
13KADOBAYASHI Youki et al.

1 Introduction

Recently, various forms of denial of ser-
vice attacks against web servers and other crit-
ical infrastructures are gaining attention. Such
attacks target single point of failure, such as
routers and servers. As a countermeasure to
these attacks, it is important to eliminate sin-
gle point of failure in every layer of the OSI 7-
layer reference model.

This research focuses on overlay networks
as a means to bypass single point of failure in
lower layers. It also provides fundamental
solution to single point of failure in the appli-
cation layer. “Overlay network” is an overar-
ching terminology for application-layer net-
working among end systems.

While overlay networks can eliminate sin-
gle point of failure, there are other security
issues in overlay networks. For example, prior
contributions uncovered that overlay networks
are vulnerable to insertion of malicious nodes.
In response to these problems, secure overlay
networks are being explored, that address
known vulnerabilities.

While prior contributions［1］-［4］success-
fully defined threat models that are perhaps
most difficult to defend, they did not come up
with effective countermeasures to these
threats. We believe that countermeasures,
along with threat models, should be addressed
in general.

In this paper, we attempt to construct
secure overlay networks in a stepwise manner,
based on the fundamental understanding of
simple threats. First, we consider securing
basic functions of overlay networks, through
which we attempt to relate respective problem
with existing problem domain. We mainly
focus on routing security in overlay networks
and present threat models and countermea-
sures, since we consider routing security to be
a new problem domain.

Next, we point out that different threat
models should be defined for different appli-
cations. We are constructing software frame-
works for secure overlay, that can be adapted
to different threat models. Finally, we describe
the result of our phase-1 development.

2-2 Design and Phase-1 Development of
Secure Overlay Networks

KADOBAYASHI Youki, NAKAO Koji, and TAKIZAWA Osamu

Recently, overlay networks are gaining attention as a means to eliminate single point of fail-
ure in the application layer. This paper focuses on secure routing in overlay networks. A threat
model is presented, along with our countermeasure proposal. Our proposal consists of blind for-
warding, distributed trust anchor, and probabilistic testing. Unlike previous contributions on this
topic, our proposal is based on trust anchor. Furthermore, we attempt to reconstruct the threat
model, based on the insights gained from previous contributions. We also briefly describe our
phase-1 development efforts of a software framework that implements essential functions of
secure overlay. Our software framework attempts to address application-specific threat models.

Keywords
Overlay networks, Secure overlay, Blind forwarding

14 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

2 Overlay networks

In this section, we briefly describe overlay
networks. Overlay networks are built on top of
network layer, and it is typically implemented
in the application layer. There are variety of
algorithms for overlay networks, with differ-
ent rendezvous, location, and routing charac-
teristics. Hereafter, we collectively call ren-
dezvous, location, and routing as the three
aspects of overlay networks.

In Chord［5］, for example, nodes participat-
ing in the overlay and resources stored in indi-
vidual nodes are mapped onto a single ring,
using a hash function, e.g., SHA-1. By
exploiting order relation on the ring, routing
can be implemented in a efficient manner. In
other words, by mathematically defining order
relation of both nodes and resources on the
single ring, traditional directory functions –
mapping resources to nodes – can be replaced
by the hash function, thereby facilitating
resource lookup. Also, such an order relation
enables efficient routing; the implicit rule
makes it possible to skip intervening nodes
during the lookup process.

In Chord, a new node can join the ring by
sending join request to arbitrary nodes on the
ring. Also, it can access nodes and/or
resources by specifying an identifier on the
ring. So far, variety of routing algorithms are
invented with variety of topologies, since
there are large degree of freedom in the design
of ID space: binary tree, mesh, and other
structures have been employed so far［6］［7］.

Next, we describe route selection model in
the overlay networks. While IP networks
employ single route selection model (i.e.,
longest prefix matching algorithm), overlay
networks have a variety of route selection
models, since proximity in the ID space has
nothing to do with proximity in the real net-
work. If we employ single algorithm that only
consider topological proximity in the ID
space, suboptimal route will be selected from
the viewpoint of network layer.

