
1  Introduction

The field of solar-terrestrial physics is a
multidisciplinary branch of research activity
intended to shed light on the physical process
in which space weather and other solar activi-
ties affect the terrestrial magnetosphere, ionos-
phere, and other aspects of the earth’s atmos-
phere. Advanced satellite equipment continues
to deliver more granular observation data of a
larger scale than ever before, while the volume
of that data continues growing with impetus
from the implementation of such international
projects as the electronic Geophysical Year
(eGY)［1］and International Solar Terrestrial
Physics (ISTP) program［2］. In addition,
improvements in the performance of super-
computers (including the Earth Simulator)
have accelerated ongoing leaps in the granu-
larity and scale of computing models used for

computer simulation. There are also growing
expectations in terms of data analysis and
computer simulation focus on statistical analy-
ses and the manipulation of multi-point, long-
term observation data［3］delivered from multi-
ple satellites, and on large-scale data process-
ing, such as for 3D visualization processing in
long-time steps［4］.

Large-scale data processing in the field of
solar-terrestrial physics more often than not
involves data-intensive processing, or a series
of processing steps where the same set of pro-
cessing steps are executed on a large number
of data files, thereby calling for a method of
managing and sharing relevant data files, as
well as distributed parallel processing to bal-
ance the file I/O load.

This paper proposes the constructing of a
distributed parallel data processing system for
executing data-intensive processing on satel-
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lite observation data and computer simulation
data using Gfarm (Grid Datafarm)［5］—a ref-
erence implementation of the grid datafarm
architecture—to evaluate its effectivity and
practical usefulness in the field of solar-terres-
trial physics. Gfarm is middleware designed
for data grids that control file transfer between
networks and distribute file I/O by using a
number of nodes that serve as storage in com-
puting［6］. Gfarm has thus far been successful-
ly used in implementing astronomical data
analyses［7］, the GEO Grid project［8］and
more, with the effectivity of its file I/O scala-
bility and features to balance CPU perfor-
mance load having been verified. Yet, con-
structing a data-intensive environment in the
field of solar-terrestrial physics in which data
files are managed, distributed, is such a labori-
ous task that the effectivity of distributed par-
allel processing by data grids has yet to be
verified. Moreover, because the data size and
data workload vary among different batches of
analysis data and different analysis periods,
the scheme for load balancing by simply split-
ting data files may not prove useful at all
times. Hence, a scheduling method not target-
ed by Gfarm is needed.

2  Status quo and problems of the
integrated data processing
environment in the field of solar-
terrestrial physics, and the pro-
posed system

2.1  Status quo and problems of the
data processing environment

As described in Section 1, the field of
solar-terrestrial physics is a multidisciplinary
branch of research activity, for which observa-
tion data have been managed and publicized,
and distributed among universities and
research institutes both at home and abroad.
Because data analyzers download all data files
needed for their own data processing comput-
ers, the tasks of downloading, analyzing and
visualizing these files become more complex
as more types of data and more files are
involved.

When data is to be analyzed and visualized
on a data analyzer’s own terminal, CPU per-
formance and disk I/O would constrain a scale
of processing involving huge sizes or files of
data. For this reason, many data centers offer
online services for large-scale online data pro-
cessing. For example, SSCWeb［9］operated by
the National Aeronautics and Space Adminis-
tration (NASA) and DARTS［10］operated by
the Japan Aerospace Exploration Agency
(JAXA) offer services for searching through
their satellite observation data and plotting the
data in a simple sequence. Moreover, 3D visu-
alization films of simulation data have been
released based on real-time terrestrial magne-
tosphere simulation［11］ conducted by the
National Institute of Information and Commu-
nications Technology (NICT). In these envi-
ronments, data analyzers can retrieve process-
ing results without having to download data
files. Data processing, however, does not go
beyond simple searches under limited condi-
tions or primitive tasks such as data plotting,
since the data sites prescribe the details there-
of. Many data centers offer no service for cre-
ating an integrated analysis environment that
encompasses data from other data centers as
well.

2.2  Summary of the proposed distrib-
uted parallel processing system 

As a solution to address the problems out-
lined in Section 2.1, this paper proposes a
data processing system that builds on the
meta-data utilization system (STARS: Solar-
Terrestrial data Analysis and Reference Sys-
tem)［12］［13］and Gfarm, a reference imple-
mentation of the grid datafarm architecture.
STARS provides a data utilization environ-
ment that offers access transparency and loca-
tion transparency to satellite observation data
files and computer simulation data files kept
under distributed management. The proposed
system uses STARS to search for and retrieve
data, and executes large-scale distributed par-
allel processing on the data thus collected on
Gfarm. Gfarm v1.4.1 was used to implement
the system.
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from the client machine to each file system
node (Fig. 1-(4)) to launch distributed parallel
processing (Fig. 1-(5)). Lastly, the integrity of
the processing results displayed is verified
before those results are returned to the user
(Fig. 1-(6)).

