6 Applied Parallel Processing Technology

6-1 Distributed Processing Language Overlay
GHC and its Application Possibilities

SAITO Kenji

Today’s high-performance computers and high-speed networks allow sophisticated applica-
tions of overlay networks. Meanwhile, usage of multi-core processors has been spreading. The
level of concurrency we need to handle in software systems has been rising rapidly, which
necessitates a language that can express massive concurrency in a natural way, which can work
with both tightly and loosely-coupled multiprocessor environments in parallel executions.

This article describes still work-in-progress design of Overlay GHC, an overlay network pro-
gramming language based on concurrent logic language GHCI1] (Guarded Horn Clauses), as a
candidate for such a language, and its application possibilities especially in traceable networks.

Keywords
Programming language, Concurrent programming, Logic programming, Overlay network,

Parallel inference

1 Introduction

Today, parallel execution environments for
computer systems, i.e., environments for con-
current executions of programs with multiple
processors, are becoming both sophisticated
and widely available. This has led to changes
in the level of concurrency we need to handle,
i.e., the level of logical parallelism with multi-
ple processes.

As an example, sophisticated applications
of the Internet using overlay networks, such as
P2P (peer-to-peer) or grid computing, have
become real as individual computers are
equipped with massive excess resources such
as large-scale storage devices or high-speed
processors, and those computers are now con-
nected with one another via high-speed net-
works.

The designs of P2P systems are character-
ized by their usage of overlay networks such

that participants are symmetrical, and their
roles can be dynamically switched with one
another. In designing such systems, one needs
to describe a system as a set of autonomous
agents, which requires handling of a sophisti-
cated level of concurrency. In designing grid
computing systems, too, although autonomy is
not weighted as much as in the case of P2P,
one needs to program a dynamic discovery
and utilization of excess resources in comput-
ers distributed over the networks, which
requires handling of a sophisticated level of
concurrency.

Meanwhile, all major CPU manufacturers
are planning to move towards multi-core
architectures as performance of single-core
processors will not scale any longer. Usage of
multi-core processors has already been wide-
spread, but one needs to handle a sophisticated
level of concurrency in software designs to
extract such processors’ full performance.

SAITO Kenji 61

Under such situations, the level of concur-
rency we need to handle in software systems
has been rising rapidly, and programming lan-
guages to describe massive concurrency in
natural ways are expected to emerge. The par-
allel execution of concurrent programs written
in such languages need to support both tightly
and loosely-coupled multiprocessor environ-
ments, as tightly-coupled multiprocessor envi-
ronments represented by multi-core processors
and loosely-coupled multiprocessor environ-
ments represented by P2P or grid computing
necessarily coexist today.

In this article, the author describes the
design of a still-under-development language
Overlay GHC as a massive concurrency/paral-
lelism description language, and its applica-
tion possibilities especially in traceable net-
works. This language is for overlay network
programming under such an assumption that
each node is a multi-core processor system. It
is based on concurrent logic programming lan-
guage GHC[1] (Guarded Horn Clauses).
Overlay GHC allows programmers to program
overlay networks rapidly from bird’s-eye
view, and to describe the whole logical net-
work as one program.

2 Background

In this section, the author describes the
syntax and semantics of GHC, and language
KL 1121 as an extension of GHC for tightly-
coupled multiprocessor environments.

2.1 GHC: Guarded Horn Clauses

GHC is a concurrent logic language
designed by Dr. Kazunori Ueda, and was pub-
lished in 1985 as part of research activities in
ICOT (Institute for new generation COmputer
Technology) that propelled so-called Fifth
Generation Computer Project.
2.1.1 Preliminaries

The basic elements of GHC programs are
“terms”. A term is formed from function sym-
bols and variables. Function symbols are sym-
bols beginning with small letters, and vari-
ables are those beginning with capital letters

or ‘_’. A variable alone is a term. Otherwise, a
term is of the following form:

fCy1, v2, .., yn)(n=0)

where fis a function symbol, and y’s are
terms. If n = 0, fis specifically called a con-
stant. For example, “X”, “a”, “cons (a, X)”,
“cons (a, cons(b, nil))” are all terms.

