
1  Introduction 

The ionospheric total electron content
(TEC) is a basic parameter that describes the
status of the ionosphere. From the perspective
of space weather forecasts, TEC is important
in evaluating errors in the advanced use of
GPS satellites stemming from delays in radio
waves that propagate through the ionosphere.
The major factor regarding changes in TEC is
the change in flux of extreme ultraviolet
(EUV) radiation 102.5 nm or less in wave-
length that ionizes the neutral atmosphere.
EUV flux that penetrates into the earth’s upper
atmosphere changes over various time scales.
Among those time scales are the 11-year cycle
of solar activity changes and the 27-day cycle
of the sun’s rotation, along with seasonal and
daily variations due to the change in the solar
zenith angle. Other important factors regard-
ing changes in TEC include changes in the
loss rate of ionospheric plasma due to changes
in the neutral atmospheric (thermospheric)

composition. The important loss process of O+

(the major ion in the ionosphere) involves the
dissociative recombination of molecular ions
(NO+ and O2+) produced in charge exchange
due to the collisions with N2 and O2

(rearrangement collision).  The dissociative
recombination of these molecular ions pro-
gresses faster than the charge exchange
process due to rearrangement collisions, so
that the atmospheric composition ratio
[O]/[N2] greatly affects changes in TEC. The
temperature and other conditions of the ther-
mosphere significantly affect the atmospheric
composition, and again, the thermosphere is
governed by solar UV/EUV. At an altitude of
170 to 300 km, the ionization process of the
neutral atmosphere due to EUV is the primary
heat source[1]. Absorbed EUV energy is dis-
tributed into the photo electron energy and the
chemical energy of ion-electron pairs, but the
percentages thereof depend on the EUV wave-
length. Eventually, photons with wavelengths
shorter than 102.5 nm are all absorbed by the
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atmosphere due to ionization[2]. The ioniza-
tion cross sections of O, N2, and O2 have a
broad peak near wavelengths of 40 to 70 nm.
At shorter wavelengths, the ionization cross
section becomes smaller and the energy
absorption occurs at lower altitudes. At lower
altitudes, the higher loss rate of ions makes the
EUV contribution to the electron density rela-
tively small. 

In the region lower than an altitude of
about 170 km, the primary heat source is the
dissociation of O2 by the far ultraviolet (FUV)
radiation of the Schumann-Runge continuum
(130 – 175 nm in wavelength). And since this
process also affects the [O]/[N2] value, the
FUV flux contributes to changes in electron
density as well. In this way, solar ultraviolet
radiation contributes to changes in TEC not
only directly (through the ionization process)
but also indirectly (through thermospheric
changes). Since the relation between the solar
ultraviolet radiation spectrum (covering a
wide wavelength range) and TEC is extremely
complex in this way, this paper does not con-
sider particular wavelengths, but instead con-
ceptually addresses the solar energy flux of
ionospheric-effective EUV (IE-EUV) that
contributes to the ionosphere. The purpose of
this paper is therefore to examine IE-EUV
behavior relative to various solar proxies, as
pertaining to building an empirical TEC
model.

Most solar ultraviolet radiation concerned
here is absorbed by the earth’s upper atmos-
phere, and data from satellite observations of
solar ultraviolet radiation outside the atmos-
phere is not always obtainable. Therefore,
many theoretical or empirical models of the
ionosphere and thermosphere have been built
to date using proxies. The representative ones
are the sunspot number (R) and radio noise
with a wavelength of 10.7 cm (F10.7 index).
One thermospheric empirical model — Mass
Spectrometer and Incoherent Scatter Radar
(MSIS)[3][4] — utilizes two parameters as
proxies for heating due to ultraviolet radiation:
the F10.7 index on a given day and the average
of 81 day period (i.e., three solar rotations)

centered that day. On the other hand, the Inter-
national Reference Ionosphere (IRI)[5] uses
the 12-month average of sunspot numbers as a
solar proxy. The EUV model for aeronomical
calculations (EUVAC) developed by Richards
et al.[2] provides the spectral intensity of ultra-
violet flux by using a parameter as defined by
the arithmetic average of the F10.7 index on the
day concerned and the 81-day mean of it.

In recent years, solar flux measurements as
obtained by satellite instruments have been
vigorously examined in connection with the
upper atmosphere. It has become possible to
use EUV flux data 26 – 34 nm in wavelength
as obtained from the Solar Extreme Ultravio-
let Monitor (SEM) onboard the Solar and
Heliospheric Observatory (SOHO) satellite
launched at the end of 1995 into orbit at the
L1 Lagrange point. Regarding data obtained
from SOHO_SEM, unlike other proxies, the
observed wavelength range overlaps the wave-
length range responsible to ionization of the
earth’s upper atmosphere as mentioned earlier.
Bowman et al.[6] normalized the integrated
flux of 26 – 34 nm from SOHO_SEM into a
long-term change width of F10.7 and introduced
a new index (S10.7 ) in order to make the flux
input for an empirical thermospheric model.
Another important solar proxy often applied is
the core-to-wing ratio of MgⅡ (MgⅡ cwr).
This uses the ratio of the absorption line cen-
ter and both of its wings of MgⅡ close to a
wavelength of 280 nm, as a proxy first pro-
posed by Heath and Schlesinger to represent
solar activity in the chromosphere[7]. Many
researchers have examined the relation
between MgⅡ cwr and changes in terms of
ultraviolet radiation in other wavelength
ranges and F10.7 [8］–［12]. Emmert et al.[13]
showed a good correlation between the
MgⅡ cwr and integrated EUV energy in
wavelengths of 0 – 120 nm from SEE observa-
tions on the TIMED satellite. Lean et al.[14]
pointed out that this chromospheric activity
index represents EUV flux more precisely
than before by using it alone or combination
with the F10.7 index. In this way, many studies
have shown that MgⅡ cwr is a good solar
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proxy.
As shown by Floyd et al.[12], however, the

