
1 Introduction

1.1 Background
The advances over the past decades in

densities of Very Large Scale Integration
(VLSI) chips have resulted in electronic sys-
tems with ever-increasing functionalities and
speed, bringing into reach powerful informa-
tion processing and communications applica-
tions. It is expected that silicon-based CMOS
technology can be extended to up to the year
2015; however, to carry improvements beyond
that year, technological breakthroughs will be
needed. Though this is a major motivation for
research into devices on nanometer scales, it is
equally important to find out how such
devices can be combined into larger systems.
Systems based on nanodevices will require
very different architectures (designs), due to
the strict requirements of nanometer scales.
Three major factors influencing designs of
nanocircuits are: ease of manufacturing, mini-
mization of heat dissipation, and tolerance to
errors.

1.2 Ease of Manufacturing
It will be difficult to manufacture circuits

of nanodevices in the same way as VLSI
chips, i.e., by using optical lithography. The
reason is that light has too large a wavelength
to resolve details on nanometer scales. As a
result, an alternative technique called self-
assembly of nanocircuits is increasingly
attracting the attention of researchers. The
idea of this technique is to assemble circuits
using the ability of molecules to interact with
each other in such a way that certain desired
patterns are formed, according to a process
called self-organization. Though self-assem-
bly is a promising technology in development,
it comes with strings attached: the patterns
that can be built tend to have very regular
structures, like tiles in a bathroom. Conse-
quently, nanocircuits constructed by self-
assembly will likely need to have very regular
structures.

1.3 Minimizing Heat Dissipation
The huge integration densities made possi-

Ferdinand Peper et al. 129

4-5 Nanoelectronics Architectures

Ferdinand Peper, LEE Jia, ADACHI Susumu, ISOKAWA Teijiro,
TAKADA Yousuke, MATSUI Nobuyuki, and MASHIKO Shinro

The ongoing miniaturization of electronics will eventually lead to logic devices and wires
with feature sizes of the order of nanometers. These elements need to be organized in an
architecture that is suitable to the strict requirements ruling the nanoworld. Key issues to be
addressed are (1) how to manufacture nanocircuits, given that current techniques like opti-
cal lithography will be impracticable for nanometer scales, (2) how to reduce the substantial
heat dissipation associated with the high integration densities, and (3) how to deal with the
errors that are to occur with absolute certainty in the manufacturing and operation of nano-
electronics? In this paper we sketch our research efforts in designing architectures meeting
these requirements.

Keywords
Nanoelectronics, Architecture, Cellular automaton, Heat dissipation, Fault-tolerance,
Reconfigurable

130

ble by nanotechnology will have far-reaching
consequences for the heat that can be dissipat-
ed by nanodevices. Even nowadays heat dis-
sipation is a growing problem in VLSI chips.
For nanoelectronics the situation is much
worse: it is anticipated that heat dissipated per
unit of surface will surpass that of the sun, if
similar techniques as in current VLSI are
used. Most notably, the use of clock signals to
synchronize the operations in circuits is a
major factor causing heat dissipation. Each
time clock signals are distributed over a cir-
cuit, energy needs to be pumped into wires,
and much of this energy tends to get lost in the
form of heat. One technique to cope with this
problem is to remove the clock. Circuits not
requiring synchronization by clock signals are
called asynchronous. Roughly speaking, in
such circuits devices are activated only when
there is work for them to do, unlike in clocked
circuits, in which most devices are constantly
busy processing clock signals, even in the
absence of useful work. Provided they are
well-designed, asynchronous electronics can
reduce power consumption and heat dissipa-
tion substantially.

Another technique to reduce power con-
sumption and heat dissipation is reversibility
of operation, as was first claimed by
Landauer [8]. The idea behind reversibility of
a device is that it can recapture the energy
spent in the device’s operation by undoing that
operation (i.e. doing the operation in reverse)
afterwards. Though this principle has been
known since the early 60’s, it is hardly applied
in practical circuits nowadays, perhaps
because the gains it promises for VLSI do not
justify the overhead in hardware it requires.
For nanoelectronics the story may be different,
however, since interactions on nanometer
scales (for example interactions between mol-
ecules or other particles), are typically
reversible, and such interactions are of funda-
mental importance to the operation of nanode-
vices. Consequently, interest into reversibility
has revived together with the nanotechnology
boom.