An “atom”(atomic formula) is of the fol-
lowing form:

p(y1, ¥2 ey 70)(n=0)

where p is a predicate symbol, and p’s are
terms. Predicate symbols are symbols begin-
ning with small letters. For example, “is_list
(cons (a, X))” is an atom.
2.1.2 Syntax of GHC

A GHC program is a set of guarded Horn
clauses of the following form:

H<~ G, .. GulBu,...,Bn (mn=0)

where H, G’s, and B’s are atoms, and ‘I’ is the
“commit operator”.

H is called the “head”, and G’s and B’s are
called goals, which are sometimes distin-
guished as “guard goals” and “body goals”,
respectively. A goal may be a unification goal:

yi=py2

where y1 and y2 are terms. H and G’s togeth-
er are called the “guard”, and B’s as a group
are often called the “body”. If there are no
goals in the guard or body, it is denoted by
“true”. A program is invoked by a goal clause:

< Bi,...,B.(n=0)

where B’s are goals.
2.1.3 Declarative semantics of GHC

A guarded Horn clause can be read as fol-
lows:

If every goal in its guard and body is true,
its head is true.

62 Journal of the National Institute of Information and Communications Technology Vol.55 Nos.2/3 2008

The result of every successful execution of
a GHC program conforms the above seman-
tics (soundness). There may be some clauses
not applied in an execution, so that the result
might not be the only solution (incomplete-
ness).

2.1.4 Operational semantics of GHC

Intuitively, each guarded Horn clause is
considered as a rewrite rule of a goal, where
its guard specifies the conditions to be satis-
fied for the rule to be applied, and its body
specifies the actual goals to replace with. If
more than one clause can be applied, one of
them is selected non-deterministically. This
irreversible act of applying a clause is called
“commitment”.

Assignment to variables is called “bind-
ing”. Bindings are produced after commit-
ments, and any attempts to bind the bound
variables with incompatible terms necessarily
fail. A binding to a non-variable term is called
“instantiation”.

Two terms are “unified” when they become
lexically identical by binding the variables in
each with the corresponding terms of the other.

An informal operational semantics of
GHC follows:

1. Goal execution: Every goal in the goal clause
is executed concurrently by the following
steps:

(a) Head unification: Variables appearing in
the head of a clause is analogous with
formal parameters of procedural pro-
gramming languages. Clauses whose
heads are unifiable with the calling goal
become the candidates for commitment;
variables appearing in their heads are
bound with the corresponding terms in
the calling goal.

(b) Suspension rule: Guard goals of the
candidates are executed concurrently,
with a restriction imposed by such a
rule that any attempts to instantiate the
calling goal are suspended.

(¢) Commitment: The execution of the call-
ing goal commits to a clause whose
guard succeeds; the body of the commit-
ted clause replaces the calling goal. Uni-

fication goals in the body may instanti-
ate the calling goal.

2. Success: A unification goal succeeds if its
arguments are unified. A non-unification
goal succeeds if it is eventually replaced by
unification goals that succeed, or by an
empty body. A program succeeds if every
goal in its goal clause succeeds.

3. Failure: A unification goal fails if their argu-
ments are not unifiable. A non-unification
goal fails if its execution has no candidates
for commitment, or the guard of every candi-
date fails. A program fails if any goal in its
goal clause fails.

2.1.5 Process interpretation of GHC
programs
A GHC program defines a concurrent pro-
gram as a set of processes in the following
way:

1. Recursively defined predicates define process-
es.

2. Conjunction of processes defines a network
of processes.

3. Arguments of goals define local states of
processes.

4. Shared variables among goals define com-
munication channels. These variables are
often used to represent streams (sequences
of data).