3  Distributed parallel processing
of long-term satellite observa-
tion data

3.1  Comparison of distributed parallel
processing with sequential pro-
cessing

This section compares the tested perfor-
mance of distributed parallel processing on
Gfarm with sequential processing by using the
system shown in Fig. 1. One file system node
is used to execute sequential processing, with
Gfarm assumed to generate no overhead. Par-
allel distributed processing is executed with
two to eight nodes running in parallel.

Data-intensive processing was used in an
experiment where each file of data would be

Figure 1 shows the configuration of the
proposed system built of eight file system
nodes; Table 1 summarizes its computer speci-
fications. To begin with, the user retrieves data
files from a data site by way of STARS
(Fig. 1-(1)) and then registers those files with
the Gfarm file system (Fig. 1-(2)). The nature
of processing may require replicating the files
on each file system upon their registration, in
order to ensure the efficient load balancing
described in Section 4.4. When a distributed
parallel processing job is later submitted
(Fig. 1-(3)), an executable program is copied

Fig.1 Parallel distributed processing system running on STARS and Gfarm

Table 1 Specifications of the computer
used for system implementation
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processed in one process. Data processing was
executed by loading total time-series data
sequentially from the two kinds of satellite
observation data varying in file size as listed
in Table 2, with the results of all data records
being directed to standard output. Assuming
M data files and N file system nodes running
in parallel, each node processes M data files
(Fig. 2 (a) by itself in sequential processing, as
compared to M/N data files in distributed par-

allel processing (Fig. 2 (b)). As a preparatory
step to the experiment, all data files were reg-
istered with the Gfarm file system beforehand.

Figure 3 shows the sequence of distributed
parallel processing among the client machine,
meta-data server, and file system nodes. Pro-
cessing is primarily broken down into the
scheduling shown in Fig. 3-(1) to (8) (file sys-
tem node selection and job submission), the
file loading in Fig. 3-(9) to (11) (meta-data-
base access for referencing the entity files of
Gfarm files and for data processing), and stan-
dard output in Fig. 3-(12) (client machine
access).

3.2  Results
Figures 4 and 5 (a) present the results of

processing both kinds of data listed in Table 2
(relation between the number of data files and
execution time). Table 3 lists the values of
parallelization efficiency η(n) = (T1/Tn)/n for
processing 1,000 files, with T1 denoting the
processing time per computer and Tn the pro-
cessing time spent by n computers. As can be
seen from Fig. 4, GEOTAIL/LEP data having
larger file sizes took less time to process in
distributed parallel processing than in sequen-

Table 2 Kinds of satellite observation
data

Fig.2 Satellite observation data process-
ing scheme
(a)  Sequential processing
(b)  Parallel distributed processing
(c)  Parallel distributed processing where

Gfarm files are structured hierarchically

Fig.3 Flow of distributed parallel process-
ing on Gfarm

Fig.4 Comparison of processing time for
distributed parallel processing of
GEOTAIL/LEP data with sequential
processing

(■ denotes sequential processing, ● the parallel
processing on two nodes, ◆ the parallel process-
ing on four nodes, the parallel processing on
six nodes, and ▲ the parallel processing on eight
nodes.)
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tial processing, registering parallelization effi-
ciency η(8) of about 43.4% with eight nodes
running in parallel.

In contrast, GEOTAIL/orbit data having
smaller file sizes took less time to process in
sequential processing than in distributed paral-
lel processing, registering lower paralleliza-

（a）unused improved methods

（c）with hierarchical Gfarm file

（d）with meta-data at local disk and 

hierarchical Gfarm file

Fig.5 Comparison of processing time for distributed parallel processing of GEOTAIL/orbit data
with sequential processing

(■ denotes sequential processing, ● the parallel processing on two nodes, ◆ the parallel processing on four
nodes, the parallel processing on six nodes, ▲ the parallel processing on eight nodes, △ the parallel process-
ing on eight nodes (using improved method) and ▼ the sequential processing (of multiple files in a single
process): (a) not using improved method, (b) using meta-data local caching, (c) hierarchically structured seg-
ment files, and (d) using meta-data local caching and hierarchical segment files.

