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1  Introduction

Many public-key cryptosystems depend on
the difficulty of solving a few specific prob-
lems such as finding the prime factorization of
a composite number and the discrete loga-
rithm problem. While the existing systems
depending on the hardness of these problems
are considered secure, there is still deep con-
cern about the security of these systems. Shor
［8］invented a fast algorithm for prime factor-
ization and the discrete logarithm problem
based on quantum computing. Adleman［1］
also reported that a DNA computer solves a 7
vertex and 14 edge instance of the Hamilton-
ian path problem. An attempt to construct a
hardware specialized for factorization problem
is implementing. Therefore we should avoid
the situation that all the cryptosystems in hand
depend on a few principles. Our intention is to
provide backup cryptosystems for the current-
ly working cryptosystems depending on diffi-
culties of solving a few specific problems. We
propose a public-key cryptosystem as a first
step toward inventing a scheme of cryptogra-

phy using new technologies from mathematics
other than number theory. We employ the
modular group and import several ideas from
combinatorial group theory. The encryption
and decryption of our cryptosystem are based
on the uniqueness of a certain expression of an
element of the modular group and its action on
the upper half plane.

First, we briefly review a functional cryp-
tosystem which is the basic scheme of ours.
We give the definitions of a backward deter-
ministic system and a morphism between two
backward deterministic systems. Then we
demonstrate how to construct a backward
deterministic system using a group action on a
certain space.

Secondly, we recall basic results on com-
binatorial group theory. An amalgamated free
product of groups is introduced and explained.
The modular group is the group of 2×2 matri-
ces over rational integers with determinant
one. It is known that the modular group is an
amalgamated free product of finite cyclic
groups. We give a geometrical algorithm that
finds the normal form of a matrix in the modu-
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lar group using the action of the modular
group on the upper half plane. The algorithm
is very efficient because of its geometrical
nature.

Thirdly, we provide a public-key cryp-
tosystem in terms of a backward deterministic
system using the action of the modular group
on the upper half plane. A similar cryptosys-
tem using the modular group was introduced
in［14］. Our approach is different from them in
that ours is based on functional cryptosystem
and also our decryption algorithm is faster. We
explain the public key, the private key, the
encryption and decryption methods. We dis-
cuss security issues of the system.

2  Functional cryptosystems

The concept of a functional cryptosystem
was introduced to build a public-key cryp-
tosystem using grammar theoretical concepts
(see［4］［5］［10］［11］［12］). In this section we
review several concepts and terminologies.
Letχ be a set and f i a function ofχ intoχ
where I is a finite set. We suppose that there is
an element x∈χ such that if we have

where i 1, i 2, ..., i n1,  j 1, j 2 ..., j m∈I , k = 1, 2, ..., n
then n = m and i k = j k. The triple ({ f i(i∈I )},
x ,χ) is called a backward deterministic sys-
tem. Now let ({ f i(i∈I )}, x ,χ) and ({g i(i∈
I )}, y,γ) be backward deterministic systems.
The morphism φ of ({ f i (i∈I )}, x ,χ) to
({gi(i∈I)}, y,γ) is a mapping φ :χ→γ sat-
isfying φ(x) = y and alsoφ ° f i = gi °φ for
each i∈I . Assume that p = f i 1 ° f i 2 ° ... °
f in(x ). Let q = φ(p).

Then we have

Note that the morphism φ preserves infor-
mation on the sequence i 1, i 2, ..., i n. We employ

backward deterministic systems to construct a
public-key cryptosystem. The most significant
point in making up a public-key cryptosystem
is to supply a trapdoor. In the case of a func-
tional cryptosystem, the idea is to find two
backward deterministic systems with distinct
complexities and an effectively computable
morphism between them. We require that one
of the backward deterministic systems ({ f i(i
∈I)}, x ,χ) to be harder than the other in the
following sense: Let p = f i1 ° f i2 ° ... ° f in(x ).
If we are given the point p onχ, we have no
efficient way to find how we apply f i 's on x to
get the point p . We remark that there is a
unique way to obtain p by applying f i 's on x ,
since ({ f i(i∈I )}, x ,χ) is backward determin-
istic. On the other hand, the other backward
deterministic system ({gi(i∈I )}, y,γ) is fea-
sible, that is, if we have q = gi1 ° gi2 ° ... °
gin(y), there is an efficient algorithm that finds
how to apply gi 's on y to get q . A morphism
φ of ({ f i(i∈I )}, x ,χ) into ({gi(i∈I)}, y,γ)
is a part of the trapdoor of the cryptosystem.
We publicize the backward deterministic sys-
tem ({ f i(i∈I )}, x ,χ) and keep ({g i(i∈I )}, y,
γ) and φ secret. A message sender encrypts a
message i 1 i 2 ... i n into the composition f i1 ° f i2