Figure 1 is a stack program written in
GHC, based on an example from [3].

“:-” is the coding expression for ‘<+’.
“lalb]”, “[a, b]” and “[]” are syntactic sugars
for “cons (a, b)”, “cons (a, cons (b, nil))” and
“nil”, respectively. “io: printstream (Os)” is a
process provided in our Overlay GHC imple-
mentation that prints the elements of stream
“Os”. The program produces the sequence
“12, 177,27, “[1]”, “1”, and “[]”.

Let the author follow the conventions in
logic programming, and express a predicate in
the form “name of predicate/number of argu-
ments”. In this example, a completed list as a
command sequence is passed to stack/3
process in the goal clause. However, by using

an incomplete list in which CDR part (the rest

SAITO Kenji 63

% Definition of stack(CommandStream, Data, OutputStream).

stack([pop|Cs], [X|List], Os) :-true | Os

[X|0s1l], stack(Cs, List, Osl).

stack ([push(X) |Cs], List, Os) :-true | stack(Cs, [X|List], Os).

stack([list|Cs], List, Os) :-true | Os =
stack([], List, Os) :-true | Os= [].

[List|Osl], stack(Cs, List, Osl).

:- stack([push(l), push(2), list, pop, list, pop, listl], [], Os), io:printstream(Os).

Example: stack program in GHC

of the list) of the last CONS is a variable,
stack/3 can be used as a data-driven process
that waits for arrival of a new command.

2.2 KL 1: Kernel Language one

KL 1127 is an extension of GHC, designed
by Dr. Chikayama, et.al., as the system
description language for parallel inference
machines in the so-called Fifth Generation
Computer Project. While GHC is concerned
with concurrency only, KL 1 is also concerned
with parallelism, or how to execute concurrent
programs including how to allocate processes
onto processors. Yet, the semantics of GHC is
not broken by this, and concurrency and paral-
lelism are clearly separated in the language
specification; by removing pragmas (direc-
tives to the language system) from a KL 1 pro-
gram, the corresponding GHC program is
obtained.

3 Design of Overlay GHC

3.1 Principles

The author has designed an extension of
GHC for distributed real-time environments in
the past[4]. In the trial, the author introduced a
new concept of “timed guard” to specify the
timing constraint in the delay between place-
ment of a goal and the occurrence of the com-
mitment for reduction of the goal. It was nec-
essary to modify the semantics of GHC pro-
grams partially in this approach.

In the case of the design of Overlay GHC,
the author instead took the same approach as
KL 1, i.e., how to execute a GHC program in
a distributed real-time environment is to be
described by pragmas as it refers to paral-
lelism, and the author has left the language

specification of GHC untouched. By doing
this, the author expects that past research
products such as translations of GHC pro-
grams, or accumulation of GHC programs
themselves, will be directly available for us, in
addition to the effects of easing extraction of
implementation-dependent part of programs or
verification of correctness of programs result-
ed from clear separation of concurrency and
parallelism.

3.2 Pragmas

Currently, the pragmas shown in Table 1
are defined in Overlay GHC.

Among them, those pragmas concerned
with ordering executions of goals and priori-
tizing applicabilities of clauses are common
with KL 1. Overlay GHC is characterized by
pragmas concerned with placement of goals
and control of timing.

In KL 1, goals can be allocated onto
processors by using “@node (Node_number)”
pragma. It can be said that it is a specification
suitable for tightly-coupled multiprocessors
where the numbers of processors are rather
fixed.

