
1  Introduction

As of 2010, solar activity passed the turn-
ing point of the minimal period and became
active again toward the next maximal period.
In solar maximum, explosive phenomena such
as solar flares often occur on the sun’s surface
and disturb the earth’s magnetosphere and
ionosphere. The ionosphere—a vast plasma
region spreading from an altitude of about 80
km to 1000 km—has been utilized by humans
as a reflective layer for radio communications
using short-wave propagation. In recent years,
space shuttles and numerous satellites have
been orbiting in and above the ionosphere. As
satellite signals reach the ground passing
through the ionosphere, fluctuations of ionos-
pheric electron density resulting from solar
activity significantly influence satellite signals
utilized for such purposes as satellite position-
ing systems.

A drastic fluctuation in ionospheric elec-

tron density is called an ionospheric storm,
which is classified into two types: a negative
phase ionospheric storm (negative storm) hav-
ing reduced density, and a positive phase
ionospheric storm (positive storm) having
increased density. The mechanism of negative
storms is considered as follows: Thermal
expansion of the thermospheric neutral atmos-
phere is caused by energy flowing into the
polar region, thereby changing the altitude dis-
tribution of neutral atmospheric particles, and
increasing nitrogen molecules (N2) to exceed
the mass of oxygen molecules (O) when the
temperature rises at ionospheric altitudes,
resulting in a larger ionospheric recombination
coefficient and thus reduced electron density［1］.
On the other hand, the mechanism of positive
storms cannot be explained by the N2/O ratio;
ionospheric plasma moves to higher altitudes
for some reason, resulting in reduced N2 den-
sity and thus the recombination coefficient
becomes low. While ionization progresses
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during the daytime, ionospheric plasma is sup-
plied to high altitudes from an altitude of
about 180km, where the production rate is
high, resulting in an increased F-layer electron
density[1]. The rises in ionospheric altitude are
mainly considered caused by two reasons:
upward movement perpendicular to magnetic
field lines produced by the E×B drift due to
an eastward electric field originating in the
magnetosphere［2］, and upward movement par-
allel to magnetic field lines produced through
the collisions of neutral atmospheric particles
with ions due to thermospheric wind within
the horizontal plane as directed from the polar
region toward the equator［3］. However, the
accurate forecasting of ionospheric storms
including negative and positive phases has yet
to be realized due to the difficulty of steady
observations of the upper atmosphere. Our
study targeted the development of a practical
system for empirically forecasting ionospheric
fluctuations including ionospheric storms by
using a neural network with inputs of solar
activity and geomagnetic activity indices.

The artificial neural network (NN) is a cal-
culation algorithm that models the cranial
nerves of animals and in recent years has been
used in wide-ranging areas as a mechanism
suited for extracting the characteristics of a
complex phenomenon. The NN can learn the
relation between inputs (consisting of multiple
elements as the reasons for a given phenome-
non) and outputs resulting from that phenome-
non (functional approximation capability)[4].
With many candidate inputs possibly listed
due to the complexity of ionospheric fluctua-
tions as natural phenomena, learning by the
NN requires data with qualitative stability
over an extended period. Moreover, some sort-
ing out or other ingenious means may be nec-
essary to a certain extent for handling larger
amounts of data that entail more time needed
for learning. Both sunspot number and solar
flux (indicators of periodic fluctuations in
solar activity) are used as inputs of the factors
of periodic ionospheric fluctuations caused by
solar activity. Since ionospheric storms have
been known in most cases to occur by

responding to magnetospheric disturbances,
this study also used the K-index—a geomag-
netic activity index indicating magnetospheric
fluctuations—as part of the inputs.

Section 2 below describes the configura-
tion and learning algorithm of the multi-layer
NN used for learning and the inputs/outputs;
Section 3 presents the learning and evaluation
results. In addition, Section 4 introduces oper-
ation of the newly developed forecasting sys-
tem and Section 5 summarizes this study.

