
1  Creating a new algorithm
based on molecular logic

1.1  Constructive approach
Each of the cells that make up our body is

a gigantic machine in which several hundreds
of millions of molecules (excluding water)
interact in exquisite fashion in diverse biologi-
cal processes, including genetic and metabolic
activities. These machines are highly
autonomous, adaptable, robust, reliable, and
self-repairing, traits artificial machines have
yet to approach. In recent years, researchers
across a wide range of fields have pursued
studies combining biology, chemistry, physics,
and informatics to explore the design princi-
ples and mechanisms of the cell. Ambitious
attempts in this area based on informatics
include systems biology, which constructs
detailed models of an entire living cell and

performs simulations consuming vast compu-
tational resources. Nevertheless, even if we
can assume infinite computational resources
and copy all the events and processes that
occur in a living cell to computer code, then
run simulations, do we really understand the
“design principle” of a cell? Do we understand
the “reasons” for the diverse useful properties
of the cells given above?

At the Bio-algorithms Project currently
underway at the Kansai Advanced Research
Center (KARC) within NICT, we pursue
research using a bottom-up approach (the inte-
gration approach) (see Fig. 1). This approach
diverges significantly from the techniques
used to create the detailed model described
above. The goal is to build a computational
and communication device with the properties
of a living creature. We investigate the details
of cell activity at the molecular level and build
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Machines Based on Molecular 
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Recent studies on network artificial chemistry (NAC) is surveyed. First, a model of active
clusters created through the mathematical folding of node chains is presented, and next the
studies on the rewiring rule of weak edges which constructs the base of the NAC’s dynamics are
summarized. The rule is formulated with the criterion of the minimization of newly defined net-
work `energy´, and with experimental results, its effectiveness and limitation are discussed.
Then we turn to a new scheme of the NAC that underwent the following modifications to the
design. The former inactive solvent nodes are equipped with active (functional) programs, and
finally the programs are implemented in agents that move through edges of the network and
conduct the programs at nodes. This last model, "program-flow computing", can be applied to
some computational problems.
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models of information processing and learn-
ing. The resulting model may be less fine-
grained than a comprehensive model that
describes every physical and chemical proper-
ty of the molecules in question (at exorbitant
computational cost), and yet is required to be
detailed enough to reflect molecular logic and
to exhibit desirable properties of bio-mole-
cules such as self-assembly and self-organiza-
tion. By constructing such models and assess-
ing their suitability, we seek to better under-
stand the essence of biological properties at
the molecular level and perhaps to propose
new (non-von Neumann) information process-
ing and communication models.

1.2  Artificial life and artificial 
chemistry 

Artificial life is among several historical
efforts to capture the essence of life via a con-
structive approach[2]. In brief, artificial life
seeks to introduce the principles of biological
evolution into computing or other artificial
systems and to perform simulations that shed
light on the nature of life using a constructive
approach, observing life-like behaviors that
emerge in the simulations and applying them

to design engineering systems. Artificial
chemistry has recently emerged as a subfield
whose goal is to model the conditions under
which bio-chemical reactions and chemical
evolution occurred on the primeval Earth,
eventually leading to emergent phenomena such
as cell evolution and genetic encoding[5]–[7]. In
the design of self-organizing computational
systems, the ideal model would be a chemical
reaction system, confirmed to undergo self-
organization or self-assembly and to produce
complex structures and functions, composed
of elemental processes whose mechanisms can
be identified down to the level of quantum
mechanics. Such a system could be used to
design or evaluate models more accurate and
reliable than the simplified systems (i.e., con-
ventional artificial life) available now, which
rely so heavily on human intuition. 

In 2003, Suzuki et al. considered the envi-
ronment required for such a system of artifi-
cial chemistry, distilling the essential charac-
teristics to the five factors listed below[16]:
• Information space
• Elementary symbols
• Rules for transport of symbols

Fig.1 Conceptual diagram of bottom-up approach
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• Rules for reaction between symbols
• High-level manager that leads or modifies

the elementary operations
Among the five factors, information space

and the rules governing the transport of sym-
bols in this space represent the most basic
components, the foundations of the artificial
environment. How these factors are modeled
significantly affects model performance. Tra-
ditionally, the study of artificial life or chem-
istry used one-dimensional address spaces
such as a core memory[12][14][15], two- or
three-dimensional lattice spaces represented
by cellular automata[10][9][13], or a tank struc-
ture with no difference in hierarchy between
the encircled symbols[7][28]. These frame-
works each have their advantages and disad-
vantages; none can flexibly express the forma-
tion of self-organizing walls or the transport or
bonding of symbols[16].

1.3  Network artificial chemistry 
To resolve these issues, Suzuki et al. have

proposed network artificial chemistry (NAC),
which expresses the relationship between the
spatial positions of the symbols purely in
terms of a topological network. Research dri-
ven by this approach is currently under-
way[17]–[27].

As is commonly known, solute molecules,
which play the central role in bio-chemical

reactions, undergo repeated collisions when
moving through the solvent (water). Their
movements are restricted by the physical
properties of the three-dimensional solution
space and the size and shape of each molecule.
NAC replaces these constraints with rewiring
rules for the edges of a network. Figure 2
compares and draws parallels between this
solution system and NAC.

The networks used in NAC are graphs
consisting of nodes and edges. The nodes rep-
resent molecules or atomic clusters, while the
edges represent collisions or bonds. Since bio-
logical molecular interactions generally fall
into one of four bonds — van del Waals,
hydrogen, ionic, or covalent bonds — NAC
has four edge types: wa, hy, io, and cv. The
four edges are defined by different bond
strengths. Weak edges are rewired one after
another by a passive rule prepared in advance.
Strong edges are formed by the active func-
tions of the nodes and clusters.

With respect to representative research[23]
for the early stages of NAC, Section 2 of this
chapter presents the behavior of one-dimen-
sional node chains converted into active clus-
ters through folding. These function in the net-
work like proteins, separating hydrophilic and
hydrophobic regions or replicating molecular
chains.

