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1 Infroduction

Open networks have been developed and
internet is inevitable in the business activities.
The digital document law was started in April
of 2005 and it accelerates the digital society.
Digitalization of information brings conve-
nience of our life however it also causes risk
of information leakage. It is easy to copy digi-
tal data and no traces are left. Supplying suffi-
cient security technologies is a pressing need
in order to avoid abuse of information sys-
tems. Cryptographic technologies are essential
in information security, it is impossible to con-
struct a secure system without them. Adver-
saries attack weak part of the information sys-
tems, and so, cryptographic technologies have
been seldom attacked because cryptography is
theoretically proven strong. However, the
ability of adversaries is always improving in
view of recent attacks on several hash func-
tions. It is important to continue the research

on cryptographic technologies. In this paper,
we introduce secure protocols using an algo-
rithmic problem as one of trials for informa-
tion security.

2 Subgroup membership problem

It is well known that the subgroup mem-
bership problem for a finitely presented group
is not decidable in general, because Novikov-
Boone theorem claims the existence of finitely
presented group whose word problem is
unsolvable. This implies that for a certain
finitely presented group, there exists no proce-
dure to check whether or not an element given
as a word is equal to the identity element of
the group. The subgroup membership problem
is often called the generalized word problem
in the literature of combinatorial group theory.
On the other hand, the word problem is always
solvable for the class of finite groups or finite-
ly generated abelian groups.
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However, if we consider more practical
computation, that is, the bounded probabilistic
polynomial time algorithms (or equivalently
the computation class BPP), the membership
problem is not trivial even for the class of
finite abelian groups. When we consider a
mathematical object, the object is described by
finite data. The effectiveness is measured by
the asymptotical behavior of algorithm to
carry out certain tasks like deciding a math-
ematical proposition (equivalently calculating
a Boolean predicate) and computing functions.
In the case of decision problems for finitely
presented groups, we consider the class of
recursive functions. In specific cases like auto-
matic groups and word hyperbolic groups, the
word problem can be solved in polynomial
time with respect to the word length. In the
case of finite groups, the description of groups
has simple structure, and any decision prob-
lem is solvable. We are interested in the effec-
tiveness of such algorithmic problems. The
behavior of algorithm is related to the size of
data structure of a group family.

Several algorithmic problems used in cryp-
tography are characterized as the subgroup
membership problem. We note that there exists
no known probabilistic polynomial time algo-
rithm for the integer factorization or the dis-
crete logarithm problem for some class of
finite cyclic groups. So these problems are not
in the class of BPP. The quadratic residue (QR
for short) problem and the decision Diffie-
Hellman (DDH for short) problem have
numerous applications in cryptography, and
hence, they have been studied in detail. In[17],
the similarity of QR and DDH is discussed. We
now give more formal approach to generalize
and formalize cryptographic hard problems as
the subgroup membership problem, and show
many other algorithmic problems, which are
used in public key cryptography, are character-
ized as the subgroup membership problem as
well. Such a unification of algorithmic prob-
lems used in cryptography has not been
appeared up to date as far as the authors know.

Widely used assumptions in cryptography
are divided into two groups: the algorithmic

assumptions related to the integer factoring
(and the QR) and the algorithmic assumptions
related to the discrete logarithm problem (and
the DDH). The first is originated from the
RSA cryptosystem[15] and the second from
the Diffie-Hellman key exchange protocol(s].
These two look different and are usually dis-
cussed separately. The unified approach to the
integer factoring problem and the discrete log-
arithm problem shed light on the fundamental
properties of algorithms required to provide
the security. Therefore, we can get better
understanding of the algorithmic problems by
unified treatment of subgroup membership
problems. To apply the membership problem
to cryptographic schemes such as asymmetric
cryptosystems, we require the efficiency of
computation for legal participants and the
existence of a trapdoor. Once we prove that
the subgroup membership problem is applica-
ble to a certain scheme in general, then any
primitive based on the subgroup membership
problem concerning a specific group is applic-
able to the scheme in principle. As an exam-
ple, in this paper, we show that any subgroup
membership problem can be employed to con-
struct a computational PIR system by con-
structing a PIR system using the subgroup
membership problem in a general manner.