2 Constructing a NN model for
forecasting ionospheric fluctua-
tions

2.1  Multi-layer perceptron and back
propagation method

We used a 3-layer perceptron of the feed
forward type in this study. Figure 1 illustrates
the NN configuration. The following explains
the scheme for learning by the NN. The teach
signals and input elements in the learning will
be discussed in detail in the next section or
later.

The 3-layer perceptron has a so-called hid-
den layer between the input and output layers,
with all units in one layer being combined
with all units in the adjacent layer. Each unit
has a respective weight, and the learning is
performed by making weight adjustments.

The learning algorithm used is referred to
as the back propagation method, where a com-
bination of weights is determined through
repetitive learning so that the square sum of
errors in the target signals and outputs is mini-
mized for combination. The adjusted amount
of weights is then back-propagated from out-
put to input during the learning process in
order to update the NN. The following shows
the algorithm of the back propagation method.
Note that there may generally be more than
one output, although the NN configured for
this study only includes one output. The algo-
rithm shown below is intended for multiple
numbers (m) of outputs［5］.

Assume that every unit has the weight of
ω in the network with n inputs and m out-
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δpj＝βopj（1－ opj）（tpj－ opj）,

Unit for the hidden layer:

Σk is given as the sum of errors for all
units k of the next layer to which unit j sends
the outputs.
5. Using corrective amount Δpωji =ηδpj opj of

the weight, weight ωji is corrected for each
layer from output layer toward input layer
as follows:

ωji ←ωji＋Δpωji

6. The learning is deemed completed when
squared error E for all learning patterns is
equal to or less than the set value. Other-
wise, steps 2 to 5 are repeated for all learn-
ing patterns.

2.2  F2 layer critical frequency (foF2)
as a target signal

The critical frequency of the F2 layer
(foF2), a parameter that expresses the state of

puts. In addition, a unit referred to as thresh-
old element is adopted for input as the (n+1)th
element.
1. Initialize values of all weights ωji (i = 1, ...,

n +1; j = 1, ..., m) to random small values.
Learning rate η (0 < η < = 1) is also set.

2. Target output tp = (tp1, ..., tpm) and corre-
sponding input pattern vector ip = (ip1, ...,
ipm, 1) are given.

3. Using given weight ωji (i = 1, ..., n +1; j =
1, ..., m) and input pattern vector ip, the out-
put of each unit from the input layer toward
the output layer is calculated as follows:

Note that f is a logistic function.
4. Using determined output Opj and target out-

put tpj (j = 1, ..., m), error δpj of unit j corre-
sponding to pattern p is calculated from the
output layer toward the input layer. Error δpj

is classified as a unit either for output or the
hidden layer, and each δpj is determined as
follows:

Unit for the output layer:

Fig.1 Configuration of the neural network
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ionospheric fluctuations, is used as the teach
signal of the NN in this study. Note that foF2
is also a parameter given by observations
using a vertical sounder called an ionosonde
(Fig. 2), and is one of the parameters read
from ionograms (Fig. 3) produced from
ionosonde observations. The ionogram shows
an altitude profile of ionospheric electron den-
sity, where the reflective altitudes of radio
waves swept by radar are plotted with the lat-
eral and vertical axes denoting frequency and
altitude, respectively. Ionosonde observation
has a history of over 50 years at four locations
in Japan: Wakkanai, Kokubunji, Yamagawa
and Okinawa.

Figure 4 shows the general behavior and
periodic fluctuations of foF2. In this figure,
plotting is made using the foF2 observational
data, sunspot numbers, and solar fluxes for the
14 years from 1990 to 2004. It is obvious from
the figure that the sunspot number and solar
flux correlate with long-term fluctuations in

foF2. Note that foF2 peaks in spring and
autumn, and increases in the maximal period
of solar activity up to several times the level in
the minimal period.

A 15-minute ionosonde observation yields
96 foF2 data items per day, and we used an
hourly value (of 24 foF2 data items per day),
since learning requires data over a span of at
least 20 years. Here, foF2 was extracted from
the data given by ionograms for the period
from 1960 to 2002［6］and values normalized
with the maximum value in the period was
used for learning.