MgⅡcwr, F10.7, R, and He 1083 solar indices
exhibit different long-term variability. It is
known that short-term variability over several
rotational periods in these proxies differs as
well[12][15]. These differences in behavior are
partly due to the fact that the radiation of ener-
gy related to the respective observations is
from different regions of the sun. In building
up atmospheric models, Tobiska et al.[16]
pointed out the importance of combined use of
solar indices showing different behavior in
connection with time changes.

Another important point to note in using
solar proxies in an empirical model is the
amplitude relation between long- and short-
term changes. That is, the amplitude ratio of
the 27-day periodic changes due to the sun’s
rotation and the 11-year solar cycle changes
varies with the wavelength[17］–［19]. As a
result, simply combining the short-term
change component and long-term change
component of a certain proxy cannot become
an accurate proxy of IE-EUV. One attempt to
address this issue was the method mentioned
previously that combines the value of a given
day and the average value over 81-day period
centered on that day when using the F10.7 index
as a proxy of solar EUV[3][4]. 

The response to the solar flux variations is
widely studied for the thermosphere as com-
pared with the ionosphere. Changes in the
thermosphere and those in the ionosphere due
to changes in solar activity are strongly corre-
lated, but the flow of energy is complex and
not exactly the same[1], so that both changes
could differ as well. For that reason, the solar
proxies used to describe the ionospheric varia-
tion should not completely match those of the
thermospheric variation. When we wish to
examine the effects of solar activity on the
ionosphere through a statistical approach, the
advantage of SOHO_SEM26 – 34 and MgⅡ cwr
over other solar flux measurements is in the
continuity of data. That is, data are obtained
almost continuously over the 11-year solar
cycle or more, and completely cover the peri-

od of our TEC data set. In this paper, the solar
proxies pertaining to describe IE-EUV are
examined from SOHO_SEM26 – 34, MgⅡ cwr
along with the conventional sunspot number
and 10.7 cm radio intensity and combinations
of those parameters. The output of the
SOLAR2000 empirical solar irradiance
model[20] is also evaluated.

Because the response of the ionosphere/ther-
mosphere system to the solar inputs described
by multiple proxies is extremely complex, we
applied the artificial neural network (ANN)
technique to examine input-output relation-
ship. The most widely used ANN is a multi-
layer perceptron[21], and when it is applied to
an ionospheric problem, directly observed
quantity (such as fOF2, h’F2, and TEC)
becomes a target parameter. Input parameters
include solar indices, the season, time of day
(local time), latitude/longitude, and other fac-
tors that may affect the ionosphere. Since our
initial goal was to find the optimal solar prox-
ies, however, only the season and solar indices
are in the input space, and other factors are
embedded in the target parameter. Section 2
describes this ANN technique, section 3 com-
pares the ANN learning results with regard to
various proxies and the combination of them,
and section 4 discusses the physical interpre-
tations of the results. Section 5 compares the
ANN predicted TECs with the observed
TECs. Section 6 then gives a summary and
discusses future prospects.

2  TEC Database and ANN Tech-
nique 

In Japan, a dual-frequency GPS receiver
network (GPS Earth Observation Network or
GEONET) that covers the entire region of
Japan was set up by the Geospatial Informa-
tion Authority of Japan and has provided data
ever since April 1997. For this period that
spans one cycle of solar activity maximum
and minimum, about 300 receivers being dis-
tributed uniformly from all GEONET
receivers are chosen to evaluate TEC. The
greatest challenge to address when evaluating
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TEC from GPS signals received is a method
of estimating the inter-frequency biases intrin-
sic to the satellite and receiver instruments and
a method to convert the TEC along the
oblique propagation path (slant TEC or sTEC)
to vertical TEC (vTEC). Here, sTEC is con-
verted into vTEC at the point where the propa-
gation path crosses an altitude of 400 km
(ionospheric piecing point), and the vTEC is
assumed to be constant in a small cell of 2×2°
latitude/longitude. Assuming that the inter-fre-
quency biases remain constant during a 24-hr
period, the TEC values were determined at
15-min intervals from a dataset of 24 hr. This
technique is described in detail by Ma and
Maruyama[22]. The values of each grid point
or center of each cell determined in this way
are referred to as grid TEC (gTEC). Figure 1
shows the distribution of the grid points used.

The major factors of TEC variations
include solar activity, the season, time of day,
and geographical/geomagnetic location. To
deal with these multiple factors we applied an
artificial neural network (ANN)[21][23]. The

ANN approximates the relations between
inputs (geophysical parameters in this case)
and targets (observations such as TEC), and
has often been used to predict the ionospheric
parameters under given geophysical condi-
tions[24］–［26]. In this study, however, the
times of day and geographical/geomagnetic
coordinates were embedded into the targets.
Because we are interested in TEC variations in
a limited longitude range over Japan, it is
assumed that the time of day and longitude are
exchangeable for each other, and that the dis-
placement is constant between geomagnetic
latitude and geographical latitude. Then we
express the TEC variation with a two-dimen-
sional distribution map of times of day and
latitudes, which will be the target of the ANN. 

