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1  Introduction

In recent years, many electric appliances
have come to be equipped with microproces-
sors offering a range of additional functions.
The clock frequencies of the processors used
in personal computers (PCs) have also reached
the gigahertz range and are continuing to
increase every year. These electronic informa-
tion devices emit electromagnetic noise in a
wide frequency range—up to several giga-
hertz—and thus stand as potential sources of
interference in nearby wireless systems. As
shown in Fig. 1, the harmonics of the base
clock signals are predominant in the radiation
noise emitted by electronic devices in the
gigahertz band［1］. Characteristically, the har-
monic spectrum is not a line spectrum but
instead displays a certain bandwidth. This is a
result of the technique used in these devices of
intentional modulation of the clock signal fre-
quency (alternately referred to as Spread
Spectrum Clock, or SSC; Clock FM; or
Dithered Clock). When SSC is used, the band-
width of the harmonics of the clock signal is

broadened, while the peak amplitude of the
spectrum is reduced. The SSC technique thus
found wide use beginning in the late 1990s in
electronic information devices such as PCs,
measurement equipment, wireless systems,
and in-vehicle electronic devices, as a method
of reducing the peak value of the noise
spectrum［2］-［6］.

When measuring the noise from electronic
devices featuring SSC, it should be noted that
clock frequency modulation reduces the power
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Fig.1 Example of PC noise spectrum.
Measured at a distance of 1 m
using LPDA (Log Periodic Dipole
array Antenna) and DRGA (Double
Ridged Guide horn Antenna)［1］.
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spectral density of the harmonics of the clock
but not the power of the harmonics. In other
words, when the emission limit for an elec-
tronic device is specified in terms of the peak
value of the amplitude spectrum, introducing
SSC can increase the power of the harmonics
while maintaining the measured noise level
within the allowed range. It has also been clar-
ified that reducing the spectral peak values via
SSC does not always reduce the effects on
wireless systems［7］-［13］.

Generally, the spectrum reduction effect
by SSC depends on the frequency deviation,
modulation frequency, and modulation wave-
form of the frequency-modulated harmonics.
This effect is also significantly influenced by
the resolution bandwidth of the receiver. How-
ever, these dependent relations given the con-
ditions indicated above have not been formal-
ly established. This is because analytical treat-
ment of the spectrum of a signal frequency-
modulated with an arbitrary waveform is diffi-
cult, because frequency modulation is a non-
linear process. This report describes theoreti-
cal estimation of reducing amplitude in the
harmonic spectrum caused by SSC, consider-
ing finite resolution bandwidths in spectral
measurement. Section 2 introduces a math-
ematical representation of the harmonic spec-
trum observed with finite frequency resolution
and discusses the effects of the frequency
modulation parameters. Section 3 shows a
simple formula for evaluating the amount of
reduction in the harmonic spectrum by SSC. 

2  Frequency modulation of clock
signals and spectra

2.1  Frequency-modulated clock sig-
nals

Let us denote the fundamental frequency
of the periodic clock signal, u(t), as f0. When
the clock signal is not frequency-modulated,
this signal can be expressed in the following
Fourier series.

(1)

Here, Im0 is the complex Fourier coeffi-

cient for the m-th order harmonic. Next, let us
assume that the clock signal u (t) is frequency-
modulated with the modulating waveform
V(t), as in the following equation.

(2)

Here, δ(1≫δ>0) is the maximum fre-
quency deviation normalized by frequency f0.
The range of V(t) is [－1,1], and its period is
assumed as Tsw (≫1/f0). The frequency-modu-
lated clock signal ud(t) and its spectrum Ud( f )
can be obtained by replacing the time t in
Equation (1) with t’ given by Equation (3).

(3)

Here,

(4a)

(4b)

According to Equation (4), the frequency-
modulated clock signal ud(t) is a superposition
of frequency-modulated harmonics denoted as
Im(t) with a complex representation. The cen-
ter frequency of the m-th order harmonic Im(t)
is mf 0, the modulation waveform is V(t), and
the maximum frequency deviation is mδf 0. As
the frequency modulation uses a periodic
function V(t) with a period Tsw, the harmonic
spectrum Im( f ) consists of line spectra equally
spaced by fsw(= 1/Tsw). However, in reality,
most of the power is concentrated in the range
of approximately 2mδf 0 around the center fre-
quency mf 0. Thus, within the range of m for
which mδf 0≪1 holds, the overlap between the
adjacent harmonic spectra Im( f ) and Im+1( f ) is
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negligible, such that we can focus our discus-
sion on a single harmonic.