On the other hand, in Overlay GHC, envi-
ronments are assumed such that the configura-
tions of multiple processors are dynamically
changed, and pragmas are introduced to speci-
fy the nodes in relative to the node from which
the goal clause is cast, and a remote goal
placement pragma “node_id (ID)” is intro-
duced to specify the node with an identifier.
“ID” in this pragma is an identifier expressed
in the form of URL. For example, with
“xmpp://” scheme, a Jabber ID can be speci-
fied, and with “pgp://” scheme, a PGP public
key user ID can be specified. The language

64 Journal of the National Institute of Information and Communications Technology Vol.55 Nos.2/3 2008

i[e]e) =01 List of Pragmas in Overlay GHC

Type Name Function Note
@priority(Level) Executes goal with the | Common with
specified priority. KL1
Ordering @lower_priority Executes goal with a low
priority.
alternatively. Lowers priority of clauses to
follow.
@this_node Executes goal at the calling | Specific to
node. Overlay GHC
Goal @other_node Executes goal at a
placement non-calling node.
@node_id(ID) Executes goal at the node
with the specified ID.
Real-time @periodic(Msec) Executes goal at the
specified interval (msec).

system needs to have mechanisms to map
those identifiers onto actual targets of commu-
nication.

It is also noted that in GHC/KL 1, a single
parallel inference machine was assumed to
which just one console is attached, which has
led to a specification that at most one built-in
process is allowed in one program to handle
the console 1/O stream such as io: outstream/1.

On the other hand, in Overlay GHC, loose-
ly-coupled multiprocessor environments are
assumed in which each node is an independent
computer (although each computer is often a
tightly-coupled multiprocessor environment
with one or more multi-core processors),
which has led to a specification that one built-
in process to handle the console I/O stream
can be generated on each node. It has been
made possible by this to describe as one pro-
gram an overlay network where each partici-
pant can perform I/O from terminals in their
vicinity such as a chat program shown in
Fig. 2. It has also become possible to have
multiple virtual nodes on one computer, where
each node has an independent window to per-
form terminal I/O, which will be useful in
simulations during development of programs
such as P2P systems.

The periodic execution pragma “@period-
ic (Millisecond)” is to specify the interval
between a placement of a goal and the com-

mitment for the reduction of the goal. Using
this, goals described as recursive processes
can be periodically executed with specified
intervals. This functionality can be used for
polling sensor values, for example.

3.3 RGP: Remote Goal Placement

Goal placement pragmas in Overlay GHC
automatically perform migrations of pro-
grams. If the node on which a goal is to be
allocated does not have the corresponding pro-
gram, the program is automatically transferred
to the node before the placement of the goal
happens (security considerations of this is
described in section 3.6).

“Remote Goal Placement (RGP)” is one of
the techniques that characterize programming
in Overlay GHC. By this technique, many
interesting concepts in distributed program-
ming can be realized. The author and associ-
ates are hoping that a new network program-
ming culture using this will blossom because
it is semantically different from Remote Pro-
cedure Call (RPC).

Figure 2 shows a symmetrical (without a
server) group-chat program using this tech-
nique.

A new user can participate in the chat by
invitation basis. In the program, “\="is a
built-in predicate to denote impossibility of
unification, and “otherwise” is a built-in predi-

SAITO Kenji 65

terminal (NickName, InStream, OutStream) :-true

| keyboard (NickName, InStream, OutStream),

display (NickName, OutStream, DisplayStream),
io:outstream([write(' terminal started.), nl|DisplayStream]) .

keyboard (NickName, InStream, OutStream) :-io:read(X)
| checkInput (NickName, InStream, OutStream, X).

keyboard (NickName, [Term|InStream], OutStream) :-Term \= line(NickName,)
| outStream = [Term|Xs]l, keyboard(NickName, InStream, Xs).

keyboard (NickName, [line (NickName, X) |InStream], OutStream) :-X \= left

| keyboard(NickName, InStream, OutStream).

keyboard (NickName, [line(NickName, left) |InStream], OutStream) :-true

| InStream = OutStream.

checkInput (NickName, InStream, OutStream,

:-Line := NickName + : + X

| outStream = [line(NickName, Line)|Xs], keyboard(NickName, InStream, Xs).