To generate a two-dimensional map of
TEC, spherical functional expansion is used as
follows: 

Here, P is the associated Legendre func-
tion. The longitudinal parameter is the local
mean time (LMT) corresponding to the longi-
tude of each grid point, that is, =2π
(LMT/24), θis colatitude, and N = M = 7.  In
the equation, determining Anm and Bnm with the
least square fitting provides a TEC map. The
coefficients here will therefore be adopted as
actual target parameters. For mathematical
convenience, the regions outside 29 to 45° are
extrapolated and the southern hemisphere with
no data is provided with dummy data to
ensure north-south symmetry to obtain func-
tional approximation, so that the coefficients
with an odd number of n + m become zero.
Therefore, a total of 36 targets (i.e., nodes of
the output layer) are required to express a two-
dimensional TEC map. The two-dimensional
daily map is prepared based on three days’
worth of TEC data and takes a moving aver-
age. Data were processed for 11 year from
April 1, 1997 to March 31, 2008, which will
become a dataset for ANN learning and evalu-
ation.  

For the four representative seasons of

Fig.1 Grid points for which total electron
content (TEC) was evaluated
TEC is derived at 15-min intervals for each
grid point. The values at the grid point marked
* (35° N latitude, 137° E longitude) were used
to evaluate learning of the neural network.
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2003, Fig. 2 shows an example of a TEC map.
For each season, the bottom row indicates
observed values and the top row indicates the
outputs from the trained ANN as stated below.

Figure 3 shows the configuration of the
ANN: 36 nodes for the output layer and 100
nodes for the hidden layer, with the number of
nodes in the input layer being changed from 3
to 18 according to the combination of solar
proxies. Learning of the ANN is conducted as
divided in two stages. First, pattern mode[21]
is used where the weight of neurons is updated
every time one set of inputs and target data are
given. After some convergence, batch
mode[21] is then used for learning where the
weight is updated after all 11 years’ worth of
data is given. In the batch mode, the learning
constant and moment were set to 0.9. Teacher
data and ANN outputs for the 36 nodes were
compared and their square errors are evaluated
over the period of 11 years. The learning was
completed when the change in square error for

each weight update becomes 10-5. Since batch
mode learning generally involves the smooth
behavior of error convergence, it would be
suited for comparative evaluation of the input
parameters like in this study. The batch mode

Fig.2 Map of time-latitude variations in TEC represented by spherical function expansion for typ-
ical seasons
The top row for each season indicates the outputs of the neural network; the bottom row indicates the observed
values.

Fig.3 Configuration of the neural network 
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leaning applied to a quite large amount of
dataset in this study was realized by using the
target parameters converted into a two-dimen-
sional map. 

To evaluate the achievement of the learn-
ing, the whole dataset over 11 years was
divided into two subsets for learning and eval-
uation. At that time, to enable the learning and
evaluation subsets to cover all the phases of
solar activity and the seasonal changes of the
ionosphere without missing anything, data for
evaluation was extracted at a rate of once
every ten days and the rest was used for learn-
ing. Learning results were not evaluated
directly with respect to the target parameters
(Legendre coefficients), but by reconstructing
a TEC map from the coefficients and deter-
mining the root mean square error (RMSE) for
the hourly values of TEC using the evaluation
dataset. In learning of the ANN, the initial
weight for each neuron is given as a random
number. For that reason, the learning results
vary not only according to how solar proxies
are selected but also according to the initial
weights given. Moreover, evaluation is con-
ducted with a reconstructed TEC map, so that
the best evaluation (i.e., minimum RMSE) of
all 11 independent runs of leaning was regard-
ed as the degree of achievement in conducting
an even more accurate comparative evalua-
tion.

The solar proxies to be compared are the
sunspot number, 10.7 cm solar radio noise,
26–34 nm integrated EUV flux from
SOHO_SEM, and MgⅡ cwr. The sunspot
number used is the International Sunspot
Number (Ri) statistically calculated by the
Solar Influences Data Analysis Center (SIDC)
of Belgium based on a global observation net-
work. The 10.7 cm radio noise index (F10.7) is
the value observed at 20:00 UT in Penticton,
Canada. This value has been continuously
observed for a long time with high accuracy
and is highly evaluated as a standard dataset.
As the input and target parameters must be
normalized to take values between 0 and 1 in
the actual ANN calculation, the values of Ri

and F10.7 were divided by each maximum dur-

ing the 11-year period. MgⅡcwr is observed
twice a day by the NOAA satellite. The
SOHO_SEM observation equipment observes
EUV intensities of 26 – 34 nm with an even
higher time resolution; thus a 24-hour average
is used. Tobiska et al.[16] preprocessed these
observed values of ultraviolet radiation and
produced the M10.7 and S10.7 daily indices
scaled to have the same long-term variation
with the F10.7 index. In the ANN calculation,
the M10.7 and S10.7 values were divided by the
each maximum during the 11-year period.
SOHO_SEM has periods where data were
missing, and these portions were complement-
ed after being compared the data before and
after the deficient portion with the Seuv index
obtained from the SOLAR2000 empirical
solar irradiance model. The composed index is
referred to as S*10.7. 