1.4 Tolerance to Errors
Both the manufacturing and the operation

of nanocircuits will suffer from the unreliabili-
ty of interactions on nanometer scales. In
manufacturing this manifests itself in defects:
some devices will permanently fail to work
and some of the interconnections between
devices will not be correctly made. To cope
with defects, an architecture needs to be
defect-tolerant. In other words, it needs to
have redundent (spare) devices and intercon-
nections available that take over the tasks of
defective ones. An architecture also needs to
be reconfigurable such that defective devices
and interconnections can be made inaccessible
in favor of redundant ones.

Errors occuring during the operation of
nanocircuits will, unlike manufacturing
defects, typically be transient. Transient
errors occur only now and then, even in per-
fectly manufactured devices, due to factors
such as thermal noise, signal noise, quantum
mechanical effects, radiation, etc. The capa-
bility of architectures to cope with transient
errors is called fault-tolerance. It can be pro-
vided by redundancy in a circuit, such that
even when errors occur, they can be detected
and corrected using the remaining (correct)
information in the circuit. Error correcting
codes are a well-known technique in this con-
text, and they have been used extensively to
achieve reliable performance in communica-
tions and in present-day memory circuits.

1.5 Nanoelectronics Architectures
The realization of nanoelectronics thus

requires architectures with a regular structure
that employ techniques like asynchronous tim-
ing or reversibility to minimize heat dissipa-
tion, while also offering tolerance to defects
and transient errors. The architectures we
have proposed for this purpose, are based on
so-called cellular automata, which are regular
arrays of identical cells, each cell of which can
conduct a very simple operation. This paper
shows how cellular automata can be used as
architectures for nanoelectronics.

Journal of the National Institute of Information and Communications Technology Vol.51 Nos.3/4 2004

2 Cellular Automata

Cellular automata were first proposed by
von Neumann [15] with the aim of describing
the biological process of self-reproduction
using a simple mathematical formalism. The
appeal of cellular automata is that they can
model complex behavior, while only simple
local interactions between individual neigh-
boring cells take place. In this paper we use a
cellular automaton that is specially designed
with implementation of nanoelectronic circuits
in mind. This cellular automaton is a 2-
dimensional array of identical cells, each of
which has four neighboring cells, at its north,
its east, its south, and its west. Each side of a
cell has a memory of a few bits attached to it,
as in Fig. 1.

The four memories at the side of a cell are
said to be associated with the cell. The value
stored in a memory is called the state of the
memory. A cell may change the states of the
four memories associated with it according to
an operation called a transition. The transi-
tions a cell may undergo are expressed by a
table of transition rules. A transition rule
describes how a cell may change the states of
the memories associated with it.

Figure 2 shows a typical transition rule: it
consists of a left hand side, which is the part

left of the arrow, and a right hand side. If the
left hand side matches the combination of
states of the memories associated with a cell,
the transition rule is said to apply to the cell.
The states of the memories may then be
replaced by the states in the right hand side of
the transition rule. Certain desired behavior of
a cellular automaton can be obtained by set-
ting its memories in proper states and defining
transition rules that lead to state changes cor-
responding to this behavior. For example, one
may design a cellular automaton that behaves
in the same way as a certain digital electronic
circuit.

Cellular automata in which all cells under-
go transitions simultaneously in synchrony
with a central clock signal are called
synchronous. They are the most widely stud-
ied type. When transitions of the cells occur
at random times, independent of each other,
we obtain asynchronous cellular automata,
which is the type employed in this paper. In
an asynchronous cellular automaton, a cell
may undergo a transition when its memory
states match the left hand side of a transition
rule; this transition is randomly timed. If there
is no transition rule whose left hand side
matches a cell’s combination of memory
states, the cell remains unchanged. Though
transitions of cells are timed randomly and
independently of each other, they are subject
to the condition that two neighboring cells
never undergo transitions simultaneously.
This ensures that two neighboring cells will

Ferdinand Peper et al. 131

Cellular automaton consisting of cells
(the big squares with fat borders, one
cell being shaded), each having
access to four memories (the small
squares). Shared by two cells, a mem-
ory stores a few bits of information.

Fig.1

Transition rule describing a transition
the memories associated with a cell
can undergo. If the memory states of
a cell match the states n, e, s, and w
in the left hand side of the rule, the
rule may be applied to the cell, as a
result of which the states of the cell’s
memories are changed into the states
n’, e’, s’, and w’, respectively, depict-
ed in the right hand side.

Fig.2

132

not attempt to set the memory common to
them to different states at the same time.