In order to reduce such inefficiency, three
proximity-aware route selection models are

proposed in the past［8］:
• PNS (Proximity Neighbor Selection):

neighbor nodes in the routing table are
selected according to node proximity,
during the routing table generation
process.

• PRS (Proximity Route Selection): multi-
ple neighbor nodes are selectively used
in the route selection process, based on
node proximity.

• PIS (Proximity Identifier Selection):
node identifier is assigned according to
node proximity.

The Chord algorithm employs most simple
route selection model which does not consider
node proximity in lower layers; neighbor
nodes in the routing table are computed by the
order relation in the ID space. PNS, PRS and
PIS are enhancements which can be applied to
most of overlay routing algorithms.

Next, we describe the service model of
overlay. Three service models have been pro-
posed so far: DHT (Distributed Hash Table),
DOLR (Decentralized Object Location and
Routing) and CAST［9］. DHT implements hash
table on top of overlay, and it is suitable for
applications which share (key, value) pairs
among participating nodes. In DHT, any par-
ticipating nodes in a overlay can perform
put/get operation on any (key, value) pairs.
DOLR is a kind of distributed directory ser-
vice; it delivers message to the nearest object
with the specific ID. In DOLR, many objects
can have the same ID within single overlay.
CAST is a service model for group communi-
cation. It enables nodes to join and leave from
group, and multicast/anycast messages within
group members. The prior contribution［9］
points out that these service models can be
implemented by the same generic lower layer
called KBR (Key-Based Routing).

3 Related work

In this section, we outline security require-
ments for each of the three aspects. Mean-
while, we attempt to relate each requirement
with existing problem domains and prior con-

15KADOBAYASHI Youki et al.

tributions.
First, we consider security requirements in

the rendezvous. During rendezvous, validation
of authenticity, countermeasure against abuse,
and countermeasure against denial-of-service
attacks are required. In order to secure authen-
ticity, we can establish trust anchor outside of
the overlay; for example, PKI (public key
infrastructure), PGP (pretty good privacy), and
IC cards can be used for this purpose. Known
techniques to protect systems against abuse
are Turing tests, creditcard billing, hardware
token, and incentive techniques［10］. In order
to protect systems against DoS attacks, several
techniques are proposed to date: memory-
bound function［11］, single-signon authentica-
tion servers employing threshold cryptography
［12］, and redundant configuration of receiver
nodes［13］.

During resource location, confidentiality,
integrity, and availability are essential security
properties; these properties can be implement-
ed by symmetric cryptography, hash function,
and replication or erasure coding, respectively.

Essential security properties in routing
algorithms are accountability, reliability, and
availability. In prior contributions［1］-［4］, vari-
ous forms of threats are pointed out, including
route insertion and Byzantine failure during
message delivery. However, none of the prior
contributions satisfy all of the requirements.

Other security properties have been investi-
gated in prior literatures. For example,
anonymity has been dealt with in Herbivore［14］,
and LOCKSS［15］addresses persistence and
durability in distributed data storage.

In summary, it is necessary to combine
security functions for all three aspects of over-
lay networks, in order to establish security in
overlay networks. Prior contributions lack
such a perspective, however. In this paper, we
attempt to reconstruct threat model from this
perspective, and propose countermeasures in
the routing algorithm.

4 Threat model of overlay routing
algorithms

We assume the following threat model to
overlay routing algorithms.

• T-1: A few nodes may make adversary
actions, but many nodes behave correct-
ly.

• T-2: Many nodes can be DoS/DDoS tar-
gets.

• T-3: Adversary can eavesdrop traffic at
one point, but not at many points.

As a result of T-1, a few nodes may for-
ward messages to wrong destination, deny
message forwarding, or inject incorrect routes.
As a result of T-2, many nodes may become
unavailable.