Section 3 presents research on the passive

Fig.2 Relationship diagram of (a) solute molecules in solution and (b) network artificial chemistry
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rewiring rule of the edges[24], a cornerstone of
NAC dynamics. Bio-molecules corresponding
to NAC nodes move and contact and collide
with each other in a three-dimensional solu-
tion space due to Brownian motion. As indi-
cated by the arrows (⇔) in Fig. 2 (a), a solute
molecule is most likely to collide with a mole-
cule located spatially close — in other words,
with a molecule that has contacted or collided
with the molecule with which it is now con-
tacting or colliding. Remote molecules are
unlikely to collide with each other within the
near-future. To investigate how this spatial
restriction affects network rewiring rules, we
first perform a numerical simulation of a ran-
dom walk for D-dimensional hard spheres. We
then plot the probability that an edge is creat-
ed or removed in the contact graph of the hard
spheres as functions of degree, shortest dis-
tance, and second shortest path length. For the
NAC graph, we define the “energy” of the
graph. Using edge rewiring rules to minimize
energy, we perform simulations and demon-
strate that the probabilities of edge creation
and removal by rewiring are in qualitative
agreement with experimental results for the
random walk. We also show that the values of
the cluster coefficient (C ) and the average
path length (L ) are brought closer to those of
the contact graph of the hard spheres while
maintaining the connectivity of the entire
graph.

1.4  Revised network artificial 
chemistry 

As discussed above, the primary factor in
NAC dynamics that determines self-organiza-
tion capabilities is the rewiring rule that gov-
erns weak edges (wa and hy). Although
rewiring rules based on the network energy
described in Section 3 have reproduced the
qualitative nature of the graph observed in the
contact graph of hard spheres, this achieve-
ment has been unsatisfactory when we view
the resulting network as a virtual space that
completely replaces Euclidean space. An
example is liquid crystallization: Water at
room temperature forms a network in which

water molecules are loosely bonded by hydro-
gen bonds. At temperatures below 0 °C, this
network becomes regular, forming a crystal
structure (ice). This crystal structure is formed
by the physical properties of the water mole-
cules and three-dimensional spatial con-
straints. However, it is difficult to create such
a regular structure in a graph without spatial
information (angles, positions, etc.) based
only on the energy minimization principle.
The values of the cluster coefficient and the
average path length obtained in the numerical
simulation in Section 3 are also limited to the
values of the small world[30] or slightly more
regular value. We cannot make the values con-
verge to a larger L value while maintaining the
connectivity of the overall graph[21][24].

One of the reasons for this difficulty may
be the specialty of the water molecules,
ignored in the past NAC solvent node. Unlike
organic solvents such as benzene, water is an
abnormal liquid that establishes a pseudo-reg-
ular lattice over the space that it occupies
based on hydrogen bonds. This nature is also
the main cause of other behavior, including
hydrophobic interactions and lipid bilayer for-
mation. (Hydrophobic interactions are gener-
ally described as a phenomenon in which non-
polar molecules cannot join the regular net-
work of the water molecules, but are instead
repelled and thereby segregated.) Intermolecu-
lar interactions based on hydrophilic and
hydrophobic properties constitute one of the
basic dynamics of the bio-molecules. Ulti-
mately, we might say that life underwent self-
organization and evolution because water mol-
ecules are not static or passive but have prop-
erties that change under differing conditions.
In the past, we considered only the data-flow
cluster (⇔ proteins) as the active device in
NAC (as in Section 2 ), assuming no specific
functions for the solvent node (⇔ water).
However, for the graph to develop self-orga-
nized regularity (crystal structure) and a large
L value, we must inevitably assign active
functions to solvent nodes and control the
peripheral edges.

Based on this idea, we try edge rewiring
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by executing a program (active function)
assigned to the NAC nodes as described in
Section 4. The program design is modeled on
the complex functions of water molecules. We
investigate the possibility that a structure is
formed in the network by executing the pro-
gram[25][27]. As a target structure, we consider
a two-dimensional square lattice and imple-
ment the node program in Java as a node
instance to investigate how independent, par-
allel execution of the node program at all
nodes creates a pseudo-regular structure.

Section 5 presents a new framework[26]
for network artificial chemistry developed as
an extension of these studies. Figure 3 shows
the new relationship between the graph and
the bio-chemical reaction system in the
revised network artificial chemistry. In con-
trast to past frameworks, the nodes do not rep-
resent the molecules or atomic clusters direct-
ly. Rather, they represent minute spatial
regions at the nanometer scale containing sev-
eral to several dozen molecules. Molecules or
atomic clusters are expressed as agents mov-
ing within the network. Collectively, the edges
represent contact or bonding between mole-
cules or atomic clusters belonging to the spa-
tial regions in question. The functional pro-
grams are not assigned to fixed notes but
implemented in agents moving along the
edges within the network. When an agent
arrives at a node, the program fires (reacts) or

is executed, rewiring the edges. The experi-
ment designs programs for three types of mol-
ecules, based on this framework, and demon-
strates how hydrophilic cluster structures are
organized, then split, by centrosomes. If we
consider the nodes to be CPUs, the edges
communication paths, and the agents pro-
grams, this model is a computational model, a
“program-flow computing” model in which
many CPUs execute in parallel many types of
programs moving through communication
paths connecting the CPUs.

2  Control flow cluster as active
machine

2.1  Introduction
Section 2 describes a model in the network

artificial chemistry in which one-dimension-
al node chains are converted to form clusters
by “folding” and function as an active
machine[23]. The clusters created are bound
with strong edges and function as data-flow
machines by operating in parallel while
exchanging tokens along the edges. This data-
flow machine can perform the active process-
ing in NAC, such as node modification and
edge rewiring. The folding proposed here is a
type of conversion from a genotype (node
chain) to a phenotype (data-flow machine) and
provides a method for introducing a large
functional machine into NAC.