checkInput (NickName, InStream, OutStream,

join(Name, ID)) :-true

| terminal (Name, InStream, Xs)@node id(ID), keyboard(NickName, Xs, OutStream).

checkInput (NickName, InStream, OutStream,

leave) :-true

| OutStream = [line(NickName, left) |Xs], keyboard(NickName, InStream, Xs).

checkInput (NickName, InStream, OutStream, :-otherwise
| keyboard(NickName, InStream, OutStream).
display (NickName, [line(, Line) |OutStream], DisplayStream) :-Line \= left

| DisplayStream = [write(Line), nl|Xs], display(NickName, OutStream, Xs).
display (NickName, [line(NickName, left) |OutStream], DisplayStream) :-true

| DisplayStream = [write(I have left.’

nl].

display (NickName, [line(Someone, left) |OutStream], DisplayStream)

: s ’
:- NickName \= Someone, Line := Someone +

has left.’

| DisplayStream = [write(Line), nl|Xs], display(NickName, OutStream, Xs).

% Starts a group chat as the initiator whose nickname is ' foo .

:-terminal(foo , X, X).

A simple group-chat program written in Overlay GHC

cate that succeeds when guards of all other
candidate clauses fail.

In this program, terminal/3 is the main
process to express a user. keyboard/3 is a
process to accept inputs including those from
other users, which forwards the inputs to the
succeeding user in the ring-shaped overlay
network. checklnput/4 belongs to keyboard/3,
and interprets commands. If the input from the
user is in the form “join(Name, ID)”, it makes
a new terminal/3 process generated on the
remote node using RGP. display/3 process
generates the console output stream.

3.4 Detecting and handling failures

In distributed computing, an execution of a
program may fail even if the program is logi-
cally sound, because of failures of processors
or communications. The program in Fig. 2
needs to be rectified because it does not

assume occurrences of failures.

The author and associates have been
investigating how to naturally describe detec-
tion and handling of failures in Overlay GHC.
In doing so, we have weighted on such a
design constraint that the semantics of a GHC
program remains unchanged even in the pres-
ence of failures. We have noted that a local
goal placement and RGP can be equally treat-
ed without contradictions, if the failure model
can be limited to fail-stop [5].

In the fail-stop failure model, failed
processes stop computations without causing
any side-effects. In Overlay GHC, this means
that execution is perpetually suspended, which
does not change the meaning of a GHC pro-
gram because Horn clauses do not contain the
concept of time (they can be regarded as very
slow processes).

Many failures can be treated as fail-stop

66 Journal of the National Institute of Information and Communications Technology Vol.55 Nos.2/3 2008

by detecting them with loose criteria, and
forcibly stopping the processes in the case of
false positives.

The author and associates has been inves-
tigating to introduce timeout/1 as a built-in
predicate to be used in guards, in order to
detect the perpetual suspensions resulted from
fail-stop failures, and to recover from such sit-
uations.

Figure 3 shows an example of a program
using timeout/1.

This program sends out “ping(Pong)”
every 30 seconds, and detects a failure when
variable “Pong” has not been instantiated for
10 seconds.

Byzantine failure(e] is a model of failure
that cannot be made fallen back to fail-stop.

In Byzantine failure model, a failed
processor may bind an arbitrary term to a vari-
able. To detect such a failure, redundancy
needs to be programmed. In Overlay GHC,
redundancy can be easily programmed by
placing multiple equivalent goals in the goal
clause, which are allocated onto different
remote nodes. When such a failure occurs, and
if the same variable was bound to contradict-
ing terms by equivalent multiple goal execu-
tions, the unification fails, and the whole pro-
gram fails because the goals in the goal clause
are executed in AND parallelism. If we would

like to detect such a situation programmatical-
ly, and to recover from it, mechanisms such as
meta-call of predicates will be necessitated.

3.5 Dynamic many-to-one
communication

In Overlay GHC, instantiation of a vari-
able may happen at most once. This makes it
impossible for multiple writers to write simul-
taneously to a single stream.