The threat model of overlay networks
varies depending on the openness of overlay.
For private overlays with limited membership,
only T-2 and T-3 will be present if the overlay
does not contain any adversary nodes. T-1 will
be present only if a few adversary nodes exist
within the private overlay. In public overlays,
on the other hand, many nodes may join the
overlay and act as adversary nodes.

Note that we limit the complexity of the
problem by limiting the number of adversary
nodes in T-1. We argue that we can deal with
more broader class of problems by limiting the
number of adversary nodes. Many techniques
can be employed to limit the number of adver-
sary nodes; Turing tests and credit-card billing
are two examples of such techniques, as out-
lined in the Section 3. This is in sharp contrast
to threat models in past literatures, e.g., Sybil
attack, where the number of adversary nodes
are not limited.

In addition, by employing the blind for-
warding that we describe in the following sec-
tion, we can reduce the incentives for adver-
sary nodes to attack overlay routing algo-
rithms.

16 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

5 Design of secure overlay routing

In this paper, we attempt to establish
accountability, reliability, and availability in
overlay routing algorithms. In order to imple-
ment these desirable properties, we make three
proposals in this section. First, we propose
blind forwarding, assuming that multiple com-
peting communities are multiplexed onto sin-
gle overlay. Next, we argue that subjects and
objects of access alone cannot establish
accountability and reliability; based on this
argument, we propose a technique to form the
distributed trust anchor within the ONOC
(Overlay Network Operation Center). Next, we
propose a technique to detect attacks to mes-
sage forwarding by probabilistically sending a
probe packet after the individual message.

5.1 Blind forwarding
Hereafter, we call the technique to forward

messages without knowing the IP address,
hostname or AS number of both source and
destination node blind forwarding. We call the
network layer attribute (IP address, hostname
and AS number) collectively as network
attribute. First, we describe the rationale of
blind forwarding.

Generally speaking, infrastructure for spe-
cific community will be susceptible to attacks
from other communities. In contrast, single
overlay shared by multiple competing commu-
nities might not attract attacks. In other words,
it is important to creat situation such that

attacking the overlay results in attacking part
of attacker’s communities.

For example, in the case of Internet denial-
of-service attacks, one can determine if partic-
ular host can be attack target by network
attribute. As a result, tension between commu-
nities turns into such attacks, e.g., Japanese
servers being attacked from other countries. In
overlay networks, one might be able to solve
this problem; for example, one can construct
overlay networks such that network attributes
are hidden from participating nodes, even if
the node knows the overlay topology.

Denial-of-service attacks against message
forwarding makes sense if the network attrib-
utes of both message sender and receiver are
known. In other words, such attacks do not
make sense if network attributes are hidden
from intervening nodes during message for-
warding. In order to thwart selective denial-of-
service attacks with blind forwarding, we must
implement message forwarding in a recursive
manner.

In overlay networks, messages can be for-
warded either iteratively or recursively. In iter-
ative message forwarding, a node initiates a
message to next-hop node, which returns a
node closer to destination. The initiating node
repeats this process until the message reaches
the destination node which has the solicited
resource (Fig.1). In this case, messages are
sent from initiating node in a star-shaped
topology. As a result, the network attribute of
initiating node is revealed to all of the
responding nodes.

In contrast, recursive message forwarding
avoids disclosure of network attribute; the net-
work attribute of initiating node is revealed
only to the next-hop node. The initiating node
sends a message to the next-hop node, which
in turn forwards the message to its next-hop
node, based on its own routing table. This
process is repeated recursively until the mes-
sage reaches the destination node. As a result,
messages are sent from the initiating node to
the destination node like a stepping stone
(Fig.2).

Fig.1 Iterative message forwarding

17KADOBAYASHI Youki et al.

5.2 Distributed trust anchor
We argue that subjects and objects of

access alone cannot accomplish accountabili-
ty, reliability and availability in overlay net-
works. We assume the presence of ONOC
(Overlay Network Operation Center) in this
paper. In order to detect adversary node,
ONOC aggregates reports from individual
nodes and compares its integrity with reports
from both preceding and following nodes.
Also, accountability can be secured by logging
reports from multiple nodes at ONOC. Fur-
thermore, by computing overall availability at
ONOC, ONOC can instruct participating
nodes to perform various countermeasures: 1)
unreliable nodes can be excluded from over-
lay, and 2) storage redundancy can be
increased by replication or erasure coding.