Fig.3 Relationship diagram of revised network artificial chemistry and bio-chemical reaction system
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Section 2.2 below briefly describes the
basic design of NAC. Section 2.3 describes
the folding algorithm of the node chain in
detail; Section 2.4 describes the operation of
the data-flow machine in detail; Section 2.5
discusses several experimental results; and
Section 2.6 presents a conclusion and summa-
rizes the significance of the model.

2.2  Basic model
The NAC graph used in this section con-

sists of two types of nodes and three types of
edges. Using an analogy drawn from living
creatures, the nodes are classified as
hydrophilic and hydrophobic nodes and the
edges as Covalent (cv, directional, covalent
bond), Hydrogen (hy, directional, hydrogen
bond ), or van del Waals (wa, non directional,
van del Waals bond) edges, in order of
decreasing strength.

The wa edges of NAC are locally rewired
by repeating the process sequences given in
Steps (1) through to (4) below.
(1) Reference node, A, is randomly selected

from the network.
(2) Node, B, with maximum degree is selected

from the adjacent nodes of A, connected
by wa edges.

(3) Node, C, with minimum degree is selected
from nodes connected by two or three wa
edges from A.

(4) The hydrophilic and hydrophobic proper-
ties of Nodes A and C are investigated. If
they satisfy specific conditions for bond-
ing, Edge A-B is cut and Edge A-C creat-
ed.
Here, the bonding conditions for Step (4)

are set so that the bonding is formed preferen-
tially in the order of hydrophilic- hydrophilic,
hydrophobic- hydrophobic, and hydrophilic-
hydrophobic[11]. Under this rewiring rule, the
graph evolves to have strong small-world
properties[30] and uniform degree distribution.

2.3  Mathematical folding of node
chain 

NAC expresses the genetic information in
terms of node chains, as shown in Fig. 4. Each

node has a character or a character string com-
posed of functional characters (a, b, ...) and
template characters (0, 1, ...). Each of the
functional characters has a pre-defined func-
tion, but they do not operate in the form of the
node chain.

Such node chains are folded after process-
ing as shown in Fig. 5. First, the “agglomera-
tion” process divides the adjacent node
sequences directly before a functional charac-

Fig.4 Example of NAC node chain

Fig.5 Node chain folding process
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ter and converts each of the divided node
chain sections into a single node with
character strings such as a1122 or e0122
(Fig. 5 (b)). Then, the wa edges link each of
the node pairs in the node chain in (b), tan-
gling the node chain (“tangling”; Fig. 5 (c)).
The template characters in each node are
checked, and if “5” is included, the cv edge
directly after is cut (cutting cvs; Fig. 5 (d)). 

Once the node chain is ready for folding in
this manner, the “folding” process creates the
cv and hy edges, based on complementary
matching between the template character
strings. Here, the template characters, 0, 1, 2,
and 3, are matched complementarily with the
relationship of 0 ⇔ 1, and 2 ⇔ 3. Nodes with
matched templates are newly linked to cv or
hy edges. The directions of the edges go from
a template starting with 0 to the template start-
ing with 1 and from the template starting with
2 to the template starting with 3. The cv or hy
edges are created in this direction. In the
example of Fig. 5, new cv edges are formed
from 00 to 11 and 01 to 10, and new hy edges
are created from 22 to 33.

2.4  Operation of data-flow clusters
When the node chain is folded into a node

cluster, it operates as a data-flow machine
functioning in parallel while transmitting
tokens along the cv edges. In general, when a
node receives a token, it fires if the value is
“true,” executing a routine assigned to the
functional character (a, d, ...). The value of the
token is set according to the result and passed
on to the next node.

Figure 6 shows an example of a data-flow
machine, called “splitase,” generated by fold-
ing in the previous section. This machine con-
sists of an active site (n33) and three operation
nodes (a1122, e0122, d00225, and f006105).
The operation nodes share a single active site
via the hy edges and execute various processes
to external nodes through this site. The pro-
cessing starts with Node a1122 firing and the
active site rewiring the hy edge to another
operand node. Then, node e0122 fires, and it
is checked whether the new operand node is

isolated with respect to cv. If so, the “true”
token is transmitted from Node e0122 along
the cv edges. If it is not isolated, a “false”
token is transmitted instead. When Node
d00225 receives the true token, it operates on
the operand node, changes its property to
hydrophobic, and then returns the token to
Node a1122. On the other hand, Node
f006105 has the function to fire when it
receives a false token. If this node fires, the
token value is converted to “true” and trans-
mitted to Node a1122. This data-flow cluster
has the capability of changing the operand
nodes adjacent to Active site n33 to hydropho-
bic, one after another. With this capability,
oily molecules are rapidly produced one after
another and cause cell division.

Figure 7 shows the example of designing
the “replicase” data-flow cluster. The cluster
consists of three active site nodes and 16 oper-
ation nodes. The basic replication processing
of the node chain is based on that proposed by
Hutton[8]. The cv loop composed of Nodes 11
through to 17 on the right half of this machine
plays the main role. With the nodes in this part
operating one after another by transmitting the
tokens, the active site randomly creates hy
edges to nearby nodes, compares the character
strings with the chain node, creates cv edges if
they are the same, and moves one step along
the chain. When the replication of the node
chain is completed, the active site moves away
from the node chain (cuts the hy edge) and
searches for another node chain.

Fig.6 Example of data-flow machine,
“splitase”
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2.5  Experiment
2.5.1  Network separation

We perform a network separation experi-
ment using the splitase shown in Fig. 6. A
node chain consisting of 26 nodes is intro-
duced into an initial random network. After

agglomeration, tangling, and cv cutting, the
following three processes are performed: (1)
rewiring of passive wa edges; (2) folding by
wa edge connection; and (3) active processing
by token transmission. Repeating these three
processes changes the network topology and

Fig.7 Design example of data-flow machine, “replicase”

Fig.8 Example of separation of network into hydrophilic and hydrophobic regions
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causes i ts  s tructure to self-organize.
Figure 8 shows a typical result of this exper-
iment. As the hydrophobic nodes are gener-
ated by the splitase, the graph is separated into
hydrophilic and hydrophobic regions and
results in the structure with the hydrophilic
cluster enclosed in the hydrophobic network.
2.5.2  Replication of node chain

A replicase node chain consisting of 191
nodes and an unfolded operand node chain
consisting of 10 nodes are introduced into an
initial random network and processed in a
manner similar to the previous sub-section.
Figure 7 shows a typical result. In this exam-
ple, the replicase cluster creates replicated
node chains with the same character strings as
the operand node chain in the network.