It should be noted that the clock signal
waveform received by a measuring receiver is
affected by transfer function Hsys( f ), which
reflects the characteristics of the clock trans-
mission system and the measurement system.
Thus, the clock signal spectrum Urx( f ) input
to the receiver is generally expressed with the
transfer function Hsys( f ), as in the following
equation.

(4b’)

Equation (4b’) shows that the effects of
SSC on the harmonic spectrum can be isolated
from the effects of the transfer function
Hsys( f ) for evaluation. Thus, our discussion
continues under the assumption that the trans-
fer function satisfies Hsys( f ) = 1.

2.2  Frequency-swept harmonic spec-
trum measured with finite frequen-
cy resolution bandwidth

Figure 2 shows a block diagram of a spec-
trum analyzer. When a harmonic Im(t) is input
to the spectrum analyzer, the input signal is
band-limited by a band-pass filter with a reso-
lution bandwidth of B and then subject to
envelope detection. The spectrum obtained
shows the maximum value [peak spectrum

S peak( f )] or the root-mean-square (rms) value
[rms spectrum, S rms( f )] of the envelope ampli-
tude as a function of the center frequency f of
the filter. Thus, it should be noted that the dis-
played spectrum differs from the Fourier
transform I m( f ) of the input signal I m(t ).
Spectrum S ( f ) measured for the harmonic
I m(t ) is expressed as in the following equation.

(5)

Here, h (t, f c ) is the complex impulse
response of the band-pass filter with center
frequency f c and bandwidth B , and h 0(t ) is the
complex envelope of h(t, f 0). I b(t, f c) is the har-
monic band-limited by the filter. T is the inte-
gration time for obtaining the rms value and is
assumed as sufficiently longer than the modu-
lation period of the harmonic. We denote the
harmonic spectrum measured by the spectrum
analyzer as S peak( f ) or S rms( f ) and distinguish
this from spectrum Im( f ), which is defined by
the Fourier transform.

The convolution integral of Equation (5)
can be further processed by the two types of
approximation below according to the rela-
tionship between bandwidth B s w given by
Equation (6) and resolution bandwidth B［14］.

(6)

Bandwidth B sw corresponds to the square
root of the average rate of change in frequency
of the harmonic.

(1) When the resolution bandwidth satisfies
B>Bsw

(7)

Here, f (t ) is the frequency change of the
clock signal given by Equation (2); d is the
transmission delay of the filter; and H(f, f c) is
the Fourier transform of h(t+d, f c). The ampli-

Fig.2 Block diagram of spectrum mea-
surement using spectrum analyzer
a) Peak spectrum: Speak( fc)
b) rms spectrum: Srms( fc)
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tude of the band-limited harmonic changes
according to the amplitude of the transfer
function of the filter, |H (m f (t ), f c)|, at the
instantaneous frequency m f (t ). A spectrum
analyzer is generally designed to display the
amplitude accurately for input without fre-
quency modulation at the same frequency as
the center frequency f c of the receiving filter.
Thus, we can assume |H(f c, f c)| = 1.

Therefore, when the approximation (7)
holds, then in Equation (5) the maximum
amplitude of the envelope of the band-limited
harmonic is max|I b(t, f c)| = |I m 0||H (f c, f c)| =
|I m0| for the frequency range of mf 0(1－δ) to
mf 0(1+δ). This resultant maximum amplitude
of the band-limited harmonic is the same as
that of the harmonic before band limitation. In
other words, SSC has no effect of reduction on
the harmonic spectrum S peak( f ) in this case.
(2) When resolution bandwidth satisfies B≪

Bsw

The convolution integral in Equation (5)
can be expressed with the following asymptot-
ic approximation.

(8)

Here, t n(n is an integer) is the time that
satisfies m f (t n ) = f c . According to the
approximation (8), the band-limited harmonic
can be expressed by applying weighting coef-
ficient (－jmf ’(t n))－1/2 to the sequence of the
complex impulse response h (t－t n, f c) of the
filter, generated at each time t n. When the res-
olution bandwidth B is reduced, the maximum
value hmax of the envelope amplitude |h(t )| of
the impulse response is also reduced. When
h max |mf ’(t )|≪1 holds, the maximum ampli-
tude of the harmonic spectrum S peak( f )
becomes smaller than |Im 0|. The reduction in
amplitude corresponds to the effect of SSC.