In concurrent logic languages, this type of
difficulties has been avoided by using
merge/(n+ 1) process that takes n independent
streams and outputs one merged stream. This
process can be easily implemented by the con-
current logic languages themselves. However,
in overlay network programming, there may
be requirements to support more dynamic
many-to-one communications. For example,
in P2P systems, each node may have to
receive messages from a dynamically chang-
ing set of neighbor nodes.

The author and associates have been
investigating to introduce‘‘queue’data type to
solve this problem. An example is shown in
Fig. 4.

In the program, “<<” is a built-in predicate
to add a message to a queue.

A queue is generated with a variable as an
argument that represents an input stream to a

checkAlive (Stop, Os) :-timeout (30000)
| 0s = [ping(Pong) |0Osl]l, checkPong(Pong, Stop), checkAlive(Stop, Osl).
checkAlive (stop, Os) :-true | process-failure-of-the-peer.
checkPong (pong, Stop) :-true | true.
checkPong (Pong, Stop) :-timeout(10000) | Stop = stop.

A ping program written in Overlay GHC

createStack(Q, Os) :-true | Q := createQueue(Cs), stack(Cs, []l, Os).

stacker(Q, ...) :-true | Q << push(X),

:-createStack(Q, Os), .., stacker(Q,

Muiltiple writers fo a single stream

...)@node id(ID1l), stacker(Q,

.., stacker(Q, ...).

...)@node id(ID2).

SAITO Kenji 67

process (it is typically executed on the node
that receives the inputs). Multiple writers can
put data onto the queue concurrently, and the
output is resulted as a merged single stream
that uses the variable as the first CONS.

This data structure resides mainly in the
local node. In the local node, it holds the vari-
able to represent the output stream, and when
a data arrives from a remote node, it sequen-
tially writes the data to the stream using an
exclusion mechanism such as a semaphore. In
the remote nodes, it holds the reference to the
main structure in the form of the node ID and
queue ID, and upon putting a data to the
queue, it transfers the data to the correspond-
ing node.

3.6 Security considerations

Without an appropriate security design,
RGP may be abused for transferring and exe-
cuting malwares. Therefore, it is needless to
mention that RGP needs to be allowed only
when the specified remote node agrees to
accept and execute the goal to be transferred.
The author and associates have been investi-
gating the best way to realize this (the current
implementation has a list of Jabber IDs to
accept remote goals from, as an easy tentative
measure).

4 Application possibilities

4.1 Distributed computer

Various application possibilities can be
considered for Overlay GHC with which pro-
grammers can program overlay networks
dynamically. Those possibilities can be uni-
formly treated by the concept of “distributed
computer”.

A distributed computer involves place-
ments of part of a computer to remote proces-
sors for load distribution or routing 1/O for
specific purposes. In Overlay GHC, such a
functional distribution can easily be described
using RGP.

4.2 Application possibilities for
traceable networks

As an application in the toolkit towards
realization of traceable networks, we could
describe a parallel inference engine with the
language, as GHC was originally designed as
a system description language for parallel
inference machines. We expect that direct
application of the past research products is
possible as many research such as describing
production systems with GHC were performed
in the past as introduced in(7].

This inference engine dynamically gener-
ates rules based on the materials for deduc-
tions made available from the past observa-
tions, and infers appropriate actions against
occurrences of incidents. This engine needs to
realize iterations of inferences and investiga-
tions.

We hope that a possibility of an inference
engine where multiple hypotheses are verified
simultaneously can be pursued, utilizing the
characteristics of the language designed for
distributed processing.

As for the concrete design of the inference
engine, we would like to proceed using the
past research results in concurrent logic lan-
guages not only on production systems but
also on various knowledge information pro-
cessing.