2.6  Conclusion and discussion
Here we proposed data-flow clusters as

active machines operating in network artificial
chemistry and presented algorithms for con-
structing them by mathematical folding of
one-dimensional node chains. Based on this
proposed method, we designed splitase and
replicase and experimentally demonstrated
their operation.

This mathematical folding, which is analo-
gous to the folding of bio-protein molecules,

has the following common features with actu-
al protein molecules:
[Completeness of expression]

When clusters are constructed based on
the algorithm indicated in this section, a node
cluster (partial network) of any topology can
be formed in principle if appropriate
sequences are prepared. This means that based
on the difference in one-dimensional
sequences, mathematical folding can construct
clusters of varying shapes, analogous to the
diversity of protein functions, which causes
the fantastic variation in the shapes of bio-pro-
teins or life forms. 
[Use of complementary matching]

The biological and mathematical foldings
are based on the complementary matching of
shapes and characters, respectively. The fold-
ing of a biological protein, which refers to the
shape, size, and physical and chemical proper-
ties of the amino-acid residue constituting it,
uses complementary matching for determining
a matched residue. If the chain is folded with
better matching, the resulting protein is ther-
modynamically stable. The folding shown in
Fig. 5 (b) to (c) is a simplified counterpart of
this process. In the study of artificial life, sev-
eral systems use such methods to determine
relationships between character strings (for

Fig.9 Example of node chain replication by replicase
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example[12]). This algorithm is one such sys-
tem.

3  Network rewiring rule based on
energy minimization

3.1  Introduction
As an example of research on the passive

rewiring rule for edges, this section describes
research achievements associated with a
model that rewires edges based on the criteri-
on of minimizing the energy defined for the
network[24].

Section 3.2 below simulates a random
walk of hard spheres moving in Euclidean
space and investigates how the spatial struc-
ture restricts the contact relationship of the
spheres. Section 3.3 formulates the rewiring
rule of the NAC edges based on the energy;
Section 3.4 discusses the results of NAC
experiments using this formulation; and
Section 3.5 presents a summary of Section 3.

3.2  Random walk simulation of hard
spheres

3.2.1  Experimental method
To model molecular diffusion in a solution

(Brownian motion) by a random walk in
Euclidean space, we consider a D-dimensional
continuous space that satisfies the periodic
boundary condition. In the space, we intro-
duce N D-dimensional hard spheres of radius
R1. For each iteration, each hard sphere moves
its center coordinates (hops) by a randomly-
chosen hopping vector. If the hopping of the
sphere reduces the distance between the center
points of the two hard spheres to below 2R1,
the hopping is cancelled. To simplify the prob-
lem and reduce computational costs, R1 and
hopping vector lengthΔ are assumed to be
constant for all spheres and all hops. Addition-
ally, the direction of the hopping vector is not
arbitrary, but randomly selected from 2D dis-
crete values (a pair of positive and negative
values for each dimension).

Collisions and contacts involving hard
spheres are defined using contact radius R2.
When Euclidean distance d between the center

points of a pair of hard spheres satisfies the
condition 2R1 ≤ d ≤ 2R2, the pair is regarded to
be in contact. In particular, when only a fur-
ther hard sphere cannot enter between the two
hard spheres, the two spheres are regarded to
be in contact, and R2 is assumed to equal 2R1

([4]; p. 890 of Japanese translation). While the
contact graph thus created changes over time
according to the random walk model, we mea-
sure several graph characteristics.

First, we measure cluster coefficient C and
average path length L based on the usual defi-
nition[30]. In addition, the probability of edge
joining Pjoin and the probability of edge cutting
Pcut are calculated as follows. Assume that
Node A hops at certain intervals and a new
edge is created between Nodes A and C. Here,
we measure the shortest path length l between
Nodes A and C, and the degree k of Node C
directly before the edge is created, then add 1
to the frequency matrix Njoin (l, k). Here, we
measure l and k not just for Node C, but for
all nodes in the graph, adding 1 to the frequen-
cy matrix N (l, k). At the end of the simulation,
we calculate Pjoin (l, k) = Njoin (l, k)/N (l, k) to
obtain the expectation value of the edge cre-
ation probability Pjoin. Similarly, when the
hopping of Node A at certain intervals
removes the edge A-B, we measure the second
shortest path length, l2, between Nodes A and
B and degree k of Node B directly before the
edge removal, then add 1 to the frequency
matrix Ncut (l 2, k). We measure l 2 and k for all
nodes adjacent to Node A and add 1 to the fre-
quency matrix N2 (l 2, k). At the end of the sim-
ulation, we calculate Pcut (l 2, k) = Ncut (l 2, k)/
N2 (l 2, k) to obtain the expectation value of
edge removal probability Pcut.
3.2.2  Parameter setting 

Among the important parameters required
for the experiment are the typical values for
the ratio R1/Δ of the radius of the hard spheres
and hopping vector length, which we calculate
based on the assumption that the hydrophilic
head of the lipid molecule (solute) is sur-
rounded by water (solvent) and is character-
ized by Brownian motion. If we denote the
number of collisions between the solute mole-
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cule and the solvent molecule per second as z,
the radius of the solute molecule as r1, and the
average relative velocity of the solute molecule
with respect to the solvent molecule as Vr.
Here, z equals the average number of solvent
molecules in a cylinder with radius R1 + r1 and
height |Vr| and can be expressed as shown in
Fig. 10 (a). Here,ρ is the number of solvent
molecules per unit volume. Vr is the compos-
ite vector of the average velocity vector V of
the solute molecules and the average velocity
vector v of the solvent molecules. In this case,
we can assume that the directions of the sol-
vent molecules are completely random. Thus,
v and V can be assumed to be orthogonal to
each other. The resulting expression is as
given in Fig. 10 (b). Here, we use the principle
of equipartition of energy. (1/2)M |V|2 =
(1/2)m |v |2, to estimate the velocity ratio as
shown in Fig. 10 (c). M = 255 and m = 18 are
the molecular weights of the lipid head
(C8O6PNH18) and water (H2O), respectively.