° ... ° f in of the mappings, computes the point
p = f i1 ° f i2 ° ... ° f in(x ) onχ and then sends p
to a legal receiver. The legal receiver operates
the trapdoor φ to the encrypted text p and get
q = φ(p). Since φ is a morphism of the back-
ward deterministic systems, we have q = gi1 °
gi 2 ° ... ° gi n(y). Then the legal receiver can
obtain the sequence of the mappings gi1 ° gi2 °
... ° gin using the efficient algorithm for ({gi(i
∈I)}, y,γ). Hence, the original message i 1 i 2

... i n can be obtained by the legal receiver. On
the other hand, an eavesdropper may be able
to get a message p and ({ f i(i∈I )}, x ,χ) is
public information.

However, the eavesdropper cannot obtain
the sequence of mappings f i 1 ° f i 2 ° ... ° f i n

from the information p and the backward
deterministic system ({ f i(i∈I )}, x ,χ), since
the system ({ f i (i∈I )}, x ,χ) is intractable.
Therefore, the cryptosystem is secure in prin-
ciple. If we can find a pair of backward deter-
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ministic systems and a morphism satisfying
the computational complexity requirements,
we can employ them to build a public-key
cryptosystem. This type of a cryptosystem is
called a functional cryptosystem.

We now propose a functional cryptosys-
tem using a group action on a certain object in
mathematics. Let G be a group, χ a non-
empty set (or some other mathematical
object). We say that G acts onχ if there is a
mappingρ of G×χ intoχ(we usually denote
the imageρ(g, x) of (g, x) underρ by gx ) sat-
isfying the followings:

(i) For a , b∈G, and x∈χ, we have (ab) x
= a (bx ).

(ii) For x∈χ, we have 1x = x where 1 is
the identity element of G .

Suppose that a group G acts on a setχ.
Then each element g of G can be regarded as
a one-to-one function ofχ ontoχ under the
rule x → gx . Now we consider a homomor-
phismφ of a group G acting on a setχ to a
group H acting on a setγ. Assume that a map-
ping f ofχ intoγ satisfies f , (gx) = φ(g) f (x)
for each g∈G and x∈χ. Let g1∈G and x∈χ.
Suppose that (φ(gi) (i∈I )} f (x),γ) is a back-
ward deterministic system. Then clearly ({gi(i
∈I )}, x ,χ) is also a backward deterministic
system. The mapping f is a morphism between
two systems. We offer a concrete example of
such a functional cryptosystem using the mod-
ular group in Section 5.

3  Amalgamated free products

Combinatorial group theory is the research
of presentations of groups by generators and
relators. Many results concerning algorithms
on words or sequences on an alphabet have
been obtained in this area of mathematics. This
simply implies that concepts in combinatorial
group theory meshes the theory of algorithms
on words or sequences. In fact the modular
group is employed in［14］to construct a cryp-
tosystem. In this section we introduce several
concepts from combinatorial group theory for
our later use. For more details we refer the
reader to［2］［7］［9］. Letχ be a non-empty set

and R a set of words on X∪X -1. A group G is
said to have a presentation Gp(X│R) if G is a
quotient group of a free group F(X) on the set
X by the normal subgroup N generated by the
set R , that is, G = F(X)│N. An amalgamated
free product is one of the most important
constructions in combinatorial group theory.
Intuitively, a free product of groups G 1 and G 2

amalgamating a subgroup H is a group con-
taining groups G 1 and G 2 such that the inter-
section of G 1 and G 2 is exactly H . We now
give the formal definition of an amalgamated
free product of groups. Let G 1, G 2 be groups.
Suppose that H 1(resp. H 2) is subgroup of G 1