Figure 3(a) shows an example of a transi-
tion rule that moves the contents of a memory
of two bits, one bit being 0 and the other 1, by
one cell to the north. In a memory in this
example, the two bits are represented by a
white block and a black block, to denote a 0-
bit and a 1-bit, respectively, and the bits are
separated by a thin line. When this transition
rule is applied to the configuration on the left
of Fig. 3(b), a 01-bit pattern in a memory is
moved one cell to the north (Fig. 3(b) middle
configuration). Applying the transition rule
once more moves the bit pattern one more cell
to the north (right side of Fig. 3(c)). Since this
01-bit pattern steadily moves to the north over
time, it can be used to transfer information
from the south to the north in the cellular
automaton. For this reason, this pattern is
called a signal. Together the cells over which
the signal can move form a so-called path.
The rotated or reflected version of a rule may
also be used for transitions. This allows the
above transition rule to be used for transmit-

ting signals in directions towards the south,
east, or west as well.

3 Operations

The cellular automaton described up to
this point is extremely simple: it can only
transmit signals along straight paths. To do
some useful work by the cellular automaton,
we need a way to operate on signals. Operat-
ing on signals is more difficult than just trans-
mitting them, because it may involve multiple
signals. For example, we may have an opera-
tion that requires one signal to be input, and
that produces two output signals as a result.
Such an operation is called a fork, because a
fork (the variety used for eating) has one bar
at one end, reflecting the input side, and multi-
ple bars at the other end, reflecting the output
side. The opposite of a fork is an operation
called a join. A join receives two signals as
input, and produces one signal as output. If a
join receives only one signal as input, it just
waits until the second signal arrives before
taking any action. How long should a join
operator wait for a second signal? The last
question addresses an important point for the
operations we use in our cellular automaton.
Our answer is: we allow a join to wait for a
second signal as long as it is necessary. Even
stronger, we allow any operator to wait for
any input signal at least as long as is necessary
for that signal to arrive. In other words, any
arbitrary delay experienced by a signal is sup-
posed not to alter the logical outcome of the
operations conducted on the signal. A circuit
in which delays of signals do not alter the log-
ical outcome of circuit operations is called
delay-insensitive (DI). DI circuits are an
important class of asynchronous circuits. To
operate correctly, such circuits do not require
a central clock sending out clock signals.
Rather, DI circuits are driven by data signals:
each circuit operator is inactive, until it
receives an appropriate set of input signals,
after which it processes the signals, outputs
appropriate signals, and becomes inactive
again. Operators in DI circuits are similar to

Journal of the National Institute of Information and Communications Technology Vol.51 Nos.3/4 2004

(a) Transition rule for signal propaga-
tion, and (b) its application twice to a
configuration of cells, each time giv-
ing rise to a signal successively moving
one cell towards the north. Here a
memory contains two bits, each of
which is indicated by a block that is
shaded for the value 1 and white for
the value 0. The transition rule oper-
ates on all bits in the four memories
associated with a cell.

Fig.3

the operators in normal digital circuits, like
AND-gates and NOT-gates, except that DI
operators need no clock signals to ensure their
inputs and outputs are properly timed. DI cir-
cuits are thus promising candidates for reduc-
ing heat dissipation in physical realizations.

To implement a fork operator on our cellu-
lar automaton, we employ a cell of which one
of the memories contains two 1-bits and the
other three memories contain all 0-bits.

The transition rule in Fig. 4 is able to oper-
ate on such a fork cell after the cell receives
an input signal, like in Fig. 5, and this results
in two output signals. Unfortunately, a fork
alone is insufficient to create arbitrary circuits:
other operators are necessary, like the join
operator described above. It turns out that
arbitrary valid DI circuits can be constructed
using only a small set of operators. Such a set
is called universal, and it can be as small as
three operators, as shown in [11] (see
also [10]). For reasons of space we will not go
into details, other than mentioning that this set
can be implemented on our cellular automaton
using only four more transition rules [16] in
addition to the two rules in Fig. 3(a) and Fig.

4. To see how actual circuits can be made on
our cellular automaton, like a 1-bit memory or
a DI AND-gate, we refer to [16]. Implementa-
tion of other, higher level, circuits and pro-
gram structures, like counters, for-loops, etc.,
is discussed in [17].