The equations shown in Fig. 10 (a) and (b)
give the R1/Δ ratio shown in Fig. 10 (d).
Based on this reference value, this experiment
selects values for radius, contact radius, and
hopping vector length as R1 = 4.0, R2 = 8.0,
and Δ = 0.1, respectively.

We can evaluate average degree k
–

of the
contact graph if the hard spheres are randomly
distributed in space as follows. Denote the
volume of the D-dimensional sphere with
radius r as VD (r) = πD/2rD/(D/2)!. The state in
which N hard spheres with volume VD (R1) are
found in a cube with sides of length X can be
approximated by the state in which N points
with zero volume are in the volume of
XD– N•VD (R1) based on number density. Here,
number density is expressed as shown in
Fig. 10 (e). k

–
is this density multiplied by the

volume of the D-dimensional spherical shell
of inner radius greater than or equal to 2R1 and
outer radius less than or equal to 2R2. This is
obtained as shown in Fig. 10 (f). From this

Fig.10 Setting of parameters for hard sphere random walk simulation
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equation, for example, under the condition D
= 3, X = 93.0, N = 200, R1 = 4.0, and R2 = 8.0,
the average degree is estimated to be k

–
= 4.0.

3.2.3  Simulation results
The experiment is performed with both

D = 2 and D = 3. In both cases, the C and L
values are confirmed to have the following
characteristics. The C value increases to 10 to
20 times that for the random graph. The L
value maintains a value approximately two-
fold that for the random graph. These results
indicate that the contact graph of the hard
spheres is in the middle of a small world net-
work[30] (C≫Crand, L ≈ Lrand) and the regular
network (C≫Crand, L≫Lrand). 

Figure 11 shows results for edge joining
and cutting probabilities for the experiment
with D = 3. (We confirmed that the results for
D = 2 are similar.) Based on the results, where
l is small, Pjoin (l, k) decreases exponentially as
l increases and decreases linearly as k increas-
es. This result is intuitive based on what we
know of molecular collisions. The collision
probability is regarded to decrease as inter-
molecular distance increases due to the
increase in l and with declining effective cross
sections of collisions due to contact resulting
from increased k. Here, according to

Fig. 11 (a), in the region of l = 2 and k ~ large,
Pjoin increases slightly. This result is only
observed under these particular conditions and
is regarded to be attributable to noise. In the
region with large l, Pjoin increases once, due to
confined space. If the size of the space and the
number of nodes in the graph are infinite, N (l,
k) in the denominator increases infinitely as l
increases. However, in a finite graph, N (l, k)
decreases in a region with l ~ large, and Pjoin is
thus regarded to increase based on the actions
of a small number of exceptional nodes.

Figure 11 (b) shows that Pcut (l2, k) is kept
small in the region with l2 ~ small but rapidly
increases when l2 is above a certain value. The
threshold value of l2 decreases as k increases.
For example, when k = 8, Pcut (l2, k) is
extremely large, even when l2 = 3. This result
can be understood by the “unnaturalness” of
the graph topology with spatial restrictions
considered. As the C and L values discussed
above indicate, the contact graph of hard
spheres has a type of regularity attributable to
spatial restrictions. One conspicuous charac-
teristic of a D-dimensional regular graph is
that the nodes are distributed almost evenly in
D-dimensional space and therefore contains
many paths of similar path length as the short-
est path between a node pair. (In other words,
the frequency is quite large near the shortest
path in the histogram of the path length
between node pairs.) An edge with a large sec-
ond shortest path length (l2 ~ large) surround-
ed by many nodes (k ~ large) contradicts this
characteristic, and cutting such an edge with
high probability can bring the contact graph of
hard spheres closer to the regular graph.

3.3  Edge rewiring rule
3.3.1  Mean free path of nodes

Mean free path as known in the world of
statistical physics is the quantity defined as the
average distance a molecule propagates with-
out colliding with another molecule. It is a
parameter determined solely by the size and
density of the molecules and does not depend
on temperature. The NAC graph is a model of
the contact graph of molecules or atomic clus-

Fig.11 Result of hard sphere random
walk simulation
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ters in three-dimensional space. NAC express-
es the collision of molecules and atoms as
edge generation. Here, we assume that the
spatial distance between a pair of molecules or
atoms can be emulated by the shortest path
length l between the node pair. We also
assume that the node pair for which the new
edge generation is attempted is selected in
proportion to the free path function, Pfp (l ) =
exp (– l /λ). Here, λ is the NAC mean free
path. If we use only this condition, we need to
search node pairs with extremely large path
length l on the graph, although this is extreme-
ly rare. We can use restriction l ≤ Lmax to
reduce computational costs.
3.3.2  Network energy

The energy of the NAC graph is defined as
the sum of the spatial restriction energy Es

related to topology and edge bonding energy
Eb as shown in Fig. 12 (a). 

Es is expressed as the sum of the term

(μ-term) to suppress fluctuations in the
degree of each node and the term (ν-term) to
produce regularity, as shown in Fig. 12 (b).
Here, ∑n indicates the sum over all nodes n
while ∑<mn> indicates the sum over all adjacent
node pairs mn. kn is the true degree of Node n,
kn
–

the expectation value of the degree of Node
n (potentially differing depending on the
node); k

–
the average of the degree over all

nodes; and ( l2)mn the second shortest path
length between the node pair mn. When the
constant α is positive, the μ-term has the
function of making the node degree closer to
the target value, kn

–
(When hard spheres of the

same size are distributed in space, a sphere
cannot randomly contact many other spheres),
and the ν -term has the function of cutting the
edges between nodes with large degrees on
both ends and a large second shortest path
length with high probability.