Next, we discuss the configuration of
ONOC. If ONOC is a single node, it can be
single point of failure and it will hamper the
availability of overlay. Therefore, it is natural
to construct ONOC as a private overlay
(Fig.3). Since ONOC is not a public overlay, it
is difficult to mount DoS attacks against
ONOC from outside. We will describe DoS
countermeasure at ONOC in the next section.

5.3 Probabilistic probing
Ideally, in order to secure accountability,

availability and reliability, ONOC should
monitor all packets. This is not realistic from
the standpoint of communication overhead

and storage complexity. In this section, we
describe probabilistic probing.

Nodes cannot misbehave by either discard-
ing messages or forwarding messages to
wrong destination, since each node cannot
know the probability of receiving probe pack-
et in advance, and whenever the node receives
probe packet, it has to prove that it has for-
warded the preceding message. While we
focus on query messages in the following
descriptions, various messages for routing
algorithms, e.g., node addition or deletion, can
be secured in a similar manner.

Probabilistic probing can be implemented
by the initiator node sending probe packet
after the query message at certain probability.
The probe packet uses the same source and
destination address as the query message, and
it is sent after certain period. All intervening
nodes sends forwarding records to ONOC
upon receiving the probe packet. Probe packet
specifies target message by message ID. Each
node stores forwarding record of individual
messages in a ring buffer.

Next, we discuss the interval of original
packet and the probe packet. The transmission

Fig.2 Recursive message forwarding

Fig.3 Relationship of overlay networks
and ONOC

18 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

delay of probe packet should be adequately
configured so that the forwarding record
remains in the intervening nodes. The delay
should not be zero, since zero delay permits
adversary nodes to selectively transmit mes-
sages with succeeding probe packet, while dis-
carding others.

Next, we describe the contents of forward-
ing record. In order to construct forwarding
record, nodes are required to exchange the fol-
lowing information between itself and next-
hop node. Whenever a node sends a message
to next-hop node, it receives a random value.
Likewise, whenever a node receives a mes-
sage from the preceding node, it sends a ran-
dom value. In this way, all nodes records the
four tuple (src, query-id, next-hop-nonce, my-
nonce) in the ring buffer, which is actually the
forwarding record. Whenever a node receives
probe packet, it can prove that it did not block
message forwarding by sending forwarding
report to the ONOC. The contents of forward-
ing report is (src, query-id, next-hop-nonce,
my-nonce, next-hop) (Fig.4). Initiating node
sends the destination address along with the
source address to the ONOC. Destination node
sends reports with next-hop set to blank.

ONOC can verify that messages are not

blocked by comparing the integrity of two val-
ues: next-hop-nonce of preceding node, and
the my-nonce of next-hop node (Fig.5(a)).
Whenever successive forwarding report does
not come from certain node and beyond,
ONOC can detect that either the message is
discarded or the corresponding probe packet is
discarded at the preceding node. Also, one can
detect message forwarding to wrong next-hop,
by checking order relation of node ID and des-
tination node ID; such order relation is defined
in the overlay routing algorithms.

It is possible that multiple nodes may col-
lude and forge a forwarding report. In this
case, colluding node’s next-hop node can be
incorrectly determined as a misbehaving node.
As a solution to this problem, nonce can be
generated by the time-released key chain.
Since ONOC can determine the integrity of
nonce from the same node by simply applying
hash function to previous nonce and compar-
ing it with the current nonce, ONOC can
detect forgery of next-hop-nonce (Fig.5(b)).

Next, we describe DoS countermeasure in
the ONOC. Each node sends H(my-nonce,
my-hop) along with the forwarding report
which contains (next-hop-nonce, next-hop),
where H is a hash function. In this way,

Fig.4 Forwarding report and probe packet

19KADOBAYASHI Youki et al.