4 Reconfigurability

Reconfigurability of a nanoelectronics
architecture is its ability to reorganize its
devices and the interconnections between its
devices according to some functional specifi-
cation given by a user. In the case of using a
cellular automaton as architecture, it may hap-
pen that it conducts for example at one time a
pattern recognition task, at another time a
communications task, and at still another time
some number crunching task like deciphering
an encrypted message. Given that a cellular
automaton has a very homogeneous structure
with all identical simple cells, how can it be
made to do such a wide variety of tasks? In
the previous section we have seen that the
functionality of each cell can be determined
by setting the memories associated with it to
appropriate states. Taken together, a configu-
ration of cells with memories in certain states
thus forms a DI circuit with a certain function-
ality. While this explains how a cellular
automaton can have different functionalities
depending on the states of its memories, it
leaves open the question as to how the memo-
ries can be set to the appropriate states that
give rise to a certain desired functionality, and
later be reset to different states reflecting a dif-
ferent functionality. This problem boils down

Ferdinand Peper et al. 133

Sequence of operations in which a fork receives one input signal on its input path from the
west, after which it produces one signal to each of its output paths, i.e., to the north and the
south. Each time a transition rule is used, its label appears above the corresponding arrow,
whereby S denotes the transition rule for signal propagation and F that for the fork.

Fig.5

Transition rule defining the operation
of a fork. The fork is represented by a
memory of which both bits are 1.

Fig.4

134

to moving a certain pattern of information to a
certain location in the cellular automaton. In
this case this pattern of information is a con-
figuration of cells that represent a DI circuit
layout. How can this problem be addressed?

Fortunately, the field of cellular automata
has a rich history, and one of the major
achievements is the implementation of self-
reproduction, which is the ability to copy and
move certain patterns of information stored in
the cells’ memories to other cells’ memories.
It thus closely resembles reconfigurability. As
we pointed out in section 2, self-reproduction
was the defining problem that started the field
of cellular automata. The method used by Von
Neumann to implement self-reproduction on
cellular automata [15], though, is extremely
complicated, up to the point that even the
mere simulation on modern-day computers is
difficult in terms of memory resources and
computation time. Successors of this
research, however, like [2] [3] [19], have
achieved much simpler self-reproducing cellu-
lar automata. To investigate the potential of
our cellular automaton for self-reproduction,
we have implemented self-reproduction on a
simplified version of our cellular automaton
[20] [21]. Note that our cellular automaton is
different from the cellular automata used in
the past for self-reproduction [2] [3] [15] [19], in
the sense that it works asynchronously. This
makes it much more difficult to control the
timing by which cells undergo transitions, and
consequently, it complicates implementations
of self-reproduction.

Our implementation [20] [21] uses the same
basic idea as von Neumann’s. That is, it is
based on a so-called Turing machine, which is
a very simple model of a computer. A Turing
machine consists of two parts: a control mech-
anism and a tape unit. The control mechanism
does all the “logical work”, and can be
described in terms of DI circuits, so it is easy
to implement on our cellular automaton, using
the same six transition rules as are necessary
for implementing DI circuits. The second part
of a Turing machine, i.e., the tape unit, is a
kind of memory that stores the machine’s pro-

gram, data, and temporary results. The tape
unit is more complicated than the control
mechanism: it requires a head that moves
about the tape and that reads and writes infor-
mation from and to tape cells. To do self-
reproduction by a Turing machine, one addi-
tional mechanism is needed. Called a con-
struction arm, this mechanism can be extended
towards possibly far-away cells to copy infor-
mation to their memories, and it can be with-
drawn afterwards. Unfortunately, the imple-
mentation of a construction arm on our cellu-
lar automaton requires additional transition
rules, making the cellular automaton more
complicated. The same holds true for the tape
unit. Fortunately, the tape unit is very similar
to the construction arm: it turns out that they
can be both made by using the same transition
rules, making a total of 39 transition
rules [20] [21]. Though this is much more than
the six rules required for merely implementing
DI circuits, we believe that the number of
rules can be reduced, but this is left as future
research.