Fig.2 10C type ionosonde transceiver

Fig.3 Scheme of ionospheric observation

Fig.4 Long-term ionospheric fluctuations
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2.3  Input parameters
Periodic fluctuations in the ionosphere can

roughly be considered a superposition of three
components of cyclic fluctuations: 11-year
fluctuations due to the 11-year solar cycle,
seasonal fluctuations, and daily fluctuations
due to solar irradiation. Geomagnetic fluctua-
tions causing ionospheric storms must also be
input for the NN in addition to these three
cyclic fluctuations. The following describes
the input parameters and numerical processing
performed for learning in detail.
2.3.1 Sunspot number

Solar activity fluctuates in a cycle of about
11 years and entails fluctuations of extreme
ultraviolet (EUV) solar radiation, which con-
tributes to the production of F-layer ionos-
pheric electron density. Thus, the ionosphere
is significantly influenced by solar activity.
There is also the sunspot number as an index
for indicating solar activity. Such phenomenal
activity as a solar flare or coronal mass ejec-
tion (CME) is known to occur at places sub-
ject to the sun's intense magnetic field (known
as sunspots). Multiple sunspots often appear in
a state of gathering (referred to as sunspot
group). Sunspot relative number R is defined
by using f to denote the total number of
sunspots existing in all sunspot groups visible
on the entire surface of the sun, g the number
of sunspot groups, and k the coefficient for
compensating for variances caused by
observers and/or telescopes as follows:

R＝k（10g＋ f） （1）

In the solar activity cycle of about 11
years, a period with maximum R is referred to
as the solar maximum, and that with minimum
R as the solar minimum. R fluctuates not only
in the 11-year solar cycle but also in a 27-day
cycle due to the sun’s rotation. The observed
sunspot number is quantitative data consistent-
ly accumulated according to evaluation equa-
tion (1) since more than 300 years ago, and
high accuracy regarding the cyclic nature of
sunspot number fluctuations is statistically
guaranteed［7］. Thus, the NN uses the sunspot

number as one item of input data. To prepare
input data for this study, one data item per day
since 1960 was taken［8］with its normalization
made with the maximum value in the period
from 1960 to 2002. Since the learning did not
satisfactorily converge with the daily data,
smoothing was done using the numerical val-
ues of 3 and 27 days before each subject day,
in order to use the two resultant sunspot num-
bers for input.  
2.3.2 Solar flux

Another index for indicating solar activity
is solar flux (F10.7), which is defined as the
intensity of solar radio waves having a wave-
length of 10.7 cm (2800 MHz) showering the
earth as measured at Ottawa, and indicated in
units of 10－22 (W/m2Hz). One observational
data item per day of solar flux (F10.7) can be
taken. To prepare inputs, we also employed
the F10.7 data since 1960［9］and normalized
that data with the maximum value. Similarly
to the case of sunspot numbers, large fluctua-
tions only appeared when using the daily data
and learning did not satisfactorily converge. A
good convergence resulted from taking 3- and
27-day averages to smooth the data and using
the results for input.  
2.3.3 Seasonal fluctuations

The second most significant factor of
ionospheric fluctuations following solar activ-
ity is seasonal fluctuations. Changes in the
amount of incoming solar irradiation due to
the positional relation of latitude/longitude
with the sun significantly affect generation of
the ionosphere. The Day of Year (DOY) is
used for inputting seasonal fluctuations. The
repetitive use of DOY—consisting of 1 to 365
days (or 366 days)—results in a drastic drop at
the return from 365 to 1. To avoid such dis-
continuity of data, two input data items (DOY
1 and DOY 2) were prepared as shown below,
along with respective sin and cos calculations.
In addition, each input was normalized to fall
within the range of 0 to 1 in order for the NN
to learn.  
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2.3.4 Daily fluctuations
To incorporate daily fluctuations due to

solar irradiation into inputs, learning was per-
formed with each local one-hour value, as
classified into 24 values. The learning periods
were independent of each other. The output
data were arranged in order of time for execu-
tion, and normalized with the maximum value
in the learning period at each one-hour value
for learning. 
2.3.5 Geomagnetic activity K-index

Cyclic fluctuations due to solar activity
and seasonal fluctuations are considered
reproducible by using solar observational data
and DOY input. However, for accidental fluc-
tuations such as ionospheric storms, geomag-
netic fluctuations causing such storms must be
added to the inputs. There is a delay of about
one to two days for an accidental solar fluctu-
ation to reach and influence the earth’s ionos-
phere by passing through the magnetosphere.
By using this delay, learning information
about one day before in the NN enables fore-
casting.