(or G 2). We also assume that φ : H 1→H 2 is an
isomorphism. Then the free product of G 1 and
G 2 amalgamating H 1 and H 2 is the group pre-
sented by

where this presentation is an abbreviated form
of the following presentation

provided that the groups G 1 and G 2 have the
presentations

The amalgamated free product is usually
denoted by G 1*H1=H 2G 2. We usually identify
the subgroups in the group G 1*H1=H 2G 2. The
most important aspect of an amalgamated free
product is that every element in an amalga-
mated free product is expressed uniquely in a
certain fashion. We introduce the concept of
the normal form of an element of an amalga-
mated free product of groups as follows: Let
G be the free product of groups G 1 and G 2

amalgamating H 1 and H 2, that is,

.

We consider coset decompositions of G 1

by H 1 and G 2 by H 2, respectively. Choose a
set of coset representatives for each decompo-
sition. Suppose that {a i│i∈I } is the set of
coset representatives of G 1 by H 1 and that {bi

│j∈J} is the set of coset representatives of G 2

by H 2. Therefore we have the coset decompo-

and .
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sitions

We suppose that an element g of the group
G is written as s1 s2 s3 ... sn-1 sn where sn is in H
= H 1 = H 2, each s k(k = 1, 2, ..., n-1) in not in
H, but belongs to either {ai│i∈I} or {bj│j∈J}
such that if s k is in the former set of coset rep-
resentatives then sk+1 is in the second set or
vice versa. Then we say that g has the normal
form s 1 s 2 s3 ... sn-1sn, and that the expression
s 1 s 2 s3 ... sn-1sn is of the normal form.

Proposition 1
Every element of G 1*H1=H2G 2 can be writ-

ten uniquely as a normal form, that is, if an
element g in G 1*H1=H2G 2 has two normal forms
s 1 s 2 s3 ...s n-1s n and t 1 t 2 t 3 ...t m-1t m, then we
have n = m and s j = t j for each j = 1, 2, ..., n.

For the proof, the reader is referred to［2］［7］
［9］. We now suppose that we are given a free
product G of finite groups G1 and G 2 amal-
gamating a subgroup H. We choose sets of
coset representatives of G1 and G 2 by H. Sup-
pose that g = u 1 u 2 ...u n,  is a product of alter-
nate elements from G1 and G 2 , that is, if ui∈
G 1 then u i+1∈G 2 and vice versa. We give an
algorithm that finds the normal form s 1 s 2 ...sn

of g as follows: 
Algorithm 1

INPUT: A decomposition u 1 u 2 ...un of an
element g in G 1 * H1 = H 2 G 2 as a
product of alternate sequence of
elements from G1 and G 2.

OUTPUT: The normal form s 1 s 2 ...sn of g.
Step 0)

We note that u 1∈G 1 or u 2∈G 2. We now
assume that u 1∈G 1. Then we have u 1 = s 1v 1

where s 1 is a representative of H in G 1 and v 1

∈H. We rewrite g as g = s 1v 1u 2u 3... u n. We
note that s 1∈G 1 and u 2∈G 2. In the case that
u 1∈G 2, we do the similar process.
Step 1)

We suppose that we have g = s 1s 2...s mvm

u tut+1...u n where v m∈H and s 1 is a representa-
tive of G 1 or G 2 , such that if s 1∈G 1 then s i+1

∈G 2 or vice versa and also if sm∈G 1 then ut

and .

∈G 2 or vice versa. If there is no u j in the
sequence, we have a sequence of the form g =
s 1s 2...s mvm where vm is in H . Set sm+1 { v m.
Then we return the normal form g = s 1s 2...sm

sm + 1 and the algorithm terminates.
Now we assume that sm is a representative

of G 1. Then u t is in G 2 and we can write vmut

= sm + vm +1 Where sm +1 is a representative of
G 2 and v m +1∈H.
Step 2)

If sm +1 H, then we have g = s 1s 2...sms m+1

vm+1ut+1...un. We should note that sm+1∈G 2 and
u t+1∈G 2. Then go to Step 1).

If s m +1∈H, then we have s ms m+1vm+1u t+1∈
G 1 since s m, u t+1∈G 1 and sm+1, vm+1∈H⊂G 1.
Then we have smsm+1vmvm+1ut+1 = s'mv'm where
s'm is a representative of G 1 and v'm∈H. Then
set sm { s'm. and vm { v'm. . Then we have g
= s 1s 2...smvmu t+2...un. We should note that sm∈
G1 and ut+2∈G 2 if it exists (as ut∈G 2).