Determining the membership of a given
element of a certain group in its subgroup is
not always easy. As a matter of fact, the mem-
bership problem of a subgroup in a finitely
presented group is not recursive in general. To
apply the membership problem to crypto-
graphic schemes such as asymmetric cryp-
tosystems, we require the efficiency of com-
putation for legal participants and the exis-
tence of a trapdoor. In this section we consider
the subgroup membership problem with a
trapdoor, and show that several problems
widely used in cryptography are characterized
as the subgroup membership problem.

Let G be a group, and let H be its sub-
group. The membership problem is to decide
whether or not a given element g in G
belongs to H. Furthermore, we consider a fam-
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ily of finite groups indexed by a parameter
and the asymptotic behavior according to
computation. In such a case, the subgroup
membership is described as a computation
problem to decide the membership when
given an element, a subgroup and a group
indexed by a parameter. A computation prob-
lem is hard if no efficient algorithms. The effi-
ciency is characterized by the asymptotic
behavior of an algorithm

2.1 Subgroup membership assump-
tion

We suppose that every element in G has a
binary representation of size k, where k is the
security parameter. The membership can be
decided within polynomial time in k if a cer-
tain information, called a trapdoor, is provid-
ed. The membership of an element g in G in H
can be decided provided the trapdoor, howev-
er, the membership cannot be decided with a
probability substantially larger than one half
without the trapdoor. We now formalize the
subgroup membership problem.

Let k be the security parameter. For the
input 1%, a probabilistic polynomial time algo-
rithm /G outputs the description of a group G,
the description of a subgroup H of G and the
trapdoor that provides a polynomial time algo-
rithm for the subgroup membership problem
of H in G. The algorithm /G is called the
instance generator. Every element of G is rep-
resented as a binary sequence of length k.
Computation of the multiplication in G is per-
formed in polynomial time in k.

The predicate for the membership of a
subgroup is denoted by Mem, that is, Mem is
defined as follows.

1 if xliesinH

Mem(G,H,x)=3% . .. .
em( *) {OlfxllesmS

where IG outputs the pair (G, H) for 1%, x is in
G, and S = G\H. The subgroup membership
problem is to compute Mem in polynomial
time in kK when we inputs 1* and obtain a pair
of groups (G, H) and an element g in G,
which is uniformly and randomly chosen from
H or G according to the coin toss b«*—{o.1}. If

there does not exist a probabilistic polynomial
time algorithm that computes Mem with a
probability substantially larger than+, then we
say that the membership problem is
intractable. We also assume that one can
choose uniformly and randomly an element
from both H and G. This is significant to
apply to cryptographic schemes.

The following is trivial, however, it is use-
ful for the construction of a PIR system based
on the subgroup membership problem.

Proposition 1

Let G be a group, and let H be a subgroup
of G. For any g in G and h in H, gh lies in H if
and only if g lies in H.

Subgroup membership assumption I

For every constant ¢, and every family
{Cdk EN} of circuits of polynomial size in k,
there is an integer K such that for all k > K we
have

Prob(C,(G,H,g) = Mem(G,H,g)) <3+ . (2.1)

The assumption claims that there exists no
polynomial size circuit family to compute the
predicate Mem. The following is equivalent to
the assumption above.

Subgroup membership assumption II

For every constant ¢, and every family
{Cdk EN} of circuits of polynomial size in k,
there is an integer K such that for all k£ > K we
have

\p,, ~Pf< L], (2.2)

where the probabilities Pu and Ps are defined
as follows;

PH = Prob (Ck(GnH3g)=1)

(G HYIG(* g« 2—H
and

PS = Prob (Ck(GaHsg)=1)

(GH)IG(I*),g« 25

2.2 Examples

We exhibit several subgroup membership
problems: the DDH problem, the QR problem,
the r th residue (RR for short) problem. Recall
that the assumption that the QR problem is
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intractable (QR assumption) is employed to
prove the semantic security of the Goldwass-
er-Micali cryptosystem(8], and the assumption
that the DDH problem is intractable (DDH
assumption) is employed to prove the seman-
tic security of the ElGamal cryptosystem.
These two have many other applications. The
assumption that one of problems above is
intractable is employed to prove the semantic
security of the corresponding cryptosystem(10]
[131[14] respectively.
Quadratic residue problem

Let p, g be prime integers. Set N = pq. The
primes p and g are trapdoor information for
the quadratic residue problem, on the other
hand, the number N is public information. Let
G be the subgroup of (Z/(N))* consisting of
the elements whose Jacobi symbol is 1, and let
H be the subgroup of G consisting of quadrat-
ic residues of G, that is,

H={xeG'x=y2 mod N for y € (Z/(N)) } .