A variety of geomagnetic activity indices
have been proposed and used by geomagnetic
observatories covering the entire world to
quantitatively capture various magnetospheric
disturbances. There are wide-ranging indices
such as the AE index for monitoring aurora
behavior in the polar region, Dst index for
indicating ring currents developed during
magnetic storms, ap index for indicating the
level of geomagnetic activity in the mid-lati-
tude region, and Kp index linearly converted
from the ap index［10］. The Kp index averages
the K-index, a local geomagnetic activity
index for various regions, and has been widely

used as an index for indicating geomagnetic
activity of the entire earth. In addition, the Kp
index is considered suitable as input for learn-
ing, since this index can monitor the occur-
rence of geomagnetic disturbances that pro-
duce ionospheric fluctuations. In fact, many
studies on ionospheric fluctuations conducted
in Europe have actually used the ap or Kp
index［12］–［14］. However, these indices lack
promptness and require much time for fixing
values. In contrast, among the K-indices used
for determining the Kp index, the Kakioka K-
index［15］observed at the Kakioka Geomag-
netic Observatory in Japan shows promptness
where its preliminary figures for each day are
announced the next morning to enable early
use as inputs for forecasting. Targeting the
construction of a more practical forecasting
system, we decided to use the K-indices as
inputs of geomagnetic activity indices. In
addition, as the AE index reflects energy flow-
ing in from the magnetosphere more sensitive-
ly than the K or Kp index, it should essentially
be included in the inputs. However, there is an
insufficient period for the database to accumu-
late the AE index as provisional values. Thus,
we did not use the AE index since the learning
required for the NN may be degraded. Once a
sufficient amount of data is accumulated over
several years, the AE indices may be used as
inputs.

The K-indices indicate the degree of geo-
magnetic disturbance in integers from 0 to 9,
with eight points of the daily indices being
calculated every three hours in universal time.
Note that the component of daily fluctuations
remains included in the Kakioka indices［16］
(but removed from the Kp indices due to aver-
aging), and 20 K-indices equivalent to 2.5
days were used as inputs for learning by the
neural network. Numerical values normalized
with the maximum number of 9 were used for
learning. In addition, ΣK or the sum of eight
K-indices for a given day has been used to
indicate disturbances during a given day.
Table 1 shows the relation of ΣK with the
degree of geomagnetic disturbance proposed
by the Kakioka Geomagnetic Observatory［17］.
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ΣK well expresses the degree of geomagnetic
disturbance. However, it is known that the
influences of geomagnetic fluctuations on the
ionosphere vary depending on local time［1］;
therefore, in order to effectively incorporate
the local time dependence into inputs of this
study, we extracted 10 examples of large
ionospheric storms that occurred in the past
and conducted superposition analyses for pat-
terns of geomagnetic fluctuations known to
have caused ionospheric storms. Figure 5
shows the results. The horizontal axis repre-
sents local time and a superposition is made
for fluctuation patterns of K-indices for 3.5
days prior to the occurrence of ionospheric
storms. The vertical axis represents the sum of

totalized K-indices and error bars are used to
indicate standard deviation for the number of
events. The results of analyses indicate that
the fourth to seventh K-indices (indicated by
arrows) from the previous day to the day when
an ionospheric storm occurred exceed the nor-
mal level. Based on these results, we decided
to split the eight K-indices at eight points in a
day into two for use as inputs: the sum of
indices corresponding to four points (4th to
7th) in a day and the sum of indices corre-
sponding to the 8th point in said day, includ-
ing the 1st to 3rd points the next day. The K-
index resulting from this summing process is
defined as Σ’K, which is equivalent to the two
days added to the inputs for learning.  Note
that Σ’K was also normalized with the possible
maximum value of 36.

