transmitting function stores the generated command and antenna beam pattern information to the RAID disk of the T&C system, and transmits a command through the T&C system.

This function enables transmission of the command files described in the previous subsection, including those for the initial setting parameters and the MMIC setting parameters. It also allows for the transmission of commands for any array weight table setting generated using the beam forming function described in the next subsection. This function thus facilitates modification of array weight.

3.3 Antenna beam formation

The antenna beam formation function calculates the array weight of the antenna feed system using the set parameters (including satellite position, central coordinates of the antenna beam, and specifications of the feed system and the reflector) and generates the corresponding array weight table. When calculating array weight, the gain constraint points must be specified in order to secure the required service area and to provide isolation between adjacent beams. Specifying a given center of beam directivity on the map indicated in Fig.3 automatically sets 13 constraint points in accordance with the ETS-VIII mission specifications. Although operation is simplified in this manner, it is also possible to edit constraint point data using the edit screen shown in Fig.4. Further, this antenna beam formation function can generate the array weight for any given beam pattern. Fig.5 shows an example of the array weight table edit screen.

1	131.06	32.99		
13				
1	-1.82918	5.34449	55.00000	
2	-2.12918	5.64449	55.00000	
3	-2.42918	5.34449	55.00000	
4	-2.12918	5.04449	55.00000	
5	-0.71917	6.00449	15.00000	
6	-0.41918	6.00449	15.00000	
7	-0.50705	6.21662	15.00000	
8	-0.71918	6.30449	15.00000	
9	-0.93131	6.21662	15.00000	
10	-1.01918	6.00449	15.00000	
11	-0.93131	5.79236	15.00000	
12	-0.71918	5.70449	15.00000	
13	-0.50705	5.79236	15.00000	

3.4 Antenna beam simulation

The antenna beam pattern is simulated using the set parameters (including array weight and reflector specifications) and generates a contour map. Fig.6 shows an example of the displayed map. Using this function, the beam pattern constructed based on the array weight generated in the previous subsection can be verified on the map. As shown in Fig.7, two beam patterns can be displayed on the same screen, enabling evaluation of beam isolation and other characteristics.

The antenna beam pattern diagram displayed here can be transmitted to network storage within the T & C system and displayed similarly on a T & C system screen.

3.5 Telemetry display

The telemetry display function calls up data from the T&C system and provides BFC telemetry display. Table 2 provides a list of BFC telemetry data. Both the real-time process screen and the history display screen will display BFC setting status. The contents displayed based on this function are the same as the contents displayed using the telemetry display function within the T & C system.

4 Summary

A BFNOS has been established for the unified management of the parameters required for operation of phased array antennas. This BFNOS enables the efficient performance of transmission experiments using the large deployable antennas of the ETS-VIII, including the initial setup of the BFN1 and BFC elements, generation of array weight parameters, and antenna pattern simulations. At the time of writing of this article, satellite proto-flight test was underway, along with concurrent improvements to system software. By the time of initial satellite operation, the system will have undergone even further improvements to operability, including optimized parameter settings based on the results of final electrical performance tests.

IDE Toshiyuki and OKUMURA Minoru 159

Tal	Table 2 List of BFC telemetry data								
ID	Su	ıb ID	Size	contents	ID	Sı	ıb ID	Size	contents
1	1~5	1~31	80	MMIC correction table	15	0	0	27	Operation control parameter Operation mode Temperature compensation for
	1 2	0	249	SERVINA) correction					beam #i ENA / DIS
2	1	0	240	Phase, Gain-temperature gradient			-		Attitude compensation for beam #i ENA/ DIS
3	0	0	62	MMIC for fixed weight					Temperature sensor #i ENA/ DIS
				Phase, Attenuation status					Output port for Beams #i ENA/ DIS
4	1~5	0	248	Initial weight of MMIC	16	0	0	310	MMIC control bit setting
				Phase, Attenuation					Phase shifter and attenuator statuses
5	1~5	0	248	Gain-temperature curve of BFN coefficient of temperature	17	0	0	1	Reprogramming (storage) Reprogramming execution (status)
6	1~5	0	248	Phase-temperature curve of BFN	18	0	0	1	Telemetry mode switching Telemetry mode
7	1~2	0	336	Antenna parameters	19	0	0	2	Telemetry request
		Ū	000	Focal length	20	0	0	Max	Memory dumping
				Defocus length				977	Address
				coefficient of beam tilt					Data size
				coordinates of feed element					Data
				coordinate conversion matrices					Check sum
				(SAT. \rightarrow reflector)	21	0	0	1	Reprogramming execution (status)
				(reflector \rightarrow feeder)	255	0	0	46	Periodic telemetry (control period)
				(attitude \rightarrow SAT.)					Angle of beam pointing
8	1~5	0	8	Beam tilt angle					Az and El scan angle for beams 1–5
				Az、El					REV status
9	1~5	0	14	Program tracking parameters					Beam number
			~602	Number of beam scan replications					Radiation element number
				Number of beam scan angle data					Phase rotation
				step intervals Beam tilt angle (Az, El)	254	0	0	137	Periodic telemetry (once every 50 control periods) Angle of beam pointing REV status
10	0	0	1	Beam operation start					Temperature sensor A/D value
11	0	0	0	Forced termination of beam scan					Operation control parameters
12	0	0	8	REV parameters					Operation mode
				Phase rotation step (deg)					Temperature compensation for beam #i ENA/ DIS
				Phase rotation time interval (multiples of control period)					Attitude compensation for beam #i ENA/ DIS
13	1~5	1~31	2	REV start					Temperature sensor #i ENA/ DIS
14	0	0	0	Forced termination of REV					Output port #i for Beams 1–5 ENA/ DIS

IDE Toshiyuki Senior Researcher, Mobile Satellite Communications Group, Wireless Communications Division Wireless Communications

OKUMURA Minoru

Antenna and Passive Equipment Group, Space Subsystem and Equipment Division, NEC TOSHIBA Space Systems, Ltd.

Satellite Onboard Antenna and Remote Sensing Equipment