The quadratic residue problem of H in G is
to decide whether or not, a given element g
belongs to H. We can effectively determine
the membership of g in H provided that the
information p and ¢ are available. No polyno-
mial time algorithm is known for the member-
ship of a randomly chosen element of G in H
without the information p and ¢g. Hence, if we
define an instance generator for the QR prob-
lem as a probabilistic algorithm, then the QR
problem is considered as the subgroup mem-
bership problem.
Decision Diffie-Hellman problem

Let C be a cyclic group of prime order p.
The group C may be the multiplication group
of a finite field or the group of rational points
of an elliptic curve. Let g be a generator of C.
The decision Diffie-Hellman problem is to
decide whether or not 4. = g> for the given
quadruple (g1, A1, g2, h2) of elements in C with
h = g5 for some 1 <a <p - 1. If so, we say that
(g1, h, g, h») is a Diffie-Hellman quadruple.
The integer a is the trapdoor of the decision
Diffie-Hellman problem. Knowing the trap-
door a, we can efficiently decide whether or
not . = gb.

The DDH problem can be characterized as
the subgroup membership problem for a cer-
tain group as follows. We set G to be the
direct product Cx C. Then the input to the
DDH problem is (x, y), x, yeG, that is, x =
(g1, ) and y = (g2, h2). It is obvious that (gi,
hi, g, h2) is a Diffie-Hellman quadruple if and
only if y belongs to the subgroup < x > of G
generated by x. It follows that the DDH prob-
lem for the cyclic group C is equivalent to the
subgroup membership problem of the group
H=<x>x=(g,g),inthe group G=CxC
=< g1 >x < g1 >. Note that, when a generator x
of H is given, it is possible to choose uniform-
ly and randomly elements from H without the
trapdoor information.

We summarize the examples in Table 1.
We note that the table is not exhaustive at all.
We mentioned about algorithmic problems
equivalent to the subgroup membership prob-
lem in(171018] in detail. Seer171118] for fur-
ther information.

2.3 Probabilistic encryption

Goldwasser and Micali[s] introduce a
semantic secure probabilistic encryption
scheme, whose security is based on the QR
assumption. An encryption is called semantic
secure if the information leaked to a passive
enemy is computationally negligible. This
concept is a computational version of Shan-
non's perfect secrecy. The concept is signifi-
cant in modern cryptography.

The subgroup membership problem is
applied to a probabilistic encryption. See[16]
for a probabilistic encryption based on the
decision Diffie-Hellman problem.

Key generation:

Bob inputs 1* to a probabilistic polynomial
time algorithm /G, called instance generator,
and gets a pair (G, H) of groups and the trap-
door for the subgroup membership problem of
H in G, where k is the security parameter.
Every element of G is represented by a binary
sequence of length k. We assume the subgroup
membership assumption of H in G. Therefore,
Alice can generates elements in both and uni-
formly and randomly. Bob publicizes G and
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i[e]e)[=0 1| Subgroup Membership Problems

Related Group Applications
Problem Subgroup

DDH DLP C X C:Direct Product of Cyclic Groups | ElGamal
DH <{(g, h) >:Subgroup Generated by (g, h)

R | FACT(pg) | fxe Z |l =1}

Goldwasser—Micali[8]

i’ mod Nlxe Z,, |

*

RR FACT(pq) | Z,

Kurosawa-Tsujii[10]

x'mod N|x e Z),

PSUB | FACT(p*q)

{x‘x = g’”lyN mod N for
me Z/(p),ye (Z/(N)) )

Okamoto—-Uchiyama[13]
Naccache-Stern[11]

1y" mod Nlye Z,, {

DCR | FACT(pq)