2.4  Configuration of the networks and
learning parameters

The network was structured in three layers
with a total of 30 inputs and one output, and
one-hour value of foF2 was used for a target
signal. A total of 24 NNs were configured for
each time division for learning, and outputs
from each NN were arranged in order of time
for execution. Note that small initial values of
weight were set in the range from – 0.5 to 0.5
by using random numbers.

Once inputs and outputs were determined,
a network could be configured. For actual
learning in the NN, however, learning parame-
ters must be properly set in order for the learn-
ing to converge. Some parameters were avail-
able regarding the learning momentum to
determine learning speed, number of data pat-
terns used for learning, and number of hidden
layers in the network. These parameters were
determined based on learning being executed
a number of times with a review made after
each execution on a trial-and-error basis.
Table 2 summarizes the learning parameters
used in this study.

The termination of learning may be deter-
mined when the learning error drops below the
set value［5］. However, in actual learning,
reviewing only the error does not provide a

Table 1 Degree of geomagnetic distur-
bance and ∑K

Fig.5 Superposition analyses of geomag-
netic K-index fluctuation patterns
prior to a large ionospheric storm
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basis for judging whether learning is proceed-
ing in good condition. As such, we set a target
learning error to a very small value and ran
many cycles of learning while monitoring the
processes of square and generalization errors
during the learning process. The generaliza-
tion error is defined as a square error for data
not used for learning, thereby functioning as
an index of generalization capability of the
learning process. As learning proceeded, the
square error was gradually and steadily
reduced to converge with a certain value,
while the generalization error relative to an
observational value generally increased from a
certain point. The latter phenomenon is known
as over-learning, where the capability of gen-
eralizing unlearned data is considered deterio-
rated. For execution, we used the weight at the
point where the generalization error began
increasing during learning in each local time
(LT) and recorded the number of learning
cycles at that point as the cycle providing the
best learning results. There were about 7,000
cycles of learning based on such a manner for
the entire time zone.

3 Results of learning and its evalu-
ation

To review the reproducibility of periodic
fluctuations due to solar activity, the results of
learning about fluctuations are described in
terms of several tens of years, seasons, and
days (as described in Section 3.1), and their
errors are compared with those given by the
results from the IRI empirical model for the

ionosphere (described in Section 3.2).  In
addition, reproduced examples and forecasting
scores including the negative/positive phases
of ionospheric storms are described (in Sec-
tion 3.3).

3.1  Reproducibility of periodic fluctua-
tions

3.1.1 Reproducing long periodic fluc-
tuations (11-year solar cycle)

First, Fig. 6 shows a reproduced long-term
fluctuation. This figure also compares one-
hour observational value of foF2 (shown in
the middle) with outputs of one-hour value
from the NN (shown at the bottom) for the
period of 1985 to 1996, from which no data
was picked for learning. Moreover, the aver-
age fluctuation over three days is also shown
at the top in terms of sunspot number (solid
line) and solar flux (dotted line). The outputs
from the NN well reproduced the fluctuations
of the observational foF2 in synchronism with
the approximative 11-year cycle of solar activ-
ity. In addition to this 11-year cycle, it is also
obvious that annual and seasonal fluctuations
are reproduced. Note that outputs from the NN
show less scattering of values compared to
observational values. This implies that the NN
cannot necessarily follow extreme increases or
decreases in values, which may occur at such
abnormal events as ionospheric storms.
3.1.2 Reproducing seasonal and daily

fluctuations
Figure 7 is presented to review the repro-

ducibility of seasonal and daily fluctuations
with data plotted for seven days. In this figure,
the data of a relatively quiet seven days in
terms of geomagnetic activity were selected
and extracted from 1992 (right column) as the
solar maximum period, and from 1985 (left
column) as the minimum period for March
(top), August (middle) and October (bottom),
thereby allowing a comparison to be made by
focusing on observational values (dotted line)
and outputs from the NN (blue solid line). It is
obvious from the figure that normal values in
both maximum and minimum periods are well
reproduced with the NN for each season.