The bonding energy of edge Eb is

Fig.12 (a)-(e) Network energy equations and (f) acceptance probability of modified metropolis
method
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expressed as shown in Fig. 12 (c). Here, emn is
the bonding energy of Edge mn (the energy
required to cut the edge) and is defined as
shown in Fig. 12 (d) according to the type of
the edge (0 ≤ε(wa) ≤ε(io) ≤ε(cv)).

E is used in the next sub-section to calcu-
late the change ΔE associated with joining or
cutting of the edge. In particular, when calcu-
lating the joining or cutting of the cv edges,
we add activation energy ε(cv-act) and evaluate
the entire ΔEb as shown in Fig. 12 (e).
3.3.3  Modified Metropolis algorithm

To minimize network energy defined in
the previous sub-section stochastically, here
we modify the commonly used Metropolis
method. This method regards the edge joining
and cutting as chemical reactions and applies a
rule similar to one formulated based on the
results of the chemical reaction velocity theo-
ry[4][29]. 

The edges are rewired by the two itera-
tions below repeated at every iteration.
(1) [Edge joining]

A node is randomly selected in the graph
and another node is randomly selected with a
probability proportional to Pfp (l) where l is the
path length between the two nodes. Based on
the change in network energy ΔE before and
after an edge is created between the two
nodes, we can calculate acceptance probability
P (ΔE ) and join the edge with this probability.
(2) [Edge cutting]

An edge is randomly selected from the
graph and the change in network energyΔE in
the cut edge is calculated. From this change in
energy, we calculate acceptance probability P
(ΔE ), with which the edge is cut.

Here, for probability P (ΔE ), we slightly
modify the acceptance probability of the
Metropolis method, as shown in Fig. 12 (f). By
setting the probability (κ< 1) forΔE ≥ – dEth to
differ from the probability for ΔE < – dEth, we
can approximately express the rapid increase
in probability, as observed in Fig. 11 (b).

The change in energy ΔE associated with
the edge joining or cutting can be calculated
from the equations shown in Fig. 12 (a)
through to (e). Strictly speaking, the change in

the ν-term in the equation shown in Fig. 12 (b)
is a non-local quantity that requires evaluation
over all edges in the graph. Calculating this
quantity accurately demands a large load in
view of computational costs. Thus, this sec-
tion considers the partial graph shown in
Fig. 13. To evaluate the ∑<mn> when joining or
cutting edge A-B, we add only the contribu-
tions from the edges that appear in the partial
graph. The preliminary results of the NAC
rewiring experiment confirm that ΔE’ calcu-
lated as such gives a good approximation suf-
ficiently close to the true ΔE . To reduce
computational costs, we also restrict the value
of l2 to be l2 ≤ Lmax.

3.4  NAC simulation
This section performs NAC rewiring simu-

lations based on the energy minimization cri-
terion as indicated in the previous sub-sec-
tion. The parameter values used in the experi-
ment are determined as follows, based on the
results of the preliminary experiment: λ = 2,
Lmax = 15, μ = 0.01, σ = 4, ν = 0.02, k

–
= 4,

γ = 0.1, α= 2, κ= 0.2, β= 1500, and dEth =
0.0015. Since this section focuses on spatial
restriction energy, use only the wa edges and
set bonding energy to ε(wa) = 0.

As the initial state, we start from a random
graph with the number of nodes N = 200 and
average degree k

–
= 4. Figure 14 plots the clus-

Fig.13 Nearby section graph for approxi-
mate calculation of change inν-
term of spatial restriction energy
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ter coefficient (C) and average path length (L)
with respect to time. According to Figure 14,
after approximately 100 thousand iterations,
the C value of the NAC graph is approximate-
ly 19.4 times the initial value (C ≈ 0.018) for
the random graph, and the L value is approxi-
mately 1.5 times the initial value (L ≈ 3.95)
for the random graph. This shows that the
graph has characteristics midway between
small world and regular graphs.

Figure 15 also shows the expectation val-
ues of Pjoin and Pcut measured in the simulation.
The results qualitatively agree with the results
of the random walk simulation (Fig. 11).

Figure 16 shows the initial NAC graph and
the NAC graph after 80 thousand iterations
projected onto a plane. The graph after
rewiring is bunched with single links and con-
tains fewer edge crossings, resulting in a
topology easier to project onto a plane.

3.5  Conclusion and discussion
We derived and formulated the edge

rewiring rule in the “network artificial chem-
istry,” which describes the relationship
between molecules and primitive clusters by a
network, based on the criterion of minimizing
network energy. We performed a rewiring sim-
ulation based on the rule obtained and found
that cluster coefficients and average path
length values are close to those for the contact
graph of hard spheres. We also found that the
dependence of the edge creation and removal

Fig.14 Measurement of changes in cluster
coefficient (C) and average path
length (L) during 100,000 steps in
NAC rewriting simulation

Fig.15 Edge joining and cutting probabil-
ities calculated based on NAC
rewriting simulation result

Fig.16 Two-dimensional rendering of (a)
initial random graph and (b) NAC
graph after 80,000 rewriting steps
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probabilities on the parameters (degree and
path length) qualitatively agree with those of a
random walk simulation of hard spheres in D-
dimensional space. We drew the resulting
graph using commercially available software
and found that the graph has fewer edge cross-
ings when projected onto a plane than at the
initial state. The graph becomes one with less
tangling, one more easily embedded in space. 

We can conclude that the rewiring rule for-
mulated reverses the Watts-Strogatz sce-
nario[30] and increases C and L values to cre-
ate a graph with a certain type of spatial
restriction. 

4  Organization of network 
structure by active node 
program

4.1  Introduction
This section considers NAC solvent nodes

as active nodes and designs the node program.
We let all the solvent nodes have the program
designed with reference to the complex func-
tions of water molecules and demonstrate how
its parallel execution rewires the edges and
forms a pseudo-regular structure in the net-
work[25][27].