{x|x = ¢"y" mod N’
me Z/(N),ye (Z/(N*)")

Paillier[14]

1" mod N

veZyi

H, but keeps the trapdoor information for the
subgroup membership problem of H secret.
Encryption:

Suppose Alice encrypts a message
M=b:b2bs...n:1, where b: belongs to {0, 1} for
every i=1, 2, 3, ..., [. For every b:(1 <i <),
Alice generates random element r:;, where 7
belongs to H if b: = 1, and b: belongs to G\H
otherwise. Then the sequence of group ele-
ments (71, 2, 13, «--, 1) is an encrypted message
for M. We note that the encrypted message is a
random element in the direct product Six S X
S3x...S,, where Si = Hif bi=1, and Si = G\H
otherwise. So the encryption is probabilistic.
Decryption:

Bob knows the trapdoor for the subgroup
membership problem of H in G. Hence, he can
decides whether or not each element belongs
to H in polynomial time in the security para-
meter k.

Security:

An encryption scheme is semantic secure,
if any adversary cannot computationally dis-
tinguish two ciphertexts of two messages of
the same length. This means that no proba-
bilistic polynomial time algorithm can distin-
guish two ciphertexts Ci and C-. It follows that
the encryption above is semantic secure if and

only if no probabilistic polynomial time algo-
rithm can distinguish two direct products Six
Sax §3x .8 and S1xS2xS3x...S:.. Thus, the
encryption is semantic secure under the sub-
group membership assumption for H in G.

2.4 Bit commitment

Another possible application of the sub-
group membership problem is the bit commit-
ment scheme. We briefly describe a bit com-
mitment scheme based on the subgroup mem-
bership problem. Seel16] for a bit commit-
ment scheme based on the decision Diffie-
Hellman problem.

Key generation:

Alice inputs 1* to an instance generator /G,
and gets a pair (G, H) of groups and the trap-
door for the subgroup membership problem of
H in G, where k is the security parameter. We
assume the subgroup membership assumption
of H in G. Alice publicizes G and H, but keeps
the trapdoor information for the subgroup
membership problem of H secret.
Committing:

Alice commits her bit b in (0, 1). She also
generates uniformly and randomly an element
r according to her bit b so that r belongs to H
if b =1 and r belongs to G\H otherwise.
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Verifying:

Alice confesses her bit b to Bob, and gives
the trapdoor for the subgroup membership
problem. Bob can verify the membership of
the element r. Thus, we can use any subgroup
membership problem to construct a bit com-
mitment protocol. We note that the bit com-
mitment protocol can be used to construct a
coin flipping protocol as well.

3 Private information retrieval

Chor, Goldreich, Kushilevitz and Sudan3]
introduced the private information retrieval
scheme for remote database access, in which
the user can retrieve the data of user's choice
without revealing it. Their scheme attains
information theoretic security, however, the
database must be replicated in several loca-
tions where the managers are not allowed to
communicate each other. The computational
private information retrieval scheme was
introduced by Chor and Gilboa(41. Their
scheme attains more efficient communication
than Chor, Goldreich, Kushilevitz and Sudan's
model by sacrificing the information theoretic
security, nevertheless, their scheme enjoys
computational security by assuming the exis-
tence of pseudorandom generators. However,
their scheme still needs replication of the data-
base. Kushilevitz and Ostrovsky(g] introduced
a computational private information retrieval
scheme in which only one database is needed.
Their scheme depends on the intractability of
the quadratic residue problem. More efficien-
cy, polylogarithmic communication complexi-
ty, is attained by Cachin, Micali and Stadler
[21. They assume a number theoretic hypothe-
sis, which they call the ® assumption, and sac-
rifice one-round communication and then
obtain polylogarithmic communication com-
plexity. However, a rigorous proof of the
intractability of the ® assumption or its equiv-
alence to a widely used assumption like the
quadratic residue assumption or the integer
factorization is not given in[2]. We summarize
the known results on private information
retrievals in Table 2.