Table 2 Learning parameters
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3.2  Comparison with an empirical
model (IRI)

A comparison was made relative to a com-
monly used empirical model known as inter-
national reference ionosphere (IRI)［18］. IRI

uses a geomagnetic index referred to as the ap
index instead of the K-index for indicating
magnetospheric influences. By using IRI, we
prepared outputs with an identical one-hour
value for the same period as for the NN (1985

Fig.6 Reproducing long cyclic fluctuations

Fig.7 Reproducing seasonal and daily fluctuations
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to 1996). By using both methods, we com-
pared square errors of outputs from the NN
and IRI in the same period to actual observa-
tional values. First, correlation coefficients
with respect to the observational values were
calculated and compared for each year during
the period (Fig. 8). The correlation coefficient
for outputs from IRI dropped to 0.76 due to
large errors in the solar maximum period,
while the coefficient for those from the NN
constantly remained above 0.92 through both
maximum and minimum periods.

Next, the square errors for each LT were
compared in the maximum and minimum peri-
ods (Fig. 9).

According to Fig. 9, reproduction by the

NN is considered better in terms of accuracy
than that by IRI in most time periods in spring
and autumn during both maximum (left col-
umn) and minimum (right column) periods.
The electron density is highest in spring and
autumn during the year. There are large errors
in outputs from IRI (upper level) in time peri-
ods around evening during both maximum and
minimum periods. In contrast, no significant
bias on errors due to local time is observed
with outputs from the NN. The reasoning
behind the error bias on IRI is considered a
lack of observational data in Asia (including
Japan).

3.3  Reproducing ionospheric storms
3.3.1 Example of forecasting ionos-

pheric storms
The following describes three successful

examples of forecasting negative and positive
storms. Figures 10 to 15 indicate forecasted
storms for three days including the day on
which an ionospheric storm occurred. The top
levels in the figures indicate a transition in the
K-index; the middle levels indicate observed
foF2 (red dot), forecasted foF2 (blue dotted
line), and the median value for 27 days before
the observational day (black solid line). In
addition, the bottom levels indicate the vari-
ance between values forecasted by the NN
using actual K-indices and those forecasted
under the assumption that geomagnetic activi-
ty quietly underwent a transition (where all

Fig.9 Comparison of square errors in spring and autumn during maximal and minimal periods at
local time for the NN and IRI model

Fig.8 Comparison of correlation coeffi-
cient between NN outputs and
observational values with that
between the IRI model and obser-
vational values for 12 years (one
solar cycle)
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inputs for K-indices become 1) during NN
execution. Ionospheric storms forecasted as
being reduced in number from a quiet period
are indicated with blue bars, while storms
forecasted as being increased in number are
indicated with red bars.

Figures 10 to 12 show three examples of
successfully forecasted negative storms. Fig-
ures 10 and 11 each show an example of fore-
casting an event, where a negative storm
occurred two days after the occurrence of
magnetic storms. In both examples, the K-
indices underwent a transition with a value of
3 or more from the afternoon to evening of the
second day. In Fig. 11, the fourth K-index
(18:00 to 20:00 LT) increased to 6 and the
fifth K-index (21:00 to 23:00 LT) to 7 on May
22, 2002. This coincides with the trend of
magnetic fluctuation patterns on the day
before and two days before as given by super-
position analyses shown in Fig. 5. Figure 12
shows an example of relatively quiet negative

storms that occurred from December 29 to 31,
2002. The sum of daily K-indices (ΣK) under-
went a transition of 20, 16, 11 and 11 during
the four days from December 28 through 31.
The four-day ΣK implies relatively quiet dis-
turbances according to Table 1, which shows
the degree of geomagnetic disturbance pro-
posed by the Kakioka Geomagnetic Observa-
tory.  Consequently, the forecasting is under-
stood as being made for cyclic geomagnetic
disturbances due to coronal holes occurring
during an approximate 27-day cycle of solar
activity.