The SOLAR2000 model (http://www.
spacewx.com/solar2000.html) is an empirical
model of solar ultraviolet spectral intensity
based on Lymanαand F10.7 as inputs[20].  The
Seuv index is an integrated SOLAR2000 EUV
intensity at the wavelengths of 26–34 nm,
which corresponds to the SOHO_SEM mea-
surements. In addition to the Seuv index, the
integral value E10.7 of 1–105 nm related to ion-
ization of the earth’s upper atmosphere is also
calculated. These two indices are also evaluat-
ed as inputs to the TEC ANN model, similarly
to the indices based on observations.

As previously described, a TEC map was
prepared as the average of three days.  A
three-day average (called the daily value for
the sake of convenience) will be used for solar
indices too. In addition to the solar indices of
a given day, the means of 7, 27, and 81 days
going back to the past from the date of the
TEC value (backward means) and the means
of 7, 27, and 81 days centering on the date of
the TEC value (center means) are examined
on their functions as ANN inputs. Here, the 27
and 81 days correspond to one and three solar
rotations, respectively, and the mean of the
seven previous days (a quarter solar rotation)
is intended to examine the integrating effects
of thermospheric and ionospheric responses to
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IE-EUV variation. To verify the effects of
integration, consideration is also given to the
values produced by dividing the backward
mean of seven days into three and four days.
Figure 4 summarizes the period during which
these mean values were obtained. Six solar
indices and their respective means during
eight periods yield 48 parameters. This means
that, in principle, 248－1 (~1014) combinations
are possible. Moreover, in considering those
time delays as well, the combination patterns
of input parameters become even more numer-
ous. Needless to say, trying all those combina-
tions is not realistic. In this paper, ANN learn-
ing and the results for about 300 combination
patterns were evaluated by progressively nar-
rowing down from a single parameter to a
maximum of 16 (4 indices × 4 period means).

3  Results 

3.1  Comparison of single proxy
The use of a single solar index as a proxy

for IE-EUV is the most elementary way of
modeling TEC. Figure 5 compares the five
indices. The zero on the horizontal-axis repre-
sents the index on the same day as the date
TEC was observed. Then, the negative (posi-
tive) numbers mean that a solar index on a
prior (later) date by the number indicated.
RMSE on the vertical-axis is the achievement
of the ANN learning; the smaller the number,
the more suitable proxy for TEC modeling. As
known by past studies, the sunspot number is
the least suitable for describing IE-EUV varia-

tion. The F10.7 index yielded a better result
than the sunspot number, but RMSE is still
high. The best result was in the case of
SOHO_SEM26 – 34, which is quite natural if we
consider that the wavelength range observed
overlaps the wavelength range of EUV that
contributes to atmospheric ionization. MgⅡ
cwr, which is observed at 280 nm wavelength
outside the wavelength range that contributes
to ionization, yielded a result between F10.7

and SOHO_SEM26 – 34. For comparison with
SOHO_SEM26 – 34, Seuv from the SOLAR2000
model is shown by the dotted line and general-
ly exhibits good performance, although the
curve is somewhat flat when compared with
that of SOHO_SEM26–34.

It has been known that changes in the
earth’s upper atmosphere indicate a delayed
response of several days to changes in solar
EUV. As shown in Fig. 5, the optimal leaning

Fig.4 Periods for averaging short-term
changes

Fig.5 Learning results for individual proxy
when using a daily parameter
alone 
A response delay of one to two days is seen.
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result also has a time delay. This delay in time
varies among different proxies.  With regard
to Ri, F10.7, and Seuv from the SOLAR2000
model, the learning achievement is highest
when using the proxy value obtained 1.5 to 2
days prior to the date of TEC value. For S10.7

and M10.7 based on the observations of ultravi-
olet radiation, the learning achievement is
highest when the time delay is one day. 

3.2  Improvement by short-term means
Figure 6a shows the results of the com-

bined use of several short-term means with the
daily index a day prior to the date of TEC
observation (in considering the delay in ionos-
pheric response described above) as ANN
inputs. The horizontal axis is a combination of
short-term periods in which mean value is
taken as indicated in Fig. 4. Here, 1 denotes
the daily index (d) alone in the input space, 2
the result of including the 7-day backward
mean (d + 7b) in the input space, 3 the result
of including the 27-day backward mean fur-
ther (d + 7b + 27b), and 4 the result of includ-
ing all the 7-, 27-, and 81-day backward
means (d + 7b + 27b + 81b). Although
increasing the number of input parameters
generally improves learning, the effects there-
of show some differences according to the
proxy used. The sunspot number and F10.7

show a clear improvement with increasing in
the number of parameters, and the best result
was obtained with combination 4. On the
other hand, MgⅡcwr shows that combination

3 is best, and adding the 81-day mean yields,
rather, a worse result. The E10.7 and S *10.7

indices do not show any significant improve-
ment, even when using short-term mean val-
ues in combination, which may implies that
the index of the current day alone fairly well
describes changes in EUV compared with the
other proxies.

Figure 6b is the same as Fig. 6a except
that combination 3 is replaced by 3´. In com-
bination 3´, the 7-day backward average and
81-day backward average are used (d + 7b +
81b). The figure reveals that, for the sunspot
number, the 81-day average has a great effect
and adding the 27-day average produces rather
a worse learning result. For F10.7, the 81-day
average is also highly effective and adding the
27-day average hardly shows any advantage.
Summarizing Figs. 6a and 6b, we found that
longer-term average behavior is important for
the sunspot number and F10.7 as IE-EUV prox-
ies, and that it is a little shorter and the 27-day
average is important for the UV observation-
based indices, S*10.7 and MgⅡcwr.