2.3  Form of harmonic spectrum
Here, we will examine the example of a

clock signal frequency-modulated by a trian-
gular wave with a period of 25μs, as shown in
Fig. 3a). Many SSC systems use triangular
waves for modulation as these waveforms pro-
vide greater spectrum reduction than square or

sinusoidal waves［2］［9］. Figure 3b) shows the
peak spectrum S peak( f ) of the harmonic. This
spectrum is obtained by a numerical simula-
tion for peak spectra measured by a spectrum
analyzer with an ideal Gaussian filter with a
bandwidth of 100 kHz. Here, the vertical axis
is normalized with the amplitude |Im 0| of the
harmonic. The harmonic spectrum features a
trapezoidal form with quasi-periodic ripples at
both edges of the spectrum. An amplitude
increase of 5.2 dB at maximum is also
observed near the edges of the spectrum as
compared with the value at the center frequen-
cy mf 0 of the harmonic

The characteristics of the spectral form
can be explained as follows. In the example
indicated in Fig. 3, the receiver filter is a
Gaussian filter with a bandwidth B of 100 kHz.
The pulse width of the impulse response of
this filter is shorter than the modulation period
T s w = 25μs of the frequency modulation.
Thus, when the approximation of Equation (8)

Fig.3 Triangular modulation waveform
and peak spectrum of FM harmon-
ic (maximum frequency deviation :
mδf0 = 5 MHz)
a) Modulation waveform: V(t) (fsw = 40 kHz)
b) Peak spectrum (RBW = 100 kHz)
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is applied, the harmonic I b(t) band-limited by
this filter becomes a sequence of discrete
impulse responses, the envelope of which is
indicated in Fig. 4c). The impulse responses
are generated at the time the instantaneous fre-
quency mf 0(1+δV (t )) equals the center fre-
quency f c of the filter. When the center fre-
quency f c of the filter approaches mf 0(1+δ)
from mf 0, the overlap between the adjacent
impulse responses grows large, as indicated in
Fig. 4b), causing conspicuous interference
between these impulses. When the center fre-
quency f c of the filter is varied, the phase dif-
ference φ between the interfering impulse
responses also changes (In the example above,
this phase difference is a quadratic function of
the center frequency f c) resulting in a change

of the maximum amplitude of the envelope.
Consequently, the quasi-periodic ripples
appear in the spectrum S peak( f ). The amplitude
variation in the spectrum is at maximum when
the frequency approaches m f 0(1+δ) and
mf 0(1－δ), because the two adjacent impulse
responses overlap almost fully at these fre-
quencies. Figure 3b) compares the spectrum
S paek( f ) obtained by an exact computation of
Equation (5) with the result of approximation
taken from Equation (8). These two values
agree well throughout most of the spectrum.
These results indicate that Equation (8) serves
as an appropriate approximation.

2.4  Effects of frequency modulation
parameters on the harmonic
spectrum

2.4.1  Effects of modulation frequency
and frequency deviation

The reduction in the harmonic spectrum
using SSC generally depends on the modula-
tion parameters: frequency deviation, mδf 0;
modulation frequency, f sw = 1/T sw; and modu-
lation waveform, V(t ). The extent of reduction
also depends on the frequency resolution
bandwidth B used in spectrum measurement.
Here, we will briefly describe the ranges of
values for modulation parametersδand f sw, as
used in practical SSC systems. First, the nor-
malized frequency deviationδ is chosen tak-
ing the following issues into consideration.
1) As shown in Equation (8), the harmonic

spectrum S ( f ) decreases in proportion to
mδf 0－1/2. Thus, the frequency modulation
effect is larger with a greater value of fre-
quency deviation δ.

2) For the harmonic order m such that the nor-
malized frequency deviation δ exceeds
2/m , the major portions of the harmonic
spectra I m( f ) and I m +1( f ) overlap. As a
result, the maximum value of spectrum
S peak( f ) increases.

3) When the frequency deviation grows too
large, the risk of the loss of clock synchro-
nization increases. In a commercial SSC
system, the value ofδ ranges approximate-
ly from 0.5 percent to 2 percent［9］. 

Fig.4 Band-pass filter output for frequen-
cy-modulated harmonic
a) Instantaneous frequency of harmonic: mf (t)
b) Envelope amplitude of band-limited har-

monic: |Ib(t, fc1)|. When the center frequency
fc1 of the filter is close to frequency mf0(1+δ)
the overlap between the impulse responses,
h(t-tn, fc1) and h (t-tn+1, fc1), is large.

c) Envelope amplitude of band-limited har-
monic: |Ib(t, fc2)|. When the center frequency
fc2 of the filter is close to frequency mf0 the
overlap between the impulse responses can
be ignored.
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Next, the modulation frequency f s w is
determined taking the following issues into
consideration.
1) To avoid interference with FM broadcast-

ing, the modulation frequency is set slightly
higher than audible frequencies［8］［9］. 