We briefly review the general scheme of a
private information retrieval (PIR for short)
scheme. A computational PIR scheme with a
single database is a protocol for two players, a
user U and a database manager DB. Both are
able to perform only probabilistic polynomial
time computation. The database manager DB
maintains a database, which is a binary
sequence X = xoxix2...x»1. The goal of the pro-
tocol is to allow U to obtain the i th bit xiv of
X without leaking any information on x: to DB.
The protocol runs as follows.

Step 1

U computes a query Query(i) using his
random tape (coin toss), which U keeps secret.
Then he sends Query(i) to DB.

Step 2

DB receives Query(i). He performs a poly-
nomial-time computation for the input X,
Query(i) and his random tape. The computa-
tion yields the answer Answer(Query(i)). He
sends Answer(Query(i)) back to U.

Step 3

U receives Answer(Query(i)). He performs
a polynomial-time computation using the
answer Answer(Query(i)) and his private
information (his random tape). The computa-
tion yields the i th bit xi.1 of the database.
Correctness

For any database sequence X and for any
query for i th bit of X, U obtains x:.: at the end.
Privacy

DB cannot distinguish a query for the i th
bit and a query for the j th bit by a polynomi-
al-time (probabilistic) computation with non-
negligible probability. Formally, for all con-
stants ¢, for all database of length n, for any
two 1 <14, j < n, and all polynomial-size family
of circuits Ck, there exists an integer K such
that for all k > K we have

]Prob(Ck (Query(i)) =1) -Prob(C, (Query()) = 1)|< o, (3‘ 1)

where k is the security parameter of the proto-
col and % = Gy -
Computation

Computations of both DB and U are
bounded above by a polynomial in the size n
of the database and the security parameter k.
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I[s]s) =274 Several Private Information Retrieval Schemes

Scheme Round Security Assumption Communication Number
Number Complexity of DBs
Chor, Coldreich,
Kushilevitz, 1 Information o(nl/3) =2
Sudan[3] Theoretical
Ambainis[1] 1 Information o(n**™) for 22
Theoretical k(>1)DB
Chor and 1 Existence of Pseudo | O(rn®) ¢>0 =2
Gilboal[4] Number Generators
Kushilevitz and 1 Quadratic Residue | O(n°) ¢>0 1
Ostrovsky[9] Problem Assumption
Ostrovsky and Multiple | Reduction to Read
Shoup[12] only scheme
Cachin, Micali 2 ® Assumtion Polylogarithmic 1
and Stadler[2]
Proposed Scheme Subgroup Membership | O(n°) ¢>0
1 Assumption 1
(e. g. DDH assumption)

3.1 PIR scheme based on the sub-
group membership problem

We show that the subgroup membership
problem can be applied to a PIR scheme by
modifying Kushilevitz and Ostrovsky's
scheme[9]. The proposed scheme has the same
communication complexity as Kushilevitz and
Ostrovsky's scheme whose security depends
on the QR assumption. On the other hand, the
security of the private information retrieval
scheme proposed in this paper is based on the
subgroup membership assumption. Therefore,
we can construct a private information
retrieval scheme based on any algorithmic
problems in Section 2.2, in particular, we can
use groups of rational points on elliptic curves
or multiplicative groups of finite fields under
the corresponding DDH assumption. We
should remark that all the private information
retrieval schemes proposed so far depend on
either the existence of pseudorandom number
generators or intractability assumption related
to the integer factorization. No private infor-
mation retrieval scheme based on the DDH
has been proposed, yet as far as the authors
know. Modifying(9l, we construct a PIR

scheme based on the subgroup membership
problem.

3.2 Basic idea

First of all, we explain the basic idea of
the scheme by a simple model. Suppose DB
has the database X = xoxix2...x»-1 and that U
wishes to know the i th bit xi-1 . U chooses
group elements go, g1, g2, ..., g1, ..., gn-1, SO that
giin H for j#i-1 and gj1 in § = G\H. Then U
sends them all to DB. DB computes the group
element g = gVgig, ..gio1, ..g -1 sends it
back to U. DB cannot get to know which of go,
g1, 82, ..., gi-l, ..., gn-1 comes from § if the sub-
group membership problem of H in G is
intractable. Since U possesses the trapdoor, he
can determine whether or not g lies in H. By
Proposition 1, g lies in H if and only if xi-1 = 0.
Therefore, U can obtain the i th bit xi.1. This
simple model illustrates the idea of using the
subgroup membership problem, but the com-
munication complexity is still large. We need
the trick by[g] to reduce the communication
complexity.
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3.3 Scheme