So far we have examined backward aver-
ages with period of several days. However,
previously constructed empirical models have
used period averages centering on the day of
measurements of TEC or other ionospheric
parameters. Thus we further examined cases
when centered averages were used instead of
backward averages and the results are com-
pared in Table 1. The numbers and symbols
describe the combinations are those shown in
Fig. 4. In both the cases backward and cen-
tered averages were used, the 81-day averages
are generally important for the sunspot num-
ber and F10.7, and the 27-day averages for
M10.7. For each proxy, no major difference was
noted between the backward average and cen-
ter average except that the backward average
is better for the sunspot number. It should be
noted that these results are the case when
proxy averages are used as an ANN inputs in
combination with the daily value. If the aver-
ages alone are examined, the centered aver-
ages should show larger correlation with the
measurements.

Fig.6 Improvement of learning when
combining the averages from dif-
ferent periods for each proxy
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3.3  Combination of different proxies 
In the above examinations, the input solar

parameters, daily and averages over several
periods, were a single kind of index. In the
next step, we examined how the learning effi-
ciency is improved when different proxies are
jointly used. Table 2 lists the learning results
for combinations of various proxies. The first
four lines in the table (Run 1-1 to 1-4) repro-
duce the results of single proxies for compari-
son. The subsequent six lines (Run 2-1 to 2-6)
show results of a combination of two different
proxies, the next two lines (Run 3-1 and 3-2)
show a combination of three proxies, and the
last one (Run 4-1) is the case all proxies are
combined. Looking at the effects of combin-
ing the sunspot number and F10.7 shows that
Run 2-6 produced better results than when
using these respective proxies alone (Run 1-1
and 1-2). However, combining the sunspot
number and S*10-7 or M10.7 produces slightly
worse results than when using these indices
based on UV measurements alone, and it is
shown here again that the sunspot number is
inferior as a solar proxy. The combination of
other proxies aside from the sunspot number
always produced good results, and combining
S*10.7 proved   particularly effective. Next,
combining three or four proxies again pro-
duces good results when excluding the
sunspot number. The use of nine total parame-
ters of d, 7b, and 27b for F10.7, S*10.7, and M10.7

(Run 3-2) was the best input pattern in all
cases. 

4  Interpretation of Results 

4.1  Time delay in ionospheric
response 

The solar proxies best suited for modeling
TEC variations brought about by changes in
solar EUV input (IE-EUV) were evaluated by
using the ANN technique. As a precondition,
when the input parameter for the ANN corre-
lates closely with the target parameter, then
the error (RMSE) between the trained ANN
outputs and observed values is assumed to
decline. Wu and Lundstedt[27] examined the
relation between changes in the solar wind

Table 1 Comparison between backward average and central average

Table 2 Combination effects of different
proxies
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parameter and geomagnetic storms with a sim-
ilar ANN technique, and showed that a com-
parison of RMSE of the ANN would not con-
tradict a comparison of the correlation coeffi-
cient. The delay in TEC response to solar
activity changes shown in Fig. 5 can also be
compared with the results of correlation analy-
sis.  Jacchia et al.[28] and Paul et al.[29] exam-
ined changes in satellite orbit and found that
there is a delay of one to two days in changes
in thermospheric density relative to the modu-
lation of solar ultraviolet intensity with the
27-day period. The series of MSIS empirical
thermospheric models[3] also use the F10.7

index of the preceding day. Bowman et al.[6]
use the values one day before for F10.7 and
S10.7, and the value five days before for M10.7 in
their thermospheric density model. Similarly,
a delay in ionospheric response to solar activi-
ty changes has also been reported[30］–［32].
Min et al.[32] conducted a correlation analysis
of how thermospheric density and TEC
respond to solar activity changes, and their
Fig. 6 showing correlation strengths looks
very similar to Fig. 5 in this paper when rotat-
ed 180 degrees. Thus, the characteristics of
time delay shown in Fig. 5 basically match
those of previous analyses and endorse the
appropriateness of comparative analysis based
on ANN-RMSE.

A detailed look at the time delay in TEC
response to solar activity changes shows quan-
titative differences from past studies and dif-
ferences among the proxies used in the present
study. For any quantitative discussion on the
time delay, we must pay attention to the repre-
sentative time or time tag, T, of each proxy. A
radio noise intensity of 10.7 cm wavelength
was observed at 20:00 UT. While the daily
value of S10.7 is determined by averaging the
values observed by the SOHO_SEM instru-
ment at five-minute intervals. Similarly, obser-
vations made at 07:00 and 16:00 UT were
used to determine the daily value of MgⅡcwr.
Ri is calculated by statistically processing the
results of the global observation network, but
the time represented is not explicitly indicated.
On the other hand, the TEC data we used is

obtained from an area centering on 135° E
longitude, therefore the solar activity at
around 03:00 UT (12:00 LT) might mostly
contribute to the ionization. 