As another application of Overlay GHC
for traceable networks, we hope to use it for
combining in a parallel way the parts of the
toolkit as processes, as the language is suitable
as a glue language to combine existing
processes.

5 Implementation of the
language system

As an example of language systems of
Overlay GHC, the author and associates are
developing an interpreter written in Java in an
open source community. This interpreter is a
plug-in for wija, an XMPP-based instant mes-
saging system also written in Java and devel-
oped by the author. The latest version of the
implementation is available from the follow-

68 Journal of the National Institute of Information and Communications Technology Vol.55 Nos.2/3 2008

ing URLs:

* Latest release version:
http://www.media-art-online.org/ghc/

* Latest development version:
http://www?2.media-art-online.org/nightly/

This implementation of Overlay GHC
includes Package Programming Interface
(PPI). This interface is for other plug-ins of
wija to provide Overlay GHC primitives and
processes, and supports programmers combin-
ing existing functionalities as Overlay GHC
processes.

6 Related work

6.1 Distributed KL 1

Distributed KL 1 is a predecessor to Over-
lay GHC as an extension of GHC for distrib-
uted programming. It has been implemented
as DKLIC[8] language system that is an
extension to KLIC, a KL 1 to C compiler.

DKLIC has a notion similar to remote goal
placement, but it is called by the term “remote
predicate call”, which is rather similar to RPC,
as predicate migration does not seem to have
been implemented. Problems such as multiple
writers to a stream or processor failures do not
seem to have been addressed either.

6.2 P2/Overlog

P2(9] is a system using OverLog language
to express overlay networks in a compact and
reusable form.

OverLog and Overlay GHC share the sim-
ilar goals (rapid and declarative implementa-
tions of overlay networks) and similar
approaches (logic programming). They are
different in that OverLog is a query language
based on Datal.og, a subset of Prolog, while
Overlay GHC is a descendant of concurrent
logic programming languages. Further com-
parison studies are planned between the two
environments.

6.3 Erlang

Erlang[10] is a functional programming

language designed for expressing massive
concurrency.

Erlang and Overlay GHC are related in
that concurrent computation in Erlang is based
on Actor model[11], and the model is regarded
as a special interpretation of concurrent logic
programming[12]. Further comparison studies
are also planned between those languages.

6.4 Streamlt

Streamlt[13] is a language for high perfor-
mance streaming applications. It has two
goals: to provide high-level stream abstrac-
tions, and to serve as a common machine lan-
guage/high-level assembly language for grid-
based architectures (instead of C as a common
high-level assembly language for von Neu-
mann architectures).

Because stream programming is one
aspect of concurrent logic programming,
many language features of Streamlt are also
expressible in Overlay GHC. At this moment,
Overlay GHC is not too concerned about per-
formance of the generated overlay networks,
but perhaps it is worth investigating to com-
pile an Overlay GHC program into Streamlt
code.

7 Future work

Overlay GHC is a programming language
still under development. To improve its design
specification, we need to accumulate experi-
ences in programming with this language.

As an example of implementing existing
overlay networks with this language, a trial to
implement Kademlia[(14], an instance of dis-
tributed hash tables, in Overlay GHC has been
started. Trials to implement other distributed
hash tables and various distributed algorithms
will follow.

As for applicability to traceable networks,
the author intend to describe an actual parallel
inference engine to be embedded in the toolkit
so that we can verify the usefulness of the lan-
guage in the process of problem solving in the
field by iterating inferences and investigations

SAITO Kenji 69

triggered by occurrences of incidents.

At the same time, the author and associ-
ates are planning to develop a scripting lan-
guage we tentatively call OG. This language
corresponds one-to-one with Overlay GHC.
Overlay GHC is a high-level assembly lan-
guage for non-von Neumann architectures in a
different level from Streamlt (readers are
reminded that KL 1 was a system description
language for parallel inference machines).
Through experiences of training a small num-
ber of programmers (mainly students of envi-
ronmental informatics) to use Overlay GHC,
the author and associates have gained an
impression that higher-level languages are
needed to ease the burdens of programmers
who are not familiar with logic or concurrent
programming (or programming in general).