2) As discussed in the previous section, the
effect of frequency modulation in the clock
appears only when the resolution band-
width B of the measurement equipment
(i.e., of the spectrum analyzer) is smaller
than the bandwidth Bsw defined in Equation
(6). For example, with a value ofδof 1 per-
cent, mf 0 of 1 GHz, and a receiving band-
width B of 1 MHz, the modulation frequen-
cy f sw satisfying this condition is 25 kHz or
greater.

3) As discussed below, when the modulation
frequency f s w is significantly larger or
smaller than the resolution bandwidth B,
the effect of SSC is reduced.

4) As the modulation frequency increases, it
becomes increasingly difficult to generate
the frequency-modulated clock strictly in
accordance with a desired modulation
waveform. This is mainly due to two fac-
tors: first, the sampling frequency (which
must be sufficiently large relative to modu-
lation frequency) at readout of the modula-
tion waveform data becomes extremely
high; and second, the phase noise of the
clock increases with an increase in modula-
tion frequency［3］.
As indicated in Reference［6］, many sys-

tems use modulation frequencies within the
approximate range of 30 kHz to 50 kHz.
2.4.2  Effects of modulation waveform

[6]
(1) A modulation waveform that minimizes

the spectral peak
When a triangular wave is used as the

modulation waveform, the peak spectrum
S peak( f ) of the harmonic increases at the edge
[where the frequency approaches m f 0(1+δ)
and mf 0(1－δ)]. If the derivative |V’(t)| of the
modulation waveform is large near the point at
which the waveform V(t) is at local maximum
or local minimum, the rate of frequency

change is also large at the instant the frequen-
cy deviation of the harmonic is large. For this
reason, and as expected based on Equation (8),
the increase in level at the edge of the harmon-
ic spectrum is suppressed. As a result, the har-
monic spectrum S peak( f ) features a flatter
envelope in the major part of the spectrum
[from mf 0(1+δ) to mf 0(1－d)] (Figure 5 shows
an example), and the maximum value of the
peak spectrum becomes smaller.

Reference［8］shows an “optimal” modula-
tion waveform as a polynomial of time, that
minimizes the maximum value of the spec-
trum. However, this waveform is empirically
obtained, and the theoretical basis—or method
of determination—of the optimal modulation
waveform remains unstated. Below, we show
the conditions for a modulation waveform that
minimize the maximum value of the spectrum
S peak( f ).

As discussed earlier, the ripple of the peak
spectrum S peak( f ) of the harmonic can be

Fig.5 Modulation waveform and spec-
trum of frequency-modulated har-
monic 
a) Modulation waveform (modulation frequen-

cy: fsw = 40 kHz)
b) Spectrum: Speak( f ) (mδf0 = 5 MHz, RBW =

100 kHz)



107MATSUMOTO Yasushi et al.

understood as being formed due to in-phase
interference between the impulse responses of
the filter caused by band-limiting of the fre-
quency-modulated wave. Thus, the maximum
amplitude of the peak spectrum can be evalu-
ated as the sum of the envelope amplitudes of
the individual impulse responses as derived
from Equation (8).

(9)

Here, f peak is the frequency at which the
spectrum S peak( f ) takes a peak value, and
max(*) indicates the maximum value of a
variable that is a function of time t . Generally,
when the frequency f peak changes, time t n and
S peak( f peak) also change. If the maximum
amplitude given by Equation (9) is constant
for different values of the frequency f peak(in
other words, if the top of the spectrum S peak( f )
takes a flat envelope), the modulation wave-
form V (t ) can be regarded as optimum. The
condition for such a waveform is given by the
following equation.

(10)

Equation (10) shows that the maximum
value of the waveform obtained by summing
the envelope amplitude he(t－t n) of the impulse
responses with the amplitude weight |mf’(t n)|－1/2

is constant for different values of f peak.
Here, let us add the condition that the rate

of frequency change is the same for all values
of time that share the same instantaneous fre-
quency. In other words, let us assume

(11a)

or

(11b)

At the least, as shown in Fig. 4c), with

small overlap between adjacent impulse
responses, the condition given by Equation
(11) is considered valid. This is due to the fact
that if the rate of frequency change | f’(t)| has
different values, the smallest value produces
the largest amplitude weight |mf ’(t n)|－1/2 in the
impulse response, and thus increases the peak
of the spectrum S peak(f peak). In Equation (11), if
the center frequency of the filter changes from
f c to f c+∆ f c, times t 1 and t n change to t 0+∆ t 0

and t n+∆ t n, respectively, to satisfy f c+∆ f c =
m f (t 0)+m f ’(t 0)∆ t 0 = f c +m f ’(t 0)∆ t 0 and
f c+∆ f c = mf (t n)+mf ’(t n)∆ t n = f c+mf ’(t n)∆ t n,
respectively. Thus, f ’(t 0) = f ’(t n)(∆ t n/∆ t 0)
yields the following condition.