In the case that sm is a representative of G 2

and u t is in G 1, we do the dual procedure.
Then go to Step 1).

At each stage of Step 2), the number of
uk's is reduced. Hence, the algorithm ends
within at most 2n+1 steps if the length of the
input is n . Therefore, Algorithm 1 takes only
linear time.

4  The modular group

The group of 2×2  matrices over rational
integers with determinant 1 is called the mod-
ular group and denoted by SL (2, Z ), that is,

This group appears often in the literature
of number theory, complex analysis, hyperbol-
ic geometry, discrete group theory and combi-
natorial group theory. The modular group has
been studied profoundly, and hence, we have a
lot of technology provided in those areas of
mathematics toward creating cryptosystems
using it. For more information on the modular
group, we refer the reader to［6］and［13］.

Let A and B be the matrices in SL (2, Z )
given by

.
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.

Furthermore, it is known that A and B
generate SL (2, Z ). As a matter of fact,SL (2,
Z ) has the presentation

.

This simply implies that SL (2, Z ) is the
free product of the cyclic group < A> of order
6 and the cyclic group < B> of order 4 amal-
gamating the cyclic group H = <A 3> = < B 2>
= {I , -I}, of order 2. Therefore, every element
of SL (2, Z ) is uniquely written as a normal
form. We choose

as the set of coset representatives of H in
< A>. We choose

as the set of coset representatives of H in
< B >. Then every element in S L (2, Z ) is
uniquely written as

where sn is in H and each s k(k = 1, 2, ..., n -1)
is A, A 2 or B such that if s k is in {A, A 2}, then
sk+1 is in {B} and vice versa. We note that s n =
±I since sn∈H = {I , -I}. 

We now note that there are infinitely many
choices for matrices A and B . We show how
to find matrices A 1 and B 1 that generate SL (2,
Z ) subject to the relations A 1

6
= B 1

4
= 1 and A 1

3

= B 1
2
. The followings are proved in［14］.

Proposition 2
For a matrix M∈SL (2, Z ), the matrices A 1

= M -1AM and B 1 = M -1BM generate SL (2, Z )
and satisfy the relations A 1

6
= B 1

4
= 1 and A 1

3
=

B 1
2
.

Proposition 3
There are infinitely many distinct conju-

gates of A and B

By the previous two propositions, there are
infinitely many choices for the matrices A 1

and B 1 generating SL(2, Z ) and subject to the
relations A 1

6
= B 1

4
= 1and A 1

3
= B 1

2
. We now

review the action of the modular group on the
upper half plane of the Gaussian plane. We
denote the upper half plane by H, that is,

where C is the field of all complex numbers
and Im(z) is the imaginary part of the complex
number z . Let M be a matrix in SL(2, Z ). A
fractional linear (Möbius) transformation f M

determined by the matrix M is given by:
For z∈C $z,

where

It is easy to see that for z∈H we have
f M(z)∈H. A group action of S L (2, Z ) on
SL (2, Z ) is naturally induced as follows:

For M in SL (2, Z ) and z∈H,

.

Obviously SL(2, Z ) acts on H in terms of
fractional linear transformation. The equiva-
lence relation on H is induced by the group
action as follows: For z 1, z 2∈C, z 1~z 2 if there
is M∈SL (2, Z ) such that Mz 1 = z 2. We refer
the interested reader to［6］and［13］ for the
details of the action of the modular group on
the upper half plane H. We now give a geo-
metrical algorithm that finds the normal form
(up to ±I ) for a given matrix M∈SL (2, Z )
with respect to the matrices A and B. We
define several regions on H(see Fig.1).
Let O be the region

.

Let P be the region

.

Let Q be the region

.



106 Journal of the National Institute of Information and Communications Technology  Vol.52 Nos.1/2   2005

Let R be the region

.

We note that O is the fundamental domain.
(See［6］or［13］) for more details of the funda-
mental domain.