5 Tolerance to Errors

Reconfigurability not only endows a cellu-
lar automaton with a flexible functionality, but
also makes it more tolerant to defects, because
it gives freedom to use only nondefective cells
when configuring DI circuits on the cellular
automaton. Well-known results on defect tol-
erance have been obtained with the
Teramac [4], which is a parallel computer
based on field programmable gate arrays
(FPGAs). The Teramac is able to achieve
high-performance computing, even if a signif-
icant number of its components are defective.
However, the Teramac requires a master com-
puter to set up a table of routes around defects
and to configure the hardware accordingly, so
it is not autonomous. Especially with defects
that occur after manufacturing, i.e., during
operation, it would need a master computer to
be connected permanently to it to keep the
routing table error-free. A master computer
based on nanoelectronics, however, would

Journal of the National Institute of Information and Communications Technology Vol.51 Nos.3/4 2004

suffer from defects too, so this solution is not
self-contained. We thus prefer a method in
which scanning for defects and hardware
reconfiguration is done by nanoelectronics
hardware itself rather than by a master com-
puter. We have conducted some preliminary
research for this purpose [7], by designing a
cellular automaton in which cells follow a cer-
tain sequence of states over time. As defective
cells typically fail to change states, they can
be identified in this way. Defective cells are
then “isolated” by marking their non-defect
neighbors by states that are exclusively used
for this purpose. This allows DI circuits to be
configured such as to avoid marked cells.

When errors are transient, other strategies
than the above are needed. In [16] we have
constructed a fault-tolerant version of the cel-
lular automaton of sections 2 and 3 by encod-
ing the memories associated with the cells by
error correcting codes. The central idea of
error correcting codes is to include redundant
information in the encoding, and use this
information to reconstruct the original con-
tents of a memory in case some of the memory
bits become erroneous.

Figure 6 shows one such encoding: the
original four values of a 2-bit memory in the
bottom row, i.e., the values 00, 01, 10, and 11,
are encoded by the four values in the top row
that are expressed by 14 bits each. So, to
make a memory fault-tolerant, we need 14 bits
instead of the original two bits. The expense
of seven times more bits in a memory gives us
in return the ability to correct up to four bit

errors. For example, flipping four arbitrary
bits in one of the memories in the top row of
Fig. 6 from 0 to 1 or the other way around,
gives a combination of bit values that more
closely resembles the original than any of the
other three memories in the top row (see Fig.
7). So, even with four bit errors, we can
deduce what the original contents of a memo-
ry should have been.

As is pointed out in [16], most 5-bit errors
and some 6-bit errors can also be corrected in
these 14-bit memories. Our scheme is flexible
in the sense that it can be made tolerant to
more (or less) bit errors by expending more
(or resp. less) bits in each memory. The idea
of our error correcting scheme is to block tran-
sitions on a cell as long as at least one of the
memories associated with it contains at least
one error. Errors in each memory are correct-
ed at random times; when all memories asso-
ciated with a cell become error-free, the pre-
condition is then created for a transition to
take place on the cell. In other words, opera-
tions of cells take only place once all the
errors in their memories are corrected. We
refer to [16] for more details of this scheme,
and to [6] for a similar scheme based on a dif-
ferent type of error correcting code.

6 Discussion

The construction of nanoelectronics cir-
cuits requires a serious consideration of the
architectures that are to be used. To facilitate
manufacturability, architectures will need to

Ferdinand Peper et al. 135

Graphical notation of an error correcting code. The bottom row contains the original 2-bit
memories, the top row the corresponding memories that are encoded by 14 bits each. A
dark block denotes a bit with value 1, a white block a bit with value 0.

Fig.6

136

be regular. Additionally, the reduction of heat
dissipation is important, as well as the toler-
ance to errors during manufacturing and oper-
ation. Our results achieved thus far suggest
that cellular automata form an attractive basis
to satisfy these demands. With respect to heat
dissipation we have investigated cellular
automaton models with an asynchronous
mode of operation. The randomness by which
transitions on cells take place eliminates the
need for distributing a central clock signal
over the cells. Though this has the potential to
reduce heat dissipation substantially, it also
complicates the operation of a cellular
automaton. We have developed a method to
cope with this: to simplify operation, we con-
figure the cells such that they implement delay
insensitive circuits. As compared to past
methods [14], this is a remarkably effective
way to coordinate cells’ activities on local
scales, while allowing them to be independent
of each other on global scales. Our method
can be applied to a wide range of asynchro-
nous cellular automaton types, for example as
in [1] [9].

We have also investigated an alternative
way to reduce heat dissipation, i.e. by using

reversibility of circuit operation, but we do not
report extensively on it in this paper, other
than mentioning that we have designed asyn-
chronous cellular automata [12] and delay
insensitive circuits [13] that are reversible.
Though these designs are not very efficient in
terms of computational power, this research
has deepened our understanding of the nature
of reversible operation without the use of a
central clock, and it has the potential to deliver
some unexpected results. Moreover, since
reversible operation is a precondition for
quantum computing, our research may also
have some impact on that field.