(12)

The condition given by Equation (12)
shows that the modulation function V (t ) is a
periodic function and that it is symmetrical in
time. As we defined in Equation (2) the period
of V (t ) as T sw and its range as [－1,1], if we
take the initial value of V(t ) as V(0) = 1, we
obtain the following conditions.

(13)

(14)

From the periodicity and symmetry we
have indicated in Equation (13), the arbitrary
time t n that satisfies f p = mf(t n) is expressed
with reference time t 0 (which varies between 0
and Tsw/2) and with an integer k as t 0+kT sw or
－t 0+k T s w . From the conditions in Equation
(11), the rate of frequency change |mf’(t n)| at
t n for an arbitrary n is equal to |mf ’(t 0)|. These
conditions in turn simplify the condition of
Equation (10) as follows:
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(15a)

or

(15b)

Here, the summation with respect to k in
Equation (15) is sufficient if taken for the inte-
ger k , for which |h (kT sw)| is not negligible
compared to the maximum value of |h (t )|. In
the time rage of 0<t<T sw/4, the modulation
waveform V (t ) is obtained by solving the
first-order differential equation (15) under the
conditions given by Equation (14).

(16)

The modulation waveform for other values
of time is also obtained easily using the peri-
odicity and symmetry of V (t ). The optimal
modulation waveform V (t ) is obtained using
the function h m(t ) defined by Equation (15) as
follows.

(17)

Equation (17) gives the optimal modula-
tion waveform if the envelope h e(t ) of the
impulse responses of the receiver filter used in
the spectrum analyzer is given analytically or
numerically. Although the modulation wave-
form depends on the filter characteristic he(t )

and modulation frequency f sw, this waveform
does not depend on the order m of the har-
monic nor on the maximum frequency devia-
tion mδf 0. Thus, as long as overlap of harmon-
ic spectra with adjacent orders can be ignored,
the optimal modulation waveform for a cer-
tain-order harmonic is optimum for any other
harmonics. However, it should be noted that
different resolution bandwidths are specified
for different measurement frequencies in prac-
tical EMI measurement.
(2) Optimum modulation waveform and har-

monic spectrum for ideal Gaussian receiv-
er filter
A filter that determines the frequency res-

olution of a spectrum analyzer generally has a
frequency selectivity that can be approximated
with a Gaussian filter. Thus, here we postulate
an ideal Gaussian filter with a resolution band-
width of B (－3 dB-bandwidth). The transfer
function of the filter and the envelope of its
impulse response are expressed as follows.

(18)

(19)

When the resolution bandwidth B is wider
than the modulation frequency, the amplitude
of the impulse response envelope decays suffi-
ciently in half of the sweep period TSW, so it is
sufficient to consider only k = 0; in other
words, only the adjacent impulse responses
are included in Equation (17).

(20)

The modulation waveform V(t) is given by
the following equation.



109MATSUMOTO Yasushi et al.

(21)

We applied an approximation of hm(t 0) as
h e(0) for a t 0 that satisfies h e(－t 0)+h e(t 0)<
h e(0), in order to obtain the analytical form of
V (t ) as given by Equation (21). When the
bandwidth B is wider than 21/2 (4 log2)/π (or
approximately 1.25) times the modulation fre-
quency, this approximation provides sufficient
accuracy in practice. As many SSC systems
use a modulation period of 20–30μs, this
application is valid when bandwidth B is
approximately 70 kHz or greater. When band-
width B is narrower, the modulation wave-
form can be obtained by direct numerical inte-
gration of Equation (17).

On the other hand, Reference［8］indicates
the equation below as the optimal modulation
waveform. We therefore now compare this
modulation waveform with the waveform
based on Equation (17).