（b）with meta-data at local disk

(A) scheduling, (B) file loading, (C) output pro-
cessing

Table 4 Time spent processing each file
of GEOTAIL/orbit

Table 3 Parallelization efficiency η [%]
for processing 1,000 files



498 Journal of the National Institute of Information and Communications Technology  Vol.56 Nos.1-4   2009

tion efficiency as listed in Table 3 (b). This is
the result of overhead during distributed paral-
lel processing exceeding the cuts in processing
time derived from parallelization. 

The overhead is associated with (A)
scheduling time (Fig. 3-(1) to (8)), (B) meta-
database access time in loading files (Fig. 3-
(9) to (11)), and (C) output processing time
(Fig. 3-(12)) as mentioned in Section 3.1.
Table 4 lists the time spent processing each
file of GEOTAIL/orbit data for (A) through
(C) in sequential and distributed parallel pro-
cessing. Time lags indicated in the table repre-
sent overhead that never occurs in sequential
processing.

Each process runs independently in dis-
tributed parallel processing on Gfarm. The
more nodes running in parallel, the worse par-
allelization efficiency becomes as can be seen
from Table 3. This is because the higher the
number of nodes running in parallel, the more
congested access to the meta-database
becomes when referencing the entity files of
Gfarm files, thereby resulting in degraded
server response. 

3.3  Improvement in file name refer-
ence time by caching meta-data

This section describes attempts to cut the
meta-database access time (Fig. 3-(9) to (11))
involved in loading the files (B) having the
second largest effects as listed in Table 4. The
overhead in loading the files (B) in Table 4
arises from communication with the meta-data
server, despite the presence of the entity files
of Gfarm files on the local disk of each file
system node. When files are available on the
local disk, performance can be improved by
resolving the file names through internal
caching. More specifically, a list of files to be
processed on each file system node is placed
as a meta-data file in text format on the local
disk beforehand, and then loaded into the file
system node. Figure 5 (b) shows the results of
the same experiment described in Section 3.1
as conducted on GEOTAIL/orbit data using
the improved method. The results of sequen-
tial and parallel processing on eight nodes

shown in Fig. 5 (a) are reprinted in Fig. 5 (b)
as “sequential (1 node)” and “parallel
(8 nodes).” Evidently from Fig. 5 (b), the
meta-database access time in loading files has
been cut by using the improved method, but
with a small degree of improvement from
“parallel (8 nodes).”

3.4  Configuring Gfarm files in hierar-
chical structure for better schedul-
ing time

This section describes attempts to cut the
meta-database access time (Fig. 3-(1) to (8))
involved in loading the files (A) having the
most significant effects as listed in Table 4.
The number of processes that launch upon the
scheduling on each file system node matches
the number of segment files that comprise the
Gfarm files. Therefore, when segment files are
structured hierarchically to simplify their
process configuration as shown in Fig. 6, the
need to launch as many processes as there are
data files would be eliminated, thereby reduc-
ing the time required for scheduling as indicat-
ed in Table 4 (A). A function for maintaining
Gfarm files in their segment files is scheduled
for implementation in Gfarm v2［14］, but since
no function for hierarchically structuring seg-
ment files had yet to be implemented in Gfarm
when this paper was prepared, multiple obser-
vation data files were combined into a single
meta-data file so that all of these files could be
processed in a single process (Fig. 2 (c)).

Figure 5 (c) shows the results of the same
experiment described in Section 3.1 as con-
ducted on GEOTAIL/orbit data using the
improved method. “Sequential (1 node)” in
the diagram has been reprinted from the

Fig.6 Hierarchical Gfarm file structure
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results of sequential processing in Fig. 5 (a).
With the improved method, larger overhead
occurs at commissioning when compared with
“sequential (1 node)” since jobs are submitted
from a client machine, though load balancing
helps reduce the slope of the graph, thereby
offering higher efficiency than in sequential
processing with more files being processed.

3.5  Improvements derived from com-
bined use of meta-data caching
with hierarchically structured
Gfarm files

Figure 5 (d) shows the results of applying
both improved methods described in Figs. 5
(b) and (c), in “parallel (8 nodes, 8 processes,
no meta-data server.” In the diagram, “sequen-
tial (1 node)” has been reprinted from the
results of sequential processing given in Fig. 5
(a), where “sequential (1 node)” has been
processed in a single process to equalize the
relation conditions with “parallel (8 nodes,
8 processes, no meta-data server).”

With the improved methods, larger over-
head occurs at commissioning when compared
with “sequential (1 node, 1 process)” since
jobs are submitted from a client machine, as in

the case of Fig. 5 (c), though load balancing
offers higher efficiency than in “sequential
(1 node, 1 process)” when more files are
processed.