Below, Section 4.2 gives an overview of
the model, Section 4.3 shows the experimen-
tal results, and Section 4.4 concludes with a
discussion of the problem.

4.2  Model
The NAC program is implemented in Java.

Each node or edge is expressed as an instance
of a Java node class or edge class. These
instances are linked to each other with
instance variables. The node instance has a
pointer array hy [ ] of size 4 and can indicate
up to 4 hy edges connected to the node.
Figure 17 shows the node program algorithm
used to implement rewiring.

This algorithm essentially extracts the path
nde - this - nda - ndb - ndc - ndd with refer-
ence to this node and creates a new edge for
the path to form a loop of length 4. Here, dp is
the variable that specifies the direction for

searching the path. The two hy edges adjacent
to each other in a loop are registered in the
hy [ ] of the intermediate node to places dif-
fering by dp.

4.3  Experimental results
We start from a random graph with num-

ber of nodes N = 512 and uniform degree
K = 4 and run conduct_nd_prog ( ) K times in
each iteration in each node. Figures 18 and 19
show typical results.

As these figures show, rewiring by con-
duct_nd_prog ( ) gradually creates regularity
within the graph. After approximately
100 iterations, the graph assumes the structure
of a two-dimensional square lattice sheet fold-
ed as shown in Fig. 19. Beyond this stage, the

Fig.17 Algorithm of node program
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sheet is gradually unfolded while maintaining
regularity; after approximately 1,000 itera-
tions, it assumes a structure combining sheets
and strings, as shown in Fig. 20. The current
algorithm conduct_nd_prog ( ) specifies only
the local links of the graph and does not speci-
fy the overall structure. It does not distinguish

between two-dimensional sheets and one-
dimensional strings as the overall structure.
Several experimental results show that the
current algorithm tends to converge the graph
to a string, not a sheet.

4.4  Conclusion and discussion
Whereas past NAC studies assumed sol-

vent nodes had only passive functions, this
section implements an active program at the
solvent nodes to rewire surrounding edges
based solely on local information. We ran this
program in parallel in a simulation experi-
ment. By doing so, we succeeded in self-orga-
nizing a regular structure for the entire graph
corresponding to the pseudo-lattice structure
of water.

In past NAC studies, we classified edges
into four types from van del Waals to cova-
lent, assuming that the weakest, van del Waals
edge, would be rewired one after another
based on the passive rewiring rule, reflecting
the physical and spatial restrictions[21][24]. We
also assumed solvent nodes were generally
inactive and that active rewiring in the net-
work is performed only by data flow clusters
(corresponding to proteins) formed by the
folding of the node chain[23]. However, the
results discussed in this section indicate that
the simplest and most direct method for form-
ing an organized structure in the network is to
implement an active program at each node

Fig.18 Two-dimensional rendering of ini-
tial random graph based on the
number of nodes N = 512 and uni-
form degree K = 4

Fig.19 NAC graph after 100 iterations Fig.20 NAC graph after 1,000 iterations
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with functions as complex as water molecules.
This method of implementing a local artificial
program in each processing unit to create the
global function or structure is the same as that
used in “amorphous computing”[1].

5  Molecular agent and program
flow computing

5.1  Introduction
Extending the model in the previous sec-

tion further, we introduce the framework of
“revised network artificial chemistry,” which
expresses the molecule as an agent and the
reaction by calculations of the agent pro-
gram[26]. The system basically operates with
the movement of the molecular agent along
the edges and the firing and execution of the
program at the nodes. Through these local
processes, the edges are rewired and the topol-
ogy of the entire network is changed. We use
three designed agent programs to form and
split hydrophilic clusters with a pseudo-lattice
structure.

Section 5.2 below describes the experi-
mental method; Section 5.3 presents the
results; and Section 5.4 concludes this discus-
sion of the problem.

5.2  Experimental method
5.2.1  Graph elements

The experimental program is coded in
Java, with nodes, edges, and agents represent-
ed as classes. Here, a node represents a point
in space, an edge represents the relationship
between points in space, and an agent repre-
sents a molecule (or atomic cluster). As
described below, there are several different
types of edges, based on the strength of a
bond. However, this strength does not repre-
sent the collision or bonding between the mol-
ecules. Rather, it collectively represents the
bonding relationship between agent groups
belonging to specific points in space. This sec-
tion classifies nodes into hydrophilic and
hydrophobic and edges into covalent bonds
(covalent, cv, directional), hydrogen bonds
(hydrogen, hy, directional), and van del Waals

bonds (van del Waals, wa, non-directional)
and agents into Type 0 (for splitting clusters;
centrosomes), Type 1 (for hy rewiring), or
Type 2 (for wa rewiring).

Figure 21 schematically shows the func-
tions of these class instances with major vari-
ables and methods. Each instance has vari-
ables to link to other instances, in addition to
basic variables such as label and type. Chang-
ing the variables by executing the methods
changes the bonding relationship in the graph.
5.2.2  Execution operations

The simulation progresses by repeating the
following four-step operations:

1. Node.produce_agents ( ) 
[Agent creation by node]:
This operation creates or removes the agents
at each node to the target number specified in
advance. The target number is separately
determined according to the types of nodes
and agents.
2. Agent.conduct_prog ( )
[Program execution by agent]:
This operation executes the agent program,
rewiring edges.
3. Node.delete_edges ( )
[Edge cutting by node]:
This operation cuts the edges so that the edge
degree in each node does not exceed the upper
limit. The upper limit of the degree is deter-
mined by the types of nodes and edges.
4. Agent.move ( )
[Agent movement]:
This operation moves all agents from the cur-
rent to the next node. The edge that an agent
passes through is determined by agent vari-
ables: edge_type, DirSensitive, and template.