(22)

Figure 5a) compares the modulation wave-
form of Equation (21) (with B = 100 kHz)
with the modulation waveform given by the
polynomial of Equation (22). These wave-
forms agree well. Figure 5b) shows the results
of numerical simulation of the harmonic spec-
trum S peak( f ) for each modulation waveform.
The receiver filter is assumed to be a Gaussian
filter with a bandwidth of 100 kHz. The verti-
cal axis is the spectrum S peak( f ) normalized by

the amplitude |I m0| of the harmonic [in other
words, by the maximum value of the harmonic
spectrum S peak( f ) without modulation]. Both
modulation waveforms produce mostly flat
spectra. The maximum value of the normal-
ized amplitude of the spectrum S peak( f )/|Im0| is
－12.6 dB for Equation (21), and this value is
0.8 dB smaller than the value produced by the
polynomial of Equation (22). On the other
hand, when the modulation frequency is
assumed to be 10 kHz, the modulation wave-
forms given by Equations (21) and (22) differ
as shown in Fig. 6a). As shown in Fig. 6b), the
modulation waveform produced by the poly-
nomial of Equation (22) does not result in a
flat spectrum, and it cannot be said to be opti-
mum.

Figure 7 compares the modulation wave-
form V (t ), based on Equation (17), obtained
for various values of the modulation frequen-
cy f sw for a Gaussian filter with a bandwidth
of B = 100 kHz. (The figure shows the range

Fig.6 Modulation waveform and spec-
trum of frequency-modulated har-
monic 
a) Modulation waveform (modulation frequen-

cy: fsw = 10 kHz)
b) Spectrum: Speak( f ) (mδf0 = 5 MHz, RBW =

100 kHz)
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0< t< T sw/4.) When the modulation frequency
is f sw≫B , the optimum modulation waveform
has a shape close to that of a triangular wave.
This is because the duration of the impulse
response with the filter is shorter than the
modulation period T sw to a sufficient degree,
such that interference between the impulse
responses can be ignored most of the time, and
hence the function h m(t 0) takes a nearly con-
stant value [= max(h e(t ))]. Consequently, the
modulation waveform becomes a triangular
wave with a constant frequency variation rate.
On the other hand, when f sw≪B, the sweep
period T sw becomes extremely short relative to
the duration of the impulse response. The
function h m(t 0) (for 0<t 0<T s w /2) then also
approaches a constant value that does not
depend on t 0, and the optimum modulation
waveform V(t) asymptotically converges to a
triangular wave.

(23)

3  Evaluation of the reduction of
harmonic spectra by Spread
Spectrum Clocking

3.1  Investigation of the reduction of
spectral amplitude［16］

A peak spectrum S peak( f ) and an rms spec-
trum S rms( f ) obtained by a spectrum analyzer
are given by Equations (4b) and (5). As dis-
cussed in Section 2.2, the convolution integral
for acquiring the band-limited waveform I b(t)
of the frequency-modulated harmonic can
adopt different approximations according to
the frequency change rate Bsw2 of the harmon-
ic [Equation (6)] and the resolution bandwidth
B . Here, we investigate the reduction of the
spectral amplitude as observed in each case.
(1) Case Ⅰ: B>Bsw

When the approximation (7) is applied to
Equation (5), S peak( f ) and S rms( f ) can be
expressed as follows.

(24)

As discussed earlier, the filter gain |H( f c,
f c)| of a spectrum analyzer can be generally
regarded to be 1, such that the maximum value
of the peak spectrum S peak( f ) equals the ampli-
tude of the input harmonic.
(2) Case Ⅱ: B≪Bsw and f sw≪mδf 0

Here, we again indicate the approximation
of Equation (8).

(8)

Here, t n(n : integer) is the time that satis-
fies m f (t n ) = f c . The approximation (8)
expresses the waveform produced by applying
the weighting coefficient (－jmf ’(t n))-1/2 to the
sequence of the complex impulse response
h(t－t n, f c) of the filter generated at time t n.
Here, based on the periodicity and symmetry
of the modulation waveform V(t ) as indicated
in Equation (13), it is assumed that an arbi-

Fig.7 Comparison between optimum
modulation waveforms for different
modulation frequencies fsw (RBW =
100 kHz, ideal Gaussian filter). The
figure shows a quarter-period of the
modulation waveform (0, Tsw/4).
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trary time t n that satisfies f p = mf (t n) can be
expressed, using reference time t 0 (which
varies between 0 and Tsw/2) and the integer k ,
as t 0+k T s w or －t 0+k T s w . It is also assumed
based on the conditions indicated in Equation
(11) that the rate of frequency change |mf’(t n)|
at time t n is equal to |mf’(t 0)| for an arbitrary
n . These assumptions hold for modulation
waveforms generally used in SSC, such as
periodic triangular waves and modified trian-
gular waves. Thus, Equation (8) can be
expressed as follows.