Considering the time that represents each
proxy, the time series of daily F10.7 (T = 20:00
UT) is predicted to show a delay of eight more
hours than that of S10.7 and M10.7 (T = 12:00
UT). However, Fig. 5 shows that the apparent
response delay in TEC with regard to F10.7 is
about one day longer than that of S10.7 and
M10.7. And although Ri is slightly shorter than
F10.7, it shows a longer response delay than
M10.7 and S10.7. Regarding such response delay,
two possibilities are considered. The first one
is the integration effect on the thermospheric
and ionospheric modification; the other is the
characteristics of the solar proxies themselves.
The wavelength of EUV that creates S10.7 over-
laps the wavelength range where the neutral
atmosphere is ionized, so that the response
delay regarding S10.7 and M10.7 is considered
due to the characteristics of the thermospher-
ic/ionospheric system. The excess delay time
in F10.7 and Ri is considered caused by solar
activity observed with 10.7-cm radio waves or
white light that growths and decays with a dif-
ferent time scale from IE-EUV activity. Don-
nelly et al.[33] and Floyd et al.[12] cite several
episodes in which the short-term variation in
sunspot number and 10.7-cm radio intensity
actually reaches their peaks earlier than
UV/EUV. Correlation analysis of F10.7 and the
sunspot number with UV flux of 205 nm (all
which show 27-day modulation of the sun’s
rotation) revealed that F10.7 and the sunspot
number have a strong correlation with UV
flux values of the previous rotation period[15].
This asymmetry relative to zero time lag in
correlation between the UV flux and F10.7 is
because the lifetime of plages on the solar sur-
face is longer than the lifetime of the sunspot
number.

The SOLAR2000 empirical solar irradi-
ance model uses the F10.7 index as a proxy of
corona activity and the intensity of Lymanα
flux as a proxy of chromospheric activity. In
Fig. 5, the response delay time of Seuv (i.e.,
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SOLAR2000 output corresponding to S10.7) is
closer to that of F10.7 rather than S10.7. It is pre-
sumably due to the characteristics of F10.7.

4.2  Improvement by combining short-
and long-term components 

Hedin[34] found that the inclination of a
linear regression line between F10.7 and EUV
differs between short-  and long-term changes.
Donnelly et al.[17] also pointed out that the
relation between the amplitude of long-term
changes and that of short-term ones varies
according to wavelength used to measure the
solar activity. From these findings, extending
short-term change characteristics to long-term
changes to estimate IE-EUV by using proxies
will be a major cause of error[19][35]. One
method of compensating for differences in the
short-term and long-term change amplitude
characteristics of proxies used in MSIS and
other atmospheric models is to use two para-
meters; an average over three solar rotation
periods in addition to the index of the date to
be determined. As the result of comparing the
center averages (during the period centering
on the target date) of 54, 81, and 108 days for
F10.7, M10.7 and S10.7 when developing their
thermospheric temperature model, Bowman et
al.[6] concluded that a center average of 81
days best expressed the long-term change
component. 

The ANN model discussed in this article
also yielded improvement as shown in Fig. 6
by adding short-term change and long-term
change components in the input space. How-
ever, the pertaining period for the long-term
change components that yield improvements
varies according to the proxies used as shown
in Table 1: While the 81-day average was
most effective for Ri and F10.7, the 27-day aver-
age was effective for M10.7 and S10.7 based on
UV measurements. Although the center aver-
age was considered appropriate in previous
models, no significant difference was found
between the backward average and center
average. When running a model on a real-time
basis, a model that uses the backward average
based solely on observations is clearly advan-

tageous over models using the center average,
which entails the use of predictions as well. 

Changes in solar ultraviolet radiation are
characterized by the active network dispersed
in the longitudinal direction and the localized
plages. Short-term changes consist mainly of
solar rotational modulations in energy flux
stemming from localized plages. To even
longer-term changes, both plages and the net-
work contribute[36]. Woods et al.[19] stated
that the active network’s contribution to irradi-
ance changes is larger from the transition
region than from the chromosphere. There-
fore, the ratio of long-term change compo-
nents and short-term change components
varies according to the activity of the solar
atmospheric region represented by the proxies.
With the progress of active regions, it takes
one to three solar rotation periods for plages to
decay into the active network and disperse in
the longitudinal direction. The active network
then remains present over several other solar
rotation periods[19]. Donnelly et al.[15] and
Lean and Repoff[37] analyzed the develop-
ments in sunspot number, F10.7, and UV inten-
sity over time, and found that the sunspots and
F10.7 have larger components of periods longer
than the 27-day variation when compared with
UV intensity. The results shown in this paper
indicate that when compensation is made for
differences between the short-term change and
long-term change components among the
proxies and IE-EUV, the 27-day average is
sufficient for UV/EUV from the persisting
active network, while data over 81 days must
be averaged for the sunspot number and F10.7,
which show greater changes. Figure 6 shows
that adding long-term change components to
E10.7 and S10.7 will not considerably improve
ANN learning, so that for these proxies, the
relation between the short-term and long-term
change components would be similar to that of
IE-EUV. 

4.3  Improvement by combining differ-
ent proxies

IE-EUV responsible to ionization of the
earth’s upper atmosphere is emitted from the



418 Journal of the National Institute of Information and Communications Technology  Vol.56 Nos.1-4   2009

chromosphere, transition region, and corona,
and the contributions of each region to short-
and long-term changes are different to each
other. This is because the contrast between the
active network and plages varies according to
the region of the solar atmosphere[19]. There-
fore, combining several proxies that represent
different sources of radiation in solar atmos-
pheric layers is effective in more accurately
expressing changes in IE-EUV. 