Next, Figs. 13 to 15 show three examples
of successfully forecasted positive storms.  In
the example for the period of November 20 to
22, 2002 (in Fig. 13), the K-index increased to
5 on November 20, with about the same level
of geomagnetic disturbance being retained

Fig.10 Example 1 with negative storms
forecasted on May 12, 2002

Fig.11 Example 2 with negative storms
forecasted on May 24, 2002

Fig.12 Example 3 with negative storms
forecasted on December 31, 2002

The top level indicates the K-index; the mid-
dle level indicates the observational foF2 val-
ues (red dot), outputs (blue dotted line)
obtained by the NN, and monthly median
values of observational values (solid line);
the bottom level indicates forecasted fluctua-
tion by using variances relative to outputs
when setting K to a constant value (K = 1) in
the NN, where red indicates an increasing
trend of fluctuation from a quiet period, and
blue indicates a decreasing trend.  The same
applies to other related figures.
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over the next two days. Following these mag-
netic disturbances, positive storms occurred in
the ionosphere for several days. Based on a
comparison of median values (solid line) and
observational values (red dot) shown in the
middle of the figure, ionospheric electron den-
sity is understood as having only increased
during the daytime and not at nighttime.  Such
local time dependence was also reproduced

well in the NN. Figures 14 and 15 show exam-
ples indicating magnetospheric and ionospher-
ic disturbances that continued for three days
after intense solar flares occurred on October
28, 2003. In this event, the intensity of solar
flares reached abnormally high X17.2 on
October 28, 2003 11:51 UT; and was later
referred to as the “Halloween Event” due to
these almost unprecedented magnetic storms
in history.  The magnetic disturbances then
lasted until 6:11 UT (15:11 JST) on October
29［19］.  Although the ionosphere was drasti-
cally disturbed in responding to these geomag-
netic disturbances, the NN could forecast
these disturbances very accurately over a wide
range.  Satellite positioning systems and simi-
lar systems were forecast as being influenced
by such a drastic event due to the drastic dis-
turbances or changes in ionospheric electron
density. The NN is considered significant for
constructing an ionospheric storm forecasting
system, since it at least forecasted the occur-
rence of such drastic disturbances.
3.3.2 Score of forecasting ionospheric

storms
To comprehensively discuss forecast accu-

racy, we newly introduced ionospheric distur-
bance index δobs, the basis of which lies in
observational values. Index δobs is defined as
the variance between the average and monthly
mean values of foF2 taken from 6 a.m. until 6
p.m. on a given day. The days on which posi-
tive and negative storms occurred are defined
as those with δobs of 1 MHz or more and –1

Fig.15 Example 3 with positive storms
forecasted on October 31, 2003

Fig.14 Example 2 with positive storms
forecasted on October 28, 2003

Fig.13 Example 1 with positive storms
forecasted on November 22, 2002
The top level indicates the K-index; the mid-
dle level indicates the observational foF2
values (red dot), outputs (blue dotted line)
obtained by the NN, and monthly mean val-
ues of observational values (solid line); the
bottom level indicates forecasted fluctuation
by using variances relative to outputs when
setting K to a constant value (K = 1) in the
NN, where red indicates an increasing trend
of fluctuation from a quiet period, and blue
indicates a decreasing trend.  The same
applies to other related figures. 
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MHz or less, respectively. In addition, a day
with 0.6 MHz ≤ |δobs | ≤ 1 MHz is specified as
a semi-disturbance day and that within 0.6
MHz downwardly or upwardly beyond the
range as a quiet day. Similarly, disturbance
index δNN is defined for outputs from the NN.
Table 3 lists the relations between δobs and δNN.
During the 11 years (4,383 days) used for the
evaluation, negative storms were observed on
225 days, including 93 days forecasted by the
NN as days of negative storms and semi-dis-
turbance (negative), 13 days of positive storms
and semi-disturbance (positive), and 119 days
of no particular disturbance (quiet range).
Conversely, positive storms were observed on
275 days, including 97 days forecasted by the
NN as days of positive storms (including
semi-disturbance), 20 days of negative storms,
and 158 days of no disturbance. The results
indicate a total of 3,179 quiet days, including
2,262 days forecasted within the range of 0.6
MHz. Thick characters in the table indicate
the number of days correctly forecasted, or
2,488 days out of the total of 4,383 days
(56.8%). The shaded cells indicate the days
forecasted significantly incorrectly, or 661
days out of the 4,383 days (15.1%), and cells
with thin characters on a white background
indicate the days forecasted incorrectly but not
significantly.