(25)

From Equation (25), the envelope ampli-
tude of the band-limited harmonic is given by
the following equation.

(26)

Here, h e(t ) indicates the envelope of the
impulse response of the receiver filter h(t , f c).
It should be noted that Equation (26) approxi-
mates the rate of frequency change |mf ’(t 0)| of
the harmonic as the average value, B sw2

[defined by Equation (6)]. This approximation
is valid for periodic triangular waves. Equa-
tion (26) can be further simplified based on
the relationship between the resolution band-
width B of the spectrum analyzer and the
modulation frequency f sw(= 1/T sw).
2a) CaseⅡa: (B sw2 = 4mδf 0f sw≫B 2≫f sw2)

When the modulation frequency f sw is very
small relative to the resolution bandwidth B ,
the duration of the impulse response pulse is
much shorter than the modulation period T sw,
and thus the overlap of the impulse response

pulses in Equation (26) can be ignored except
for adjacent pulses. Thus, in order to investi-
gate the envelope amplitude of the band-limit-
ed harmonic, it is sufficient to consider only a
half cycle of the modulation waveform by let-
ting k=0 in Equation (26).

(27)

As the maximum value of the time varia-
tion of |I b(t, f c)| in Equation (27) corresponds
to the peak spectrum S peak( f c) we can now fur-
ther investigate the maximum value of this
peak spectrum [the maximum value of
S peak( f c) when f c is varied]. Equation (27)
expresses the superposition of two impulse
response pulses, h(t－t 0) and h (t+t 0), such that
S peak(f c ) takes its maximum value [here
|I b(t, f c)| is maximum with regard both to time
t and to frequency f c] if the following two
conditions are satisfied.
1) The peak of the impulse response pulse

envelope he(t－t 0) overlaps that of the adja-
cent pulse he(t+t 0).

2) The pulses, h(t－t 0, f c) and h (t+t 0, f c) inter-
fere in phase.
If we take t 0 = 0 in Equation (27), the

pulses h(t－t 0, f c) and h(t+t 0, f c) overlaps com-
pletely, so Condition 1) above is satisfied.
However, the phase difference of these pulses
is 2φ = π/2 in this case, in accordance with
Equation (26), and Condition 2) is not satis-
fied. Thus, numerical calculation is generally
required to find the maximum value of
S peak( f ). Nevertheless, we assume the condi-
tion t 0 = 0, allowing error [1/cos(π/4) (= 3 dB)
at maximum] to derive a simple approximate
expression. This leads to the approximate
maximum value for the peak spectrum
S peak( f ), as follows.

(28a)
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Similarly, the maximum value for the rms
spectrum can also be expressed as in the fol-
lowing equation.

(28b)

Here, the gain of the band-pass filter is
assumed |H(f c, f c)| = 1 at the center frequency.
In Equation (28), B imp and B n are referred to as
the impulse bandwidth and noise bandwidth of
the filter, respectively. Generally, B imp and B n

are on the same order as the resolution band-
width B(－3 dB-bandwidth), such that when B
is smaller than B sw to a sufficient degree, the
maximum value of the peak spectrum S peak( f )
is smaller than |Im0|, which is the peak spectral
amplitude of the harmonic without SSC.

On the other hand, in the rms spectrum
[Equation (28b)], when 2mδf 0/B sw = (mδf 0/
f sw)1/2≫1 holds (in other words, the frequency
deviationδf 0 is much larger than the modula-
tion frequency f sw), B≪B sw≪2mδf 0 holds.
Thus, the maximum value of the rms spectrum
is smaller than without SSC.
2b) CaseⅡb (B sw2 = 4mδf 0f sw≫f sw2≫B 2)

When the resolution bandwidth B of the
spectrum analyzer is smaller than the modula-
tion frequency, the spectrum analyzer can
resolve multiple sidebands (line spectra) with
a frequency interval of f sw, which constitutes
the Fourier spectrum I m( f ) [Equation (4b)] of
the harmonic. In other words, I b(t , f c) features
a large amplitude only when the center fre-
quency f c of the filter agrees with one of the
sideband frequencies mf 0+nf sw (where n is an
integer). Here, the phase term exp( jθ), is 1
regardless of the value of the integer k . Fur-
ther, as f sw≫B holds, the impulse response
duration of the filter is much longer than T sw,
and thus the sum with regard to k in Equation
(26) can be approximated by the integration of

he(t ).

(29)

From Equation (29), the maximum value
of the peak and rms spectra can be expressed
as follows.