ONOC can compute the hash value with
(next-hop-nonce, next-hop) of the previous
hop and compare it with the hash value from
current hop, easily discarding DoS packets
(Fig.5(c)).

Likewise, by reusing the nonce contained
in the forwarding report at the ONOC, it can
secure authenticity of notification from ONOC
to participating nodes. Using such a notifica-
tion, ONOC can instruct overlay nodes to con-
trol the degree of replication or redundancy of
erasure coding, making it possible to control
availability.

6 Toward implementation of
secure overlay

In Section 4, we discussed threat model in
the overlay routing algorithms, and in Section
5, we made a proposal to secure accountabili-
ty, reliability and availability in the overlay
routing algorithms. In addition, security in
rendezvous and location are equally impor-
tant, as we discussed in Section 3.

Techniques that can be employed in the
rendezvous and location are restricted by both

application and platform. For example, in
electronic appliances, suitable anti-abuse
methods for joining overlay would be hard-
ware token; Turing tests might not be suitable.
In contrast, for instant-messaging purposes,
Turing tests and incentive techniques would
be required as a countermeasure to SPIM
(SPAM in IM). For application-layer multicast
with unlimited membership, integrity of con-
tent will be required, while confidentiality of
content might not be required. On the other
hand, application-layer multicast for group-
ware purposes will require both confidentiality
and integrity.

As we have seen above, we need to deal
with different threat models in different appli-
cations; it is important for applications to be
able to choose cryptographic mechanisms and
authentication mechanisms from variety of
choices. Currently, NICT security advance-
ment group is constructing a software frame-
work that provides elementary functions of
secure overlay. In the following section, we
describe the result of our phase-1 development
effort.

Fig.5 Sabotage detection with forwarding report

20 Journal of the National Institute of Information and Communications Technology Vol.52 Nos.1/2 2005

6.1 Phase-1 development
This framework implements a software for

conducting research on secure overlay net-
works; it can be considered a digital facility
for research and development. Therefore, the
techniques described in the previous section
can be implemented on top of this framework.
Also, this framework can be a software bus,
making it possible to circulate proposed mech-
anisms as a working code among research
communities. It is worth noting that prior con-
tributions［1］-［4］did not have proof-of-concept
implementations, making it difficult for third
parties to verify the results.

Our software framework is written in the
C++ language, and it runs on major operating
systems, including FreeBSD, Linux, MacOS
X, and Windows. Also, it is light-weight com-
pared to other overlay toolkits written in Java,
making it possible to run 60 nodes on a per-
sonal computer. Therefore, it is possible to
construct massive overlay networks within a
relatively small PC cluster. In order to main-
tain portability in C++, we used ACE as the
communication library, Crypto++ as the cryp-
tographic and hash algorithm library, Qt as the
GUI library. Using these existing, portable
software frameworks as a substrate, we
achieved good portability without using
expensive run-time harness like Java VM.

Also, this framework implements Chord
and Pastry as the overlay routing algorithms,
lowering the barrier to conduct secure overlay
research. Also, it implements hybrid routing
technique［3］and diffusive communication
among multiple routes［14］.

Furthermore, this framework is designed
using KBR (Key-Based Routing) API, making
it possible to implement various service mod-
els other than DHT, e.g., DOLR and CAST.
Currently, DHT is implemented and put/get
operations to (key, value) pair are provided.

Apart from DHT, a simple API for
send/receive is implemented, with which pub-
lish/subscribe model can be implemented easi-
ly. Our protocol design makes it possible to
use multiple service models on top of single
overlay.

Confidentiality and integrity can be added
to applications without making major modifi-
cations to application code itself, since crypto-
graphic functions and hash functions can be
applied as a filter to data stream. In Crypto++
library, AES, IDEA and RC5 are available as
cryptographic algorithms, and SHA-1, SHA-
384 and MD5 are available as hash algo-
rithms, among others. This framework can
employ arbitrary bit length for node identi-
fiers, detaching itself from potential weakness
in a particular hash function, e.g., SHA-1.