We now describe the algorithm that for a
given point z∈H which is equivalent to y∈O
finds the matrix N such that Nz = y and its nor-
mal form using geometry on the upper half
plane.
Algorithm 2

INPUT: A point z∈H which is equivalent
to the point y in the interior of O.

OUTPUT: The matrix N such that Nz = y
and its normal form with
respect to A and B.

Step 0)
Let z be the given point. Let L be the

empty list ( ).
Step 1)

If z is in O, then return L and the algorithm
ends. Otherwise go to Step 2).
Step 2)

If z is in P, then set

and push A into L from the right hand side,
that is,

if L = (X 1, Xx, ..., Xn) where Xi is A, A2 or B.
If z is in Q, then set

and push A2 into L from the right hand side,
that is,

if L = (X 1, Xx, ..., Xn).
If z is in R, then set

and push B into L from the right hand side,
that is,

if L = (X 1, Xx, ..., Xn).
Then go to Step 1).

Fig.1 Upper Half Plane
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Proposition 4
The algorithm above stops within 2n + 1

steps if the length of the normal form for N is
n. Moreover, if L = (X 1, Xx, ..., Xn) where Xk is
A, A2 or B, then the normal form for N with
respect to A and B is X 1, Xx, ..., Xn up to ±I.

Proof: We note that A and B generate
SL (2, Z) and that O is a fundamental domain
of H. It follows that every point p on the upper
half plane can be written as 

where q is in O and M∈SL (2, Z).
Furthermore, it is easy to verify that

and

.

Suppose that N is in SL(2, Z) and that its
normal form is X 1, Xx, ..., Xn where Xk is A, A2

or B for each k = 1, 2, ..., n up to ±I . Take an
arbitrary point y from O. We can obtain infor-
mation of the first letter of the normal form by
the position of the point Ny on the upper half
plane. If X 1 is A, then Ny must lie in P. If X 2 is
A2, then Ny must lie in Q. If X 1 is B , then Ny
must lie in R. For instance, if X 1X 2 = AB , then
Ny must be in P and we obtain X 1 = A and X 2 =
B. Similarly we can deduce in other cases. We
should note that the algorithm ends exactly in
n steps if the length of the normal form is n.

To find the matrix N and its normal form
with respect to A and B, one can employ the
standard reduction algorithm (Algorithm
7.4.2. in［2］) to find a decomposition of the
matrix into some matrices and Algorithm 1,
however, Algorithm 2 seems much faster than
the combination of the reduction algorithm
and Algorithm 1. We should also remark that
since we can find the normal form for a matrix
M∈SL (2, Z ) with respect to the matrices A
and B within liner time using Algorithm 2, we
can also find the normal form for M with
respect to the other generators A1 and B1 of
SL (2, Z ) satisfying the relations A 1

6
= 1 = B 1

4

and A 1
3

= B 1
2

by using Algorithm 1 and Algo-

rithm 2 consecutively within linear time.

5  A functional cryptosystem using
the modular group

Let us define two backward deterministic
systems using the action of SL (2, Z ) on the
upper half plane and apply the scheme of
functional cryptosystems in Section 2. Let A 1

and B 1 be generators of SL (2, Z) subject to A 1
6

= B 1
4

= 1 and A 1
3

= B 1
2
. We have seen that there

are infinitely many choices for A 1 and B 1. We
choose a word V1, V2 on letters A 1 and B 1 such
that V1 and V2 generate a free subsemigroup of
SL (2, Z ), that is, if two words X 1 and X 2 on V1

coincides with V2 as elements of SL (2, Z ),
then X 1 and X 2 are identical as words on V1

and V2. Furthermore, we require that every
concatenation of V1 and V2 is in the normal
form with respect to A 1 and B 1, that V1 is not
an initial segment of V2 and that V2 is not an
initial segment of V1. For example, the matri-
ces (B 1 A 1) i and (B 1 A 1

2
) j form a freesubsemi-

group of SL (2, Z ) for all positive integers i
and j and satisfy our requirements. It is easy to
find such a pair of matrices in general using
the combinatorics on words. We choose a
matrix M arbitrarily from GL (2, C ) and set

Recall that GL (2, C ) is the group of all
2×2 invertible matrices on the complex num-
ber field C. We note that W 1 and W 2 are SL (2,
C ) since for each i = 1, 2 we have

We should note that SL(2, C ) acts on the
upper half plane H in the same way as SL (2,
Z ) acts on H in terms of fractional linear trans-
formations. Let χ = M-1H = {M-1q｜q∈H}. Let
p be a point on χ such that the point Mp is in
the interior of the fundamental domain O.