(30a)

(30b)

(3) CaseⅢ: Narrow band FM (mδf 0<f sw or
(B sw/2)2 = mδf 0f sw < f sw2)
Frequency-modulated waves with a modu-

lation index (mδf 0/f sw) smaller than 1 are
referred to as narrow-band FM signals. In
these waves, the carrier component (with a
frequency of mf 0) constitutes most of the sig-
nal power. For this reason, if the center fre-
quency f c of the spectrum analyzer is set to the
center frequency m f 0 of the harmonic, the
amplitude observed is approximately the same
as the amplitude of the harmonic, regardless
of the resolution bandwidth. Thus, when the
harmonic is a narrow-band FM signal (mδf 0<
f sw), the change in the maximum value of the
harmonic spectrum due to frequency modula-
tion is negligible.

(31)

3.2  Simplified evaluation formula for
spectrum amplitude reduction

Based on the investigation described in the
previous section, we now show a simplified
evaluation formula for a reduction in the
amplitude of the harmonic spectrum by SSC.
Here the modulation waveform is assumed to
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be a triangular wave, and the band-pass filter
of the spectrum analyzer is assumed to be an
ideal Gaussian filter with a resolution band-
width (－3 dB-bandwidth) of B . The transfer
function and the envelope of the impulse
response of this filter are expressed by Equa-
tions (18) and (19), respectively. The impulse
bandwidth B imp and the noise bandwidth B n

are given by

(32)

Figure 8 shows the classification discussed
in the previous section. The effects of SSC
amplitude reduction on the peak and rms spec-
tra in each case are approximated as follows.
CaseⅠ (B 2≫B sw2≫f sw2):

(33I)

CaseⅡa (B sw2≫B 2≫f sw2):

(33IIa)

CaseⅡb (B sw2≫f sw2≫B 2):

(33IIb)

CaseⅢ (B sw/2< f sw):

(33III)

3.3  Comparison with results of numeri-
cal calculation 

To investigate the validity of the simpli-
fied evaluation formula, we compared the
results obtained by the formula with those of
numerical calculations of the convolution inte-
gral of Equation (5). Figure 9 shows the
dependence of the reduction in peak and rms
spectra on the modulation frequency f sw when
the resolution bandwidth B is 100 kHz and
1 MHz. Figure 10 shows dependence on reso-
lution bandwidth when the modulation fre-

Fig.8 Conditions of applicable approxi-
mations for evaluating effect of
clock FM
CaseⅠ: Approx.Ⅰ( fsw2≪Bsw2 = 4mδf0fsw≪B2)
CaseⅡa: Approx.Ⅱa ( fsw2≪B2≪Bsw2)
CaseⅡb: Approx. Ⅱb (B2≪ fsw2≪Bsw2)
CaseⅢ: Narrow band FM (mδf0 <  fsw)

Fig.9 Results of numerical simulation for
amplitude reduction of the har-
monic spectrum as a function of
modulation frequency fsw

a) Peak spectrum
b) rms spectrum
Maximum frequency deviation : mδf0 = 5 MHz
Resolution bandwidth, B: 1 MHz, 0.1 MHz
Modulation by triangular wave: open (B =
1 MHz) and closed (B = 0.1 MHz) triangles
Modulation waveform by Equation (17): open
(B = 1 MHz) and closed (B = 0.1 MHz) rhom-
buses
Reduction estimated by Equation (33): solid
curves
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quency is 40 kHz. The modulation waveforms
used are of two types: triangular waveform,
and waveforms produced according Equation
(17). Both figures show that Equation (33)
provides good approximation for the reduction
in spectrum amplitude. As shown in Fig. 9, it
is clear that the amplitude of the peak spec-
trum is most reduced when the modulation
frequency f sw is approximately the same as the
impulse bandwidth. 

4  Conclusions

We conducted theoretical analyses of the
effects of frequency modulation of clock sig-
nals (such as a Spread Spectrum Clock, or
SSC), a method widely used in diverse elec-
tronic devices such as personal computers
(PCs), on the measured harmonic noise spec-
trum. As SSC does not reduce the amplitudes
of the harmonics, care should be taken when
studying the influence of the harmonic noise
on wireless systems. As a final note, we would
like to express our sincere gratitude to those in
the Communication Environmental Engineer-
ing Section, including Professor Akira Sugiura
of the Research Institute of Electrical Commu-
nication at Tohoku University, for their collab-
oration in discussions.

Fig.10 Dependence of amplitude reduc-
tion of harmonic spectrum on res-
olution bandwidth (results of
numerical simulations)
Maximum frequency deviation : mδf0 = 5 MHz
Modulation frequency: fsw = 40 kHz
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