MgⅡcwr exhibits very similar changes in
radiation from the chromosphere and is con-
sidered a good proxy of chromospheric activi-
ty (see Reference[19]). The major contribution
to SOHO_SEM26 – 34 is the He II emission line
(30.4 nm) of the transition region and the Fe
XV emission line (28.4 nm) of corona. Radio
waves at wavelength of 10.7 cm are consid-
ered to stem mainly from the transition region
and corona[18]. Detailed discussion of the
regions represented by the proxies is beyond
the scope of this paper, but it is important to
combine several proxies exhibiting as differ-
ent behavior as possible when describing
activity in the solar atmosphere over a wide
range. In that sense, it is understood that using
F10.7, M10.7, S10.7, and a combination of some of
their period averages has produced the best
ANN learning results.

4.4  Roles of the 7-day backward
average 

The delay in response of the earth’s upper
atmosphere to changes in solar irradiance is a
well-known phenomenon[6][28］–［32][38][39],
and it is reconfirmed in this article as depicted
in Fig. 5. This response delay is considered to

emerge due to a combination of changes in
solar flux having a 27-day period modulated
by solar rotation along with the accumulation
effects on the earth’s upper atmosphere. When
the average (actually the 7-day backward
average) of proxies over a period shorter than
the solar rotation period and longer than three
days was added to the input space, the ANN is
expected to learn the accumulation effects. In
Fig. 6, the second point from the left for each
proxy may actually represent accumulation
effects. To examine this more in detail, several
short-period averages were applied to conduct
ANN learning. Table 3 lists the results.  Here,
the codes used for the proxies are as shown in
Fig. 4, and the combinations of proxies
include F10.7, S*10.7, and M10.7 in all cases. As is
evident from the table, when an average over a
period shorter than the 27-day rotation period
was not used in combination (Run 5-2), the
degree of learning achievement declined.
Even the 7-day center average (Run 5-3) was
not enough. Since the average over 4 – 7 days
before (Run 5-1) produced the same results as
the 7-day backward average (Run 3-2), some
accumulation effects are presumed to be
learned. 

Another effect considered to be the role of
the 7-day backward average is the possibility
of learning limb darkening/brightening effect
(changes in brightness in the periphery of the
sun). Donnelly et al.[17] discussed how flux
from the activity region (toward the earth)
changes according to its distance from the
central meridian (central meridian distance or
CMD). This CMD characteristic varies
according to the wavelength, and optically

Table 3 Role of short-term mean
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thick radiation attenuates greatly in the periph-
ery and has a narrow CMD characteris-
tic[17][40][41]. When the proxies used are
based on an optically thick emission line, IE-
EUV is estimated at a lower level as the activ-
ity region comes closer to the periphery. As a
result, when CMD information on the activity
region is given, the ANN model is expected to
improve. Table 3 presumably includes such
effects, but the error caused by other factors
(disturbances due to magnetic storms and the
effects from lower atmosphere) as discussed
in the next section limits the lower values of
RMSE, and removing these causes of error is
expected to clarify the faint effects such as the
CMD characteristic.

5  Comparison of ANN Predictions
with Observed Values 

Figure 2 shows TEC maps for typical sea-
sons. For each season the top row is a TEC
map reconstructed from the coefficients of

ANN outputs and the bottom row is a TEC
map based on observations. Here, one can see
that seasonal changes of local time and latitu-
dinal characteristics are well reproduced by
the trained ANN, and which proves that the
combination of the spherical functional
approximation and ANN is appropriate to
model TEC variations. 

Figure 7a compares the ANN outputs and
observations on a day-to-day basis spanning
30 solar rotation periods: The ANN inputs
included the nine solar parameters (i.e., 3-, 7-,
and 27-day backward averages for F10.7, S*10.7,
and M10.7) that produced the best learning
results. The data compared here are the ANN
output results for 35° N latitude and 03:00 UT
(12:00 LT), and the corresponding observa-
tions at the grid point marked * in Fig. 1. The
top panel in the figure shows the ANN (solid
line), observed values (○), and the difference
(ΔTEC); the middle panel shows the proxies
used (only the 3-day running averages are
shown); the bottom panel shows the Ap index

Fig.7a Comparison of day-to-day variations in observed values and neural network outputs for
the solar maximum period
The top panel shows the total electron content obtained in observations (open circles) and in the neural net-
work (solid line), and their differences (line filled to zero). The middle panel shows the solar proxies used for
the neural network training (only the 3-day boxcar averages indicated), and the bottom panel shows the geo-
magnetic activity index.
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representing geomagnetic disturbances. One
can see that a gradual seasonal trend and 27-
day solar rotational changes in TEC are well
reproduced by the model. However, errors
may sometimes arise. Some of these errors are
associated with a geomagnetic disturbance as
characterized by the increase in the Ap index,
but some others have no clear connection with
geomagnetic disturbances. The largest geo-
magnetic disturbance in this period occurred
on March 31, 2001 and several moderate geo-
magnetic disturbances occurred continually
during a month around that date. A weak posi-
tive ionospheric storm was reported to have
occurred associated with the largest geomag-
netic storm and several strong negative ionos-
pheric storms associated with other magnetic
disturbances in this period[42]. These ionos-
pheric storms can be found as ANN prediction
errors in the plot of ΔTEC. The second largest
geomagnetic disturbance occurred on Novem-
ber 6, 2001, at which time an extreme
enhancement was seen in TEC (called the
“TEC storm”)[43]. However, for the period
from November 7 to 24, it is difficult to con-
nect the persisting negative ΔTEC to geomag-

netic disturbances. Therefore, any changes in
TEC corresponding to the geomagnetic distur-
bance on November 24 (the third largest dis-
turbance of that period) are not clearly identi-
fied. The large positive and negative ΔTECs
observed from January to February 2002 do
not correspond to geomagnetic disturbances.