7 Conclusion

We outlined the security functions of over-
lay networks from three aspects of ren-
dezvous, location, and routing. We pointed out
that security functions from these three
aspects should be combined to solve security
issues in overlay networks. We dealt with
security in overlay routing by constructing
threat models and elaborating techniques for
countermeasure. Our proposal consists of
blind forwarding, ONOC as a distributed trust
anchor, and probabilistic probing. Since appli-
cations have different security requirements in
rendezvous and location, we provided elemen-
tary functions of overlay networks as a C++
framework. By combining this framework
with existing authentication, cryptographic or
hash modules, we believe secure overlay can
be brought to applications. We will continue
our research efforts for secure overlay, both in
algorithms and in implementations.

21KADOBAYASHI Youki et al.

Reference
01 E.Sit and R.Morris : “Security considerations for peer-to-peer distributed hash tables”, IPTPS, 2002.

02 J.R.Douceur : “The sybil attack”, IPTPS, 2002.

03 M.Castro, P.Druschel, A.Ganesh, A.Rowstron, and D.S. Wallach : “Secure routing for structured peer-to-

peer overlay networks”, OSDI, 2002.

04 A.Singh, M.Castro, P.Druschel, and A.Rowstron : “Defending against eclipse attacks on overlay net-

works”, ACM SIGOPS European Workshop, 2004.

05 I.Stoica, R.Morris, D.Karger, M.F.Kaashoek, and H.Balakrishnan : “Chord : A scalable peer-topeer

lookup service for internet applications”, SIGCOMM, 2001.

06 A.Rowstron and P.Druschel : “Pastry : Scalable, decentralized object location and routing for large-

scale peer-to-peer systems”, Middleware, 2001.

07 D.M.Petar Maymounkov : “Kademlia : A peer-to-peer information system based on the XOR metric”,

IPTPS, 2002.

08 K.Gummadi, R.Gummadi, S.Gribble, S.Ratnasamy, S.Shenker, and I.Stoica : “The impact of dht routing

geometry on resilience and proximity”, SIGCOMM, 2003.

09 F.Dabek, B.Zhao, P.Druschel, J.Kubiatowicz ,and I.Stoica : “Towards a common api for structured peer-

to-peer overlays”, IPTPS, 2003.

10 M.Feldman, K.Lai, I.Stoica, and J.Chuang : “Robust incentive techniques for peer-to-peer networks”,

ACM Electronic Commerce, 2004.

11 M.Abadi, M.Burrows, M.Manasse, and T.Wobber : “Moderately hard, memory-bound functions”, NDSS,

2003.

12 W.K.Josephson, E.G.Sirer and F.B.Schneider : “Peer-to-peer authentication with a distributed single

sign-on service”, IPTPS, 2004.

13 A.D.Keromytis, V.Misra and D.Rubenstein : “SOS : Secure overlay services”, SIGCOMM, 2002.

14 S.Goel, M.Robson, M.Polte and E.G.Sirer : “Herbivore : A scalable and efficient protocol for anonymous

communication”, Technical Report TR2003-1890, Cornell University Computing and Information Sci-

ence, 2003.

15 P.Maniatis, M.Roussopoulos, T.Giuli, D.S.H.Rosenthal, M.Baker, and Y.Muliadi : “Preserving peer repli-

cas by rate-limited sampled voting”, SOSP, 2003.

KADOBAYASHI Youki, Ph.D.

Expert Researcher, Security Advance-
ment Group, Information and Network
Systems Department

Overlay Networks, Network Security

TAKIZAWA Osamu, Ph.D.

Senior Researcher, Security Advance-
ment Group, Information and Network
Systems Department

Contents Security, Telecommunication
Technology for Disaster Relief

NAKAO Koji

Group Leader, Security Advancement
Group, Information and Network Sys-
tems Department

Information Security

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