The feasibility of our cellular automaton
approach will be decided by how efficiently
individual cells can be manufactured and put
together into regular structures. One promis-
ing way to achieve efficient manufacturing is
the so-called Nanocell approach [5]. In this
approach, the internal of a cell consists of nan-
odevices connected in a random network of
nanowires. To achieve a certain desired func-
tionality, the cell is subjected to appropriate
signals at its inputs and outputs that burn cer-
tain pathways in the network, according to a
process that resembles neural network train-

Journal of the National Institute of Information and Communications Technology Vol.51 Nos.3/4 2004

Occurrence and correction of four bit errors in a 14-bit memory. The four correct values of a
14-bit memory in the top row differ with the erroneous memory in 5, 10, 4, and 9 bits, respec-
tively. So, the corrected value of the erroneous memory is most likely the value that differs in
only 4 bits with it.

Fig.7

ing. Once manufactured and trained, cells
may be put together by using DNA tiling tech-
niques like those advanced by Seeman et
al. [18]. Though many new techniques
important to physical implementations may
emerge in the coming decade, it seems clear at
this point that a key issue will be making cells
as simple as possible, i.e. making them oper-
ate with a minimum set of transition rules.
For this purpose, simpler delay insensitive cir-
cuits and simpler self-reproducing techniques
need to be designed, and this is an ongoing
effort in our research.

What can we eventually expect from nano-
electronics? The high integration densities that
are possible have the potential of substantial
performance gains, as compared to current
VLSI. Most of these gains will come from the
huge number of available devices, though
increased switching speeds of devices may
also contribute. Applications that can effec-
tively utilize such huge numbers of devices
will be the main beneficiaries of nanoelectron-
ics. We think about applications suitable to be

subdivided in many independent subproblems
that can be processed in parallel. Typical in
this context are Artificial Intelligence (AI)
problems, search problems, optimization prob-
lems, and many pattern recognition problems.
Portability of applications will be greatly
facilitated by nanoelectronics’limited heat dis-
sipation, since the latter implies low power
consumption. One can thus envision devices
that do not need recharging other than occa-
sionally by solar cells. Such devices can be
carried continuously by their users, keeping
them wirelessly connected to the world. Due
to their powerful abilities, these devices will
be indispensible in augmenting the intellectual
abilities of their users, for example with
respect to retrieving faces, recognizing speech,
etc. Other applications that may be made pos-
sible by nanoelectronics are networks on sub-
millimeter scales that connect miniscule sen-
sors, actuators, and communication hubs that
interface with the outside world. Such net-
works may find use in the control of miniscule
environments.

Ferdinand Peper et al. 137

References
1 S. Adachi, F. Peper, and J. Lee, “Computation by asynchronously updating cellular automata”, Journal of

Statistical Physics, Vol. 114, Nos. 1/2, pp. 261 – 289, 2004.

2 E.R. Banks, “Universality in cellular automata”, Proc. IEEE 11th Annual Symposium on Switching and

Automata Theory, pp. 194 – 215, 1970.

3 E.F. Codd, Cellular Automata, Academic Press, New York, 1968.

4 J.R. Heath, P.J. Kuekes, G.S. Snider, and R.S. Williams, “A defect-tolerant computer architecture: opportu-

nities for nanotechnology”, Science, Vol. 280, pp. 1716 – 1721, 1998.

5 C.P. Husband, S.M. Husband, J.S. Daniels, and J.M. Tour, “Logic and memory with Nanocell circuits”, IEEE

Transactions on Electron Devices, Vol. 50, No. 9, pp. 1865 – 1875, 2003.

6 T. Isokawa, F. Abo, F. Peper, S. Adachi, J. Lee, N. Matsui, and S. Mashiko, “Fault-tolerant nanocomputers

based on asynchronous cellular automata”, International Journal of Modern Physics C, in press, 2004.

7 T. Isokawa, F. Abo, F. Peper, N. Kamiura, and N. Matsui, “Defect-tolerant computing based on an asyn-

chronous cellular automaton”, Proc. SICE Annual Conference, Fukui, Japan, pp. 1746 – 1749, 2003.

8 R. Landauer, “Irreversibility and heat generation in the computing process”, IBM Journal of Research and

Development, Vol. 5, pp. 183 – 191, 1961.