Figure 7b shows the data for the next 30
solar rotation periods, during which the solar
activity has declined to a medium level. Nega-
tive ΔTEC is seen in response to the major
geomagnetic disturbance during October 29 to
31, 2003 (called the “Halloween storm”). One
solar rotation period later, around November
20, the negative ΔTEC continued for at least
ten more days, so that it is difficult to simply
link this long-duration negative event to geo-
magnetic disturbances this time. The major Δ
TEC at the end of December 2003 cannot be
linked to geomagnetic disturbances either.
Hardly any TEC prediction error was seen on
July 27, 2004 which is the date of the second
largest geomagnetic disturbance of that peri-
od. The spike-like positive ΔTEC on Novem-
ber 8, 2004 was due to a geomagnetic distur-
bance, and this was also a very special event

Fig.7b The same as Fig. 7a but for solar medium period
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in which an extremely intense positive ΔTEC
called storm enhanced density (SED) was first
recognized in Japan after sunset[44].  

As shown above, geomagnetic distur-
bances often increase the TEC prediction error
of the ANN by resultant ionospheric storms.
But errors due to other causes are not neces-
sarily small. A further examination of Fig. 7
shows that there often find quasi-periodical
changes in the error amplitude. Although it
cannot be denied that the proxies used here do
not sufficiently represent the IE-EUV varia-
tions, these periodic errors might be ascribed
to the coupling with the lower atmos-
phere[45][46]. This also implies that analyzing
the behavior of ΔTEC in which solar influ-
ences are removed could help elucidate the
possible coupling of ionosphere to lower
atmosphere. That is why we call this model
the reference model. By clarifying the changes
in TEC that is driven by the lower atmosphere,
the results can be fed back to further improve
the TEC prediction model. This clarification
and incorporating the effects of geomagnetic
disturbances into the prediction model pose
the next challenge to be addressed.

6  Summary and future prospects 

By using the method of the artificial neu-
tral network (ANN), a reference model was
developed for the ionospheric total electron
content (TEC) that is controlled by solar activ-
ity and the season. As the result of the exami-
nation of several indices used as solar proxies,
the best learning results were obtained when
the 10.7-cm solar radio noise index (F10.7),
MgⅡcwr (M10.7), and the value of 26 – 34 nm
integrated EUV flux by the SOHO satellite
(S10.7) were used. From the time series of each
index three parameters were computed, i.e.,
averaged for 7- and 27-day periods preceding
the day of TEC observations as well as daily
index (actually this is a three-day average cor-
responding to the three-day averaged TEC
values as a target parameter), and thus 9 para-
meters were used as a solar input in total. Fur-
ther, when these solar parameters were shifted

by one day backward, corresponding to the
delayed response of the ionosphere to the solar
inputs, the best result was obtained. Based on
the results of many past studies on solar radia-
tion, a discussion was held on the physical sig-
nificance of the input parameters used. The
model developed here is based on solar
indices preceding the dates concerned, so that
the model can be readily applied to real-time
TEC predictions (space weather forecasts). In
this version, only changes in solar activity and
seasonal controls were modeled, so that the
model can also be a reference for evaluating
ionospheric storms due to geomagnetic distur-
bances and examining possible coupling with
the lower atmosphere. In the next step, it is
necessary to improve the model as a predic-
tion tool for further space weather applica-
tions, by incorporating those effects of ionos-
pheric storms and coupling with the lower
atmosphere.

To allow the model to learn the ANN effi-
ciently, the distribution of TEC over Japan
was expressed in the form of a spherical func-
tional expansion. This method of expression is
advantageous not only because it affords high
learning efficiency for the ANN but also can
convey desired TEC predictions of latitude,
longitude, and time of day by using 36
Legendre’s coefficients alone. Another con-
ceivable application is the broadcasting of pre-
diction results as correction information about
ionospheric delay errors from positioning/nav-
igation satellites as superimposed on position-
ing signals.

Yet another future challenge to be
addressed is the development of a new index.
TEC prediction with the ANN has become
possible, but the ANN is not necessarily a
general method, and the fact that it needs mul-
tiple input parameters (9 parameters in this
model) for solar proxies alone inhibits its
widespread application. From Fig. 6, the F10.7

index is found to also excel as a proxy for IE-
EUV when combined with several periodic
averages than when using daily MgⅡ cwr
alone. Searching for a functional form, which
is not explicit in the ANN, should be able to
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produce a new corrected index from time
series of the F10.7 value. Regarding F10.7, data
has been obtained over a far longer period
than the indices based on UV/EUV observa-
tions; therefore, deriving a new corrected
index is expected to be applicable to a long-
term trend analysis of the earth’s upper atmos-
phere and other applications. The prototype of
this corrected index is already completed and
its elaboration and evaluation are future chal-
lenges to be addressed.
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