We now describe the private information
retrieval scheme using the subgroup member-
ship problem.
Step 0

The user U inputs 1* to the instance gener-
ator /G and then gets a pair (G, H) of groups
and the trapdoor for the subgroup membership
problem of H in G , where k is the security
parameter and every element of G is repre-
sented by a binary sequence of length k. We
assume the subgroup membership assumption
of H in G. The group G is shared by both DB
and U. On the other hand, U keeps the trap-
door information for the subgroup member-
ship problem of H secret. Computations of
both DB and U are performed in the group G.
Let X be the database managed by DB. We
suppose that X = xoxix2...x»1, where xi lies in
(0, 1), and that n = ¢!, where 1, [ are positive
integers.
Step 1

U computes a query Query(i) for his
desired bit xi1, where 1 <i <n, in the follow-
ing manner. First, U computes the ¢-adic
expansion of i. Let i = «o. Then the f-adic
expansion of i is 31 [i-1... B2 21, where

a=at+p 0<a, <t and0< B <t-1

o =a+p, 0<a, <t and0< B, <r-1

a,=at+f 0<a, <t and0< B, <t-1

..... (3.2)

= t+pf, 0<q_,<t-land0< f_ <t-1
0<qg_ =p=<t-1¢=0

For each u(1 <u <1), U chooses uniform-
ly and randomly #-1 elements g w0, gw 1), ..., g @
Bu-Ds & W, B+, oy 8w r-1) from H. He also chooses
uniformly and randomly g, s, from S = G\H.
U defines Q(u) by

(800)> 8wy»++ 881> Bwp)> 8w psny-8arn)  (3.3)

that is, Q(u) is a sequence of group elements
of G such that the u 3. th component is uni-
formly and randomly chosen from § = G\H
and the others are uniformly and randomly
chosen from H. Then, Q(1), Q(2), ..., Q)
comprise a query (denoted by Query}(i)) for
the i th bit xi+1 of X, and U sends Query(i) to
DB. Since each Q(u) consists of ¢ group ele-

ments from G, Q(u) is represented by kx ¢
bits. Thus, Query }(i) consists of kx ¢x [ bits.
Step 2

Receiving Query(i), DB constructs child
databases recursively from the original data-
base X . We regard X as the ¢"!x ¢ binary
matrix

Xo X X, X
xt xl+1 xl+2 x21—l

D(0,4) =
Xy, Xuy oo X,

where A denotes the empty sequence in {0, 1,
2, ..., k-1}*. We note that the target bit xi-1 is
the (a1, (1) entry of D(0, 1) (a1 and 31 are
obtained in (3.2)). Denote it by Target D(0, A).

We recursively define child databases D(u,
s), where 1 <u <] and s belongs to {0, 1, 2,
..., k-1}*. Suppose that we have defined the
databases D(u, s) and their target bits Target
D(u, s)and sin {0, 1,2, ..., k-1}"forO<u < -
1. Then we define the databases D(u+1, s0),
D(u+1, s1), ... D(u+1, s(k-1)).

The database D(u, s) is a binary sequence
of length #"*. We regard D(u, s) as a t'"!x¢
binary matrix. Suppose that

Yo N Yy oo Via

+ Y BT

D(0,2) = Y Y 142 2-1
yt"“-t yt""-x+1 """ yt""—l

We now construct k child databases,
D(u+1, s0), D(u+1, s1), ... D(u+1, s(k-1)).