8 Conclusions

In this article, the author introduced Over-
lay GHC, a still under-development overlay
network programming language based on con-
current logic programming language GHC.
The author also discussed as one of its appli-
cation possibilities applicability of the lan-

References

guage to a parallel inference engine for trace-
able networks.

The level of concurrency we need to han-
dle has been rising rapidly, as parallel execu-
tion environment of computer systems are
becoming sophisticated and widely available
as seen in P2P, grid computing and wide
acceptance of multi-core processors. Under
such situations, many programming languages
oriented towards expression of concurrency
and parallel executions have been proposed
and investigated. The research and develop-
ment of Overlay GHC should be placed as one
of those trials.

Among such languages, Overlay GHC is
characterized by allowing programmers to
grasp overlay networks from bird’s-eye view,
to rapidly program them, and to express the
whole logical network in one program.

Currently, Kademlia is being implemented
as an example of actual overlay network pro-
gramming with this language. Trials for
implementing other distributed hash tables and
various distributed algorithms are also under
way. At the same time, the author plans to
describe the parallel inference engine as part
of the toolkit for realizing traceable networks.

1 K. Ueda, Guarded Horn Clauses. Ph.D thesis, The University of Tokyo, 1986.
2 K. Ueda and T. Chikayama, “Design of the kernel language for the parallel inference machine”, The

Computer Journal, Vol.33, Dec. 1990.

3 S.-O. Nystréom, “Guarded Horn Clauses, application and implementation”, Tech. Rep. Report 41, Upp-

sala Univer-sitet, Nov. 1987.

4 K. Saito, “TGHC: Timed guarded horn clauses”, in Proceedings of the Ninth TRON Project Symposium
(Interna-tional), pp.122-134, IEEE Computer Society Press, Dec. 1992.
5 R. D. Schlichting and F. B. Schneider, “Fail-stop processors: An approach to designing fault-tolerant

computing systems”, ACM Transactions on Computer Systems, Vol.1, Aug. 1983.

6 L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem”, ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), Vol.4, Jul. 1982.

7 K. Fuchi, K. Furukawa, and F. Mizoguchi, Parallel Logic Language GHC and its Applications. Kyoritsu

Shuppan, 1987. (in Japanese).

8 R. Matsumura, H. Takayama, Y. Takagi, N. Kato, and K. Ueda, “Design and implementation of distrib-

uted language system DKLIC”, in Proceedings of the 19th Conference of JSSST, Sep. 2002. (in Japan-

ese).

70 Journal of the National Institute of Information and Communications Technology Vol.55 Nos.2/3 2008

10

11
12

13

14

B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica, “Implementing declarative
overlays”, in Proceedings of ACM Symposium on Operating System Principles (SOSP), Oct. 2005.

J. Armstrong, “The development of Erlang”, in SIGPLAN International Conference on Functional Pro-
gramming, 1997.

G. Agha, Actors: a model of concurrent computation in distributed systems. MIT Press, 1986.

K. M. Kahn and V. A. Saraswat, “Actors as a special case of concurrent constraint (logic) program-
ming”, ACM SIGPLAN Notices, Vol.25, Oct. 1990.

W. Thies, M. Karczmarek, and S. Amarasinghe, “Streamlt: A language for streaming applications”, in
Proceedings of the 2002 International Conference on Compiler Construction, Apr. 2002.

P. Maymounkov and D. Maziéres, “Kademlia: A peer-to-peer information system based on the XOR met-
ric”, in Proceedings of IPTPS02, Mar. 2002.

SAITO Kenji, Ph.D.

Expert Researcher, Traceable Secure
Network Group, Information Security
Research Center

Distributed Systems, Real-time
Systems, Computer Communication

SAITO Kenji 71