Therefore SL (2, Z ) acts faithfully on Mp
up to ±I , that is, if LMp = NMp for L, N∈
SL (2, Z) then we have L = ±N. Let fM : χ→H
be the fractional linear mapping defined by
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fM(q) = Mq. Let G = M -1SL(2, Z )M. The
homomorphism φ : G→SL(2, Z ) is given by
φ(N ) = MNM-1. Then it is easy to see that
fM(Nx) = φ(N ) fM(x) for each N∈G and x∈χ.
We can easily verify that ({W 1, W 2}, p,χ) and
({V 1, V 2}, fM(p), H) are backward determinis-
tic using the uniqueness of normal forms of a
matrix in the modular group. Obviously fM is a
morphism between them. We follow the
scheme described in Section 2 to build a func-
tional cryptosystem using these backward
deterministic systems.
Public-key: 

The public-key is the backward determin-
istic system ({W 1, W 2}, p,χ).
Private-key: 

The private-key is the backward determin-
istic system ({V 1, V 2}, fM(p), H).

We suppose that the plaintext to be sent is
the sequence i 1 i 2 ... i n where i k∈{1, 2} for k
= 1, 2, ..., n .
Encryption method:

Compute the matrix Wi 1, Wi 2, ..., Wi n and
call this matrix E. We note that

Then, let E act the point p onχ by the
fractional linear mapping determined by the
matrix E. Compute the point fE (p) = Eq and
call it q, that is, q = Ep. Since G acts onχ ,
the point q is onχ. Now the point q is sent to
a legal receiver. Therefore q is the cryptotext
for the original message i 1 i 2 ... i n.
Decryption method:

Employing Algorithm 2, the legal receiver
finds the normal form X 1, Xx, ..., Xl where Xk

is A or A2 or B for k = 1, 2, ..., l such that Mq
= X1 X2 ... Xl(MP). We denote the matrix X 1,
X x, ..., X l by N. Hence, Mq = N(MP). Since
SL(2, Z ) is generated by A and B, both A and
B are written as products of matrices A1 and
B1. We suppose that A = Z1(A1, B1) and B =
Z2(A1, B1) where Z1(A1, B1) and Z2(A1, B1) are
words on A1 and B1. By substituting Z1(A1, B1)
for A and Z2(A1, B1) for B , respectively, the
legal receiver gets 

where jk is 1, if Xk is A and jk is 2, if Xk is B.
Employing Algorithm 1, the legal receiver
obtains the normal form of N with respect to
A1 and B1. By the uniqueness of expression of
the normal form and our requirements on V1

and V2, the legal receiver obtains the sequence
Vi 1, Vi 2 ... Vi n, and hence, the original plain-
text i 1 i 2 ... i n .

6  Security issues

We briefly discuss security issues in this
section. Since the encryption and decryption
depend on the free semigroup structures of
subsemigroups of corresponding groups and
the conjugation by the elements of GL (2, C )
preserves the freeness of subsemigroups, an
eavesdropper may want to find a matrix N
such that NW1N -1, NW2N -1 are in SL(2, Z). If
the eavesdropper may be able to use Algo-
rithm 1 and Algorithm 2 to break the cryp-
tosystem. To find such a matrix N it is neces-
sary to solve a system of matrix equations

where U , V, N are unknown such that U, V∈
SL(2, Z) and N∈GL(2, C ). This system con-
sists of 11 equations of 12 variables over the
field of complex numbers. We note that if N is
found then V U , are automatically derived.
There are infinitely many solutions for this
system of equations in principle, because the
number of the variables is larger than the
number of the equations. We know a solution,
that is, the matrices M, V1 and V2 form one of
the solutions. There is no known algorithm to
solve the system of equations of this type as
far as the author knows. Numerical analysis
method may be able to work to solve the sys-
tem of equation, however, it gives just an
approximation of the solution N . Hence, we
do not know whether or not numerical analy-
sis method really works. Moreover, we can
possibly avoid such an attack by restrict the