9 J. Lee, S. Adachi, F. Peper, and K. Morita, “Embedding universal delay-insensitive circuits in asynchronous

cellular spaces”, Fundamenta Informaticae, Vol. 58, Nos. 3/4, pp. 295 – 320, 2003.

10 J. Lee, F. Peper, S. Adachi, and K. Morita, “Universal delay-insensitive circuits with bi-directional and buffer-

ing lines”, IEEE Transactions on Computers, Vol. 53, No. 8, pp. 1034 – 1046, 2004.

138 Journal of the National Institute of Information and Communications Technology Vol.51 Nos.3/4 2004

11 J. Lee, F. Peper, S. Adachi, and S. Mashiko, “Universal delay-insensitive systems with buffering lines”, IEEE

Transactions on Circuits and Systems I, in press, 2004.

12 J. Lee, F. Peper, S. Adachi, K. Morita, and S. Mashiko, “Reversible computation in asynchronous cellular

automata”, Unconventional Models of Computation, Lecture Notes in Computer Science, Vol. LNCS 2509,

220 – 229, 2002.

13 J. Lee, F. Peper, S. Adachi, and S. Mashiko, “On reversible computation in asynchronous systems”, in:

Quantum Information and Complexity: Proceedings of the 2003 Meijo Winter School and Conference, T.

Hida (Ed.), World Scientific, in press, 2004.

14 K. Nakamura, “Asynchronous cellular automata and their computational ability”, Systems, Computers, Con-

trols, Vol. 5, pp. 58 – 66, 1974.

15 J. von Neumann, Theory of Self-Reproducing Automata, University of Illinois Press, 1966.

16 F. Peper, J. Lee, F. Abo, T. Isokawa, S. Adachi, N. Matsui, and S. Mashiko, “Fault-tolerance in nanocomput-

ers: a cellular array approach”, IEEE Transactions on Nanotechnology, Vol. 3, No. 1, pp. 187 – 201, 2004.

17 F. Peper, J. Lee, S. Adachi, and S. Mashiko, “Laying out circuits on asynchronous cellular arrays: a step

towards feasible nanocomputers?”, Nanotechnology, Vol. 14, pp. 469 – 485, 2003.

18 N.C. Seeman, “Nanotechnology and the double helix”, Scientific American, Vol. 290, No. 6, pp. 64 – 75,

June 2004.

19 T. Serizawa, “Three-state Neumann neighbor cellular automata capable of constructing self-reproducing

machines”, Systems and Computers in Japan, Vol. 18, pp. 33 – 40, 1986.

20 Y. Takada, T. Isokawa, F. Peper, and N. Matsui, “Universal construction and self-reproduction on self-timed

cellular automata”, International Journal of Modern Physics C, 2005, accepted.

21 Y. Takada, T. Isokawa, F. Peper, and N. Matsui, “Universal construction on self-timed cellular automata”,

Cellular Automata for Research and Industry, Lecture Notes in Computer Science, LNCS3305, pp. 21-30,

2004.

Ferdinand Peper et al. 139

Ferdinand Peper, Ph.D.

Senior Researcher, Nanotechnology
Group, Kansai Advanced Research
Center, Basic and Advanced Research
Department

Nanotechnology, Computer Science

LEE Jia, Ph.D.

Expert Researcher, Nanotechnology
Group, Kansai Advanced Research
Center, Basic and Advanced Research
Department

Computer Science, Nanotechnology

ADACHI Susumu, Ph.D.

Expert Researcher, Nanotechnology
Group, Kansai Advanced Research
Center, Basic and Advanced Research
Department

Computer Science, Nanotechnology

ISOKAWA Teijiro, Dr.Eng.

Research Associate, Division of Com-
puter Engineerng, Graduate School of
Engineering, University of Hyogo

Computer Science

TAKADA Yousuke

Student, Division of Computer Engi-
neerng, Graduate School of Engineer-
ing, University of Hyogo

Computer Science

MASHIKO Shinro, Dr.Eng.

Director of Kansai Advanced Research
Center, Basic and Advanced Research
Department

Laser Spectroscopy, Nanotechnology

MATSUI Nobuyuki, Dr.Eng.

Professor, Division of Computer Engi-
neerng, Graduate School of Engineer-
ing, University of Hyogo

Computer Science, Physics

140 Journal of the National Institute of Information and Communications Technology Vol.51 Nos.3/4 2004