4  Disclosing the forecasting sys-
tem using the neural network

The following lists the functions required
for practically forecasting ionospheric fluctua-
tions.

- Providing latest (semi-real-time) infor-
mation  

- Automatically updating and disclosing
data on websites  

- Showing data of about three days to
check the transition of ionospheric fluc-
tuations

- Showing the observational and monthly
median values, in order to check changes
in values for normality and abnormality

To fulfill this requirement, we prepared a
system that automatically acquired informa-
tion on sunspot numbers［8］, solar fluxes［9］,
and geomagnetic K-indices［15］from a website
updated daily, and then added this information to
a database as inputs for the neural network［20］.
The neural network automatically accesses the
databases once a day, executes forecasting and
updating, and then updates the plots of fore-
casted values externally disclosed on the serv-
er. The system is currently disclosed on the
website of the National Institute of Informa-
tion and Communications Technology, Radio
Propagation Project at http://wdc.nict.go.jp/
(as shown in Fig. 16).

Table 3 Accuracy of forecasting ionos-
pheric storms

Fig.16 Website disclosure of ionospheric
fluctuation forecasting
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5  Conclusion

In this study, we constructed a system for
forecasting ionospheric fluctuations about 24
hours ahead in the skies over Tokyo by using a
neural network. We targeted constructing a
system capable of practical use in the fields of
short-wave and satellite communications by
forecasting fluctuations 24 hours ahead, as
well as accommodating normal cyclic fluctua-
tions in the ionosphere and also accidental
fluctuations in the negative/positive phases of
ionospheric storms.

The ionospheric electron density is known
to be determined by the balance between the
generation of plasma due to extreme ultravio-
let radiation and its elimination due to atmos-
pheric chemical reactions involving signifi-
cant solar activity. In addition, accidental dis-
turbances such as chromospheric eruptions
disturb the geomagnetosphere and trigger
accidental fluctuations in the ionosphere.
Based on these facts, ionospheric fluctuations
equivalent to two cycles of solar activity (from
1960 to 1984) were learned by using a neural
network provided with inputs of sunspot num-
bers and solar fluxes that represent solar fluc-
tuations, and K-indices that represent geomag-
netic activity. The neural network used the
back propagation method of a 3-layer percep-
tron, where many trials were made on combi-
nations of inputs and learning parameters, in
order to determine the best suited learning.
During the course of parameter adjustments, it
became empirically apparent that many counts
of learning were essential for stable learning
by a large neural network, and that the final
results of learning were largely affected by the
sorting-out of input parameter combinations.

We were able to improve the accuracy of fore-
casting ionospheric storms by newly defining
and adding Σ’K to the inputs used in this
study. The learning was evaluated for a period
(from 1985 to 1996) not used for learning.
Consequently, learning was well executed
with long-term fluctuations over a period of
about 11 years due to solar activity, along with
annual, seasonal and daily fluctuations, and a
model was established with better accuracy
than the commonly used IRI model. Ionos-
pheric storms could also be forecasted, includ-
ing increases or decreases in the electron den-
sity for many events. However, forecasting
ionospheric storms also failed on many occa-
sions, thereby requiring further improvements
in forecasting probability. In the future, a sys-
tem offering better accuracy in forecasting
ionospheric storms should be constructed by
using solar wind and time variations of geo-
magnetic storms as input data. A similar sys-
tem should also be developed for the skies not
only over Tokyo but also over the area stretch-
ing from Hokkaido to Kagoshima and Oki-
nawa, where ionospheric observations are pro-
vided. Once realized, both systems are expect-
ed to be useful for modeling the ionospheric
delay, and forecasting and establishing mea-
sures for disturbances in the growing field of
satellite communications.
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