109YAMAMURA Akihiro

field of complex numbers to a finite extension
field of the field of rational numbers. It is pos-
sible to realize the field operation of a splitting
field of an irreducible polynomial over the
field of rational numbers on computers. We
should also note that N is not necessarily
equal to M and that if N is distinct from M ,
the eavesdropper still has a problem to decrypt
the message because N does not necessarily
yield free generators of a free subsemigroup of
SL(2, Z ) satisfying our requirements. For,
even if matrices U1 and U2, words on genera-
tors A2 and B2 of SL(2, Z ) subject to the rela-
tions A 2

6
= 1 = B 2

4
and A 2

3
= B 2

2
, form a set of

free generators of a free subsemigroup, a con-
catenation of them is not necessarily in the
normal form with respect to A 2 and B2, and
hence, there is still a trouble to retrieve the
plain text. 

Another possible attack is to find the
matrix E and decompose it directly to the
product of W1 and W2. There might be a smart
way to find and decompose the matrix E . Of
course, if the matrix E is found, then the
eavesdropper can decompose E by guessing

the decomposition and then checking whether
or not it gives the correct answer. However,
this is a non-deterministic polynomial time
algorithm and so takes exponential time.
Hence, it is slow for the breaking the system.
Therefore, the backward deterministic system
(W1, W2, p ,χ) is considered intractable. On
the other hand, the backward deterministic
system (V1, V2, fM(p), H) is tractable because
we can employ geometry of the upper half
plane. In mathematics, geometry often pro-
vides a fast algorithm as Algorithm 2. The
first backward system is associated to the
space χ which is intractable, on the other
hand, the second system is associated to the
upper half plane that we have good under-
standing. The difference between the two sys-
tems lies in geometry.

7  Conclusion

We explain attempts in［14］［15］. There are
several research on attacks on the proposed
systems. We would like to take into considera-
tion such attacks and make a progress.

References
01 L.M.Adleman, “Molecular computation of solutions to combinatorial problems”, Science, Vol.266,

pp.1021-1024, Nov.11, 1994.

02 D.E.Cohen, “Combinatorial Group Theory : A Topological Approach”, Cambridge University Press,

1989.

03 H.Cohen, “A Course in Computational Algebraic Number Theory”, Springer-Verlag, New York, 1996.

04 J.Kari, “A cryptoanalytic observation concerning systems based on language theory”, Discr. Appl.

Math., Vol.21, pp.265-268, 1988.

05 J.Kari, “Observations concerning a public-key cryptosystem based on iterated morphisms”, Theor.

Compt. Sci., 66, pp.45-53, 1989.

06 N.Koblitz, “Introduction to Elliptic Curves and Modular Forms”, Springer-Verlag, New York, 1991.

07 R.C.Lyndon and P. E. Schupp, “Combinatorial Group Theory”, Springer-Verlag, New York, 1976.

08 P.Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum com-

puter”, SIAM J. Comp., Vol.26, pp.1484-1509, 1997.

09 J.J.Rotman, “An Introduction to Theory of Groups”, Springer, New York, 1995.

10 A.Salomaa, “A public-key cryptosystem based on language theory”, Computers and SecurityVerlag,

Vol.7, pp.83-87, 1988.

11 A.Salomaa, “Public-Key Cryptography”, Springer-Verlag, Berlin, 1990.

12 A.Salomaa and S. Yu, “On a public-key cryptosystem based on iterated morphisms and substitutions”,

Theor. Compt. Sci., Vol.48, pp.283-296, 1986.



110 Journal of the National Institute of Information and Communications Technology  Vol.52 Nos.1/2   2005

YAMAMURA Akihiro, Ph.D.

Group Leader, Security Fundamentals
Group, Information and Networks Sys-
tems Department

Information security, Cryptography,
Algebraic systems and their algorithms

13 J-P.Serre, “A Course in Arithmetic, Springer-Verlag, New York, 1973.

14 A.Yamamura, “Public-key cryptosystems using the modular group”, International Workshop on Practice

and Theory in Public Key Cryptography, LNCS, Vol.1431, Springer-Verlag, pp.203- 216, 1998.

15 A.Yamamura, “A functional cryptosystem using a group action”, Information Security and Privacy

(ACISP99), LNCS, Springer-Verlag, Vol.1587, pp.314-325, 1999.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