Recall that Q(u) consists of ¢ group ele-
MeNts g ,0), @ Dy wey &, fu-D)y & W, fut)y ovy & 11 1N
G (defined in (3.3)). We define a group ele-
ment gv for eachrow v=0, 1, 2, ..., ! as fol-
lows.
We set

f = 8w lf D("':Xv’w) =1 (3 4)
(v,w) 1 Zf D(",S)(V-W) =0’ '

where D(u, s)(v, w) denotes the (v, w) entry of
D(u, s). Then we set

fD(u,s),v = H f&",“’) (35)

w=0,1,2,....t-1

for each row v =0, 1, 2, ... t'*!-1. Note
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that the group element fow, 5, »(0 < v < ¢t1-1)
is of size k, and that fpw, s, v belongs to H if
and only if D(u, s)(v, S«) = 0 by Propositionl
The r th child database D(u+1, sr)(0 < r<k-1)
is defined to be the sequence consisting of
go(r), gi(r), =+, g1, where gv(r) denotes the
r th bit of the representation of fpw, s),v. Hence,
we have the following matrix equation:

fi D(u,5),0

Fotwsn =(D@+1,50) D(u+1,s1) ... Du+Ls(k-1)) (3.6)

fn(u,s),z”""—l

where each fpw, s, v is a row vector and each
D(u+1, sr) is a column vector. Thus, D(u+1,
sr) is a binary sequence of length 77!, We
regard it as a "2 x ¢ binary matrix. Then the
target bit for it (denoted by Target (D(u+1, sr))
is defined to be the (au+1, Bu+1) entry of D(u+1,
sr) for every rin {0, 1, 2, ..., k-1} (au+1 and j3
«+1 are obtained in (3.2)).
Step 3

In the last stage of constructing child data-
bases, DB obtains k'-! databases

D(l-1, s)(s liesin {0, 1, 2 ,..., k-1}'"). Note
that each D(I-1, s) contains ¢ bits. We regard
D([-1, s) as a 1 xt matrix. For each D(I-1, s),
we define a group element A(s) as follows.
First, we define

| 8uwm ¥ DU-1,5)0,w)=1
f(o,w) IR if DI -1,5)(0,w)=0,

Then, we set

/i D(I-1,8),0 = f(o,w) = A(s),

w=0,1,2,...t-1

The group element A(s) is of size k for
every s in {0, 1, 2 ,..., k-1}"". Then the group
elements A(s)(s lies in{0, 1, 2 ,..., k-1}"") form
the answer Answer(Query(i)) to the query
Query(i), and DB sends Answer(Query(i)) to
U.

Step 4

U receives Answer(Query(i)) consisting of
A(s), where s belongs to {0, 1,2 ,..., k-1}"1. U
can retrieve the target bit xi; = Target (Do. ») in
polynomial time in k, n. In fact, the following
holds in general.

Theorem 2

For every database D, », where 0 < u <[-2
and s in {0, 1, 2 ..., k}*, U can compute Target
(D, ») in polynomial time in n, k if Target(Do1,
s0), Target(Daw+1, s1), ... Target(Da+1, si-1)) are
given.

Seer171118] for proof.

3.4 Privacy
In the proposed scheme, the query

Query(i) consists of Q(1), Q(2), ..., Q(), and
each Q(u) consists of

(80> 8wty 8> 8w )> 8w, > 8usn)

where one of the components is chosen uni-
formly and randomly from S = G\H and the
others are chosen uniformly and randomly
from H. The privacy is assured by the inequal-
ity

[Prob(C, (Query (i))=1)- Prob(C, ( Query(j))=1)|<o

where @ = Gawar . Hence, the privacy of the
proposed scheme is guaranteed by the sub-
group membership assumption by (3.1).

3.5 Communication complexity
In the first step, U sends

Query (1)=(Q(1),Q(2), -+, Q(1)).

Each Q(u) consists of ¢ group elements in G.
Since every element in G is represented by a
binary sequence of length k, the total bits sent
in this stage is [ xtx k. In the second step, DB
sends Answer(Query(i)) consisting of k!
group elements in G. Therefore, the total bits
sent in this stage is k"' xk=k'. Consequently,
the communication complexity is [tk +k' = In’
k + k'. Suppose that k=n° and 7=0(22), then
the communication complexity is O (n¢). See
(171018l.

3.6 Conclusion

We formalize QR problem and DDH prob-
lem as a membership problem and show that
several cryptographic protocols can be imple-
mented using the subgroup membership prob-
lem.In particular, we show that it can be
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applied to the private information retrieval example of such a scheme is given in[18]. We

schemes. This gives a first private information would like to apply the subgroup membership
scheme based on the DDH problem.A small problem to other cryptographic protocols.
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