Among the four operations above, the three
operations other than Agent.conduct_prog ( )
are common to all nodes and all agents. Howev-
er, the algorithm that Agent.conduct_prog ( )
executes differs depending on the type of
agent. Roughly speaking, Type 1 or 2 agents
function locally to form hy-squares and wa-
triangles, whereas Type 0 agents recognize
differences between the labels of the other
Type 2 agents in the same node and remove
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the agents with different labels and cut the
edges through which they passed. For further
discussion of this algorithm, refer to[26].

The target number and upper limit degree
used in Steps 1 and 3 specify the type of the
node (spatial point). For example, the degree
of the hy edge and the number of Type 1
agents for a hydrophilic node are 4 indepen-
dent of the direction or template and set to
zero for a hydrophilic node. This specifies the
hydrophobic nature of the node (the nature
that it does not have hy edges). Figure 22
summarizes the criteria used when the agent
selects the edges in Step 4.

5.3  Experimental results
5.3.1  Basic settings

The experiment starts from an initial regu-
lar random graph (with a uniform degree) con-
taining N = 2000 nodes (1400 nodes among
them are hydrophilic and 600 nodes are
hydrophobic). The degrees of the hy and wa
edges are set to K = 0 and K = 4, respectively,
in all nodes. They do not include the number
of agents. Each of the 600 hydrophobic nodes
is linked to a hydrophilic node with a cv edge
to form 600 amphipathic dipoles in a manner
analogous to biological lipid molecules. Since

this experiment does not use operations for
cutting and creating cv edges, these dipoles
are maintained throughout the experiment.

The four operations are repeatedly applied
to the graph and the changes in graph topolo-
gy observed. After 100 iterations, two Type 0
agents with different labels are prepared and
placed as substitutes at two randomly chosen
hydrophilic nodes.
5.3.2  Formation and splitting of

hydrophilic clusters with 
pseudo-regular structures

Figure 23 shows the typical results
obtained. The initial random graph shown in
Fig. 23 (a) undergoes topology changes by the
Type 1 and 2 agents created and by their cre-
ation and rewiring of hy and wa edges. After
100 iterations, the graph changes to assume a
shell structure. This shell structure contains
hydrophilic nodes densely connected by the
hy network and accumulated at the center and
hydrophobic nodes pushed out to peripheral
areas (Fig. 23 (b)). The hy network here has a
structure close to a pseudo-two-dimensional
square lattice, due to the functions of the
Type 1 agent. The large average path length
(L) of this structure forms the basis for the
split that occurs next. (Another experiment

Fig.21 Schematic of nodes, edges, agents, and their main instance variables and methods
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performed with N = 512 nodes, without
hydrophobic nodes, using the Type 1 algo-
rithm, produced an average path length of the
resulting hy network reaching L ≈ 6.7, which
exceeds the value L = 6.01, for the three-
dimensional cubic lattice containing the same
number of nodes.) 

Figure 23 (b) and figures thereafter show
the growth and percolation of the Type 2
agents injected. This agent acts in a manner
similar to the centrosome in a living cell and

clusters (splits) the hydrophilic nodes by the
label values they have. This split occurs
between the iterations of 150 and 250.
Figure 23 (c) shows the intermediate graph.
The state with split clusters continues through
to the final iteration, 500, until the simulation
is stopped (Fig. 23 (d)). 

This experiment is performed 10 times
with different random number seeds. Fig-
ure 24 compares the graph after 300 iterations
projected onto a plane in each case. As the fig-
ures show, the sizes of the clusters formed dif-
fer in each case, but all experiments produce
the same qualitative result.

5.4  Conclusion
As a new framework for network artificial

chemistry, we propose a model in which mole-
cular agents move within the network and fire
programs at nodes. The execution of these
programs changes the network structure. As
an example of the self-organization of the net-

Fig.23 Two-dimensional rendering of (a) initial regular random NAC graph and NAC graphs of
(b) 100 iterations, (c) 180 iterations, and (d) 500 iterations

Fig.22 Edge selection scheme ○/X for
Agent.move ( ) expresses whether
or not each agent can pass
through edges of the indicated
type
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work structure, we designed three types of
agent programs, representing van del Waals
edge rewiring, hydrogen edge rewiring, and
cluster splitting. We verified that hydrophilic
clusters with pseudo-regular structures form
and split.

6  Future prospects

For the most part, this chapter presents
progress with network artificial chemistry
studies undertaken over the past five years.
This section discusses future research prob-
lems and potential industrial applications of

the new “program flow computing” computa-
tional model emerging from this research.

In short, program flow computing is a net-
work computational model in which CPUs
(nodes) connected by communication lines
(edges) execute in parallel many programs
that pass through them. An obvious applica-
tion is finding optimal solutions to problems
involving graphs. Figure 25 shows an exam-
ple. The graph node coloring problem is
solved by the parallel execution of many
agents with simple programs. The agent pro-
gram prepared here changes the color of the
current node if this color is identical to the
color of the previous node. Through parallel
execution (e.g., the example shown in
Fig. 25), a graph starting with randomly-col-
ored nodes (Fig. 25 (a)) gradually eliminates
competition between the nodes (Fig. 25 (b)) to
acquire different colors on the ends of all
edges (Fig. 25 (c)). This example finds the
global optimal solution for graph coloring
based on the local selection of simple pro-
grams. Similar methods can likely be applied
to combination optimization problems for
graphs.

Another example involves application to
neural network information processing. The
current mathematical modeling of neural net-
works is based on signal processing in animal
brains. Information processing in or between
living neurons is basically handled by mole-
cules. In artificial neural networks, which
model neurons with nodes and axons with
edges, implementing molecular agents in the
network and assigning various functions (pro-
grams) to these molecular agents may help in
developing an integrated account of informa-
tion processing for signal propagation and
learning (Fig. 26).

Building and testing such models will help
advance the state of research, potentially lead-
ing to the proposal of new (non-von Neu-
mann) information processing and communi-
cation models.

Fig.24 2-dimensional rendering of NAC
graph after 300 iterations in
10 experiments conducted with
different random sequences
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