Figure 7 (a) shows the results of an experi-
ment similar to that in Fig. 5 (d) as conducted
on 5,000 to 50,000 files, with parallelization
efficiency for the varying number of nodes
running in parallel in “sequential (1 node,
1 process)” in (a) being plotted in Fig. 7 (b).
As can be seen from Fig. 7 (b), parallelization
efficacy tends to rise in line with more files,
regardless of the number of nodes running in
parallel. This is due to the narrowing ratio of
overhead occurring at commissioning associ-
ated with increases in data processing time as
shown in Fig. 5(d). High parallelization effi-
ciencies above 95% are derived from process-
ing 50,000 files on a varying number of nodes
running in parallel.

3.6  Discussions
Parallel distributed processing on Gfarm

promises high parallelization efficiency with-
out depending on the number of nodes running
in parallel, because data-intensive processing
keeps the individual processes independent of

（a） （b）

Fig.7 Comparison of distributed parallel processing of GEOTAIL/orbit data (using meta-data
local caching and hierarchical segment files) with sequential processing

(▼ denotes the processing of multiple files in a single process, ● the parallel processing on two nodes, ◆ the
parallel processing on four nodes, the parallel processing on six nodes, and ▲ the parallel processing on eight
nodes) : (a) relation between the number of files and execution time, (b) parallelization efficiency
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one another, without involving inter-process
communication. The parallel distributed pro-
cessing of small files where multiple nodes
running in parallel share a single meta-data
server is likely to increase the proportion of
overhead, however, as shown in Fig. 5 (a),
making sequential processing a more efficient
choice. Even though the scheduling time—a
dominant aspect of overhead in distributed
parallel processing—and the meta-database
access time in loading files are cut, there is
still the overhead of submitting jobs; there-
fore, the sequential processing of multiple
files in a single process would prove more
efficient when the number of files involved is
less than a certain level as shown in Fig. 5 (d).
This is one reason why Gfarm targets large
sizes of data, such as write-at-once data.

Assuming the availability of one file of
satellite-specific data per day, the 50,000 data
files summarized in Fig. 7 represent the size of
data collected from 14 satellites over 10 years,
suggesting that enhancements to meta-data
collection performance might make distrib-
uted parallel processing on Gfarm suitable for
multi-point, long-tem satellite observation
data in the field of solar-terrestrial physics.
Ongoing enhancements have evolved from the
findings of work conducted with Gfarm v1,
including on-memory database processing on
Gfarm v2 and minimized meta-data reference
counts［15］.

4  Parallel 3D visualization pro-
cessing of computer simulation
data

4.1  Status quo of large-scale parallel
visualization

The methods for implementing large-scale
parallel visualization proposed thus far include
splitting space regions and processing data
distributed by a visualization method［16］–［18］.
These methods work on the visualization of
grid sizes in excess of per-node computer per-
formance. Yet, these methods require an indi-
vidual to collaborate in visualizing single time
steps. Depending on the computer configura-

tion and visualization region, variations in
visualization processing time might arise from
node to node, making these methods unfit for
use in performing data-intensive processing
tasks, such as multi-time-step long-term visu-
alization. This section applies the system
depicted in Fig. 1 to the 3D visualization of
data yielded from STARS-managed Real-time
Magnetosphere Simulation (hereinafter “real-
time simulation”)［11］conducted by NICT to
examine the usefulness of parallel visualiza-
tion methodology.

4.2  Parallel visualization in the time-
series direction

One numeric data file is generated from
each time step in real-time simulation. In this
experiment, simulation data from 150 time
steps is visualized in parallel on the system
shown in Fig. 1. The simulation data used for
visualization was magnetic field three-compo-
nent data calculated by real-time simulation,
measuring about 80 MB per time step (one
file) (12 GB in total). The 3D object file gen-
erated through visualization is about 1.2 MB
per time step (180 MB in total). The general-
purpose visualization application AVS/
Express 7.1.1［19］was used to conduct visual-
ization in magnetic lines of force.

Figure 8 shows the parallel visualization
method used for this work. First, data files are
allocated to individual system nodes by exe-

Fig.8 Distributed parallel processing for
visualization
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cuting a Gfarm command (Fig. 8-(1)). In the
experiment, 150 files were divided into eight
groups and allocated equally to each node.
Next, each system node visualizes an allocated
data file on the local disk to create a 3D object
as a Gfarm file (Fig. 8-(2)). This sequence of
processing is repeated for each additional file
allocated to the system node. Lastly, the resul-
tant 3D objects are merged into one animation
file on the client machine (Fig. 8-(3)).

4.3  Results
Figure 9 shows the results of visualization

conducted in Section 4.2, with the visualiza-
tion processing time spent for each time step
given in Fig. 10 (a), and the total visualization
processing time in Fig. 11 (a). The longest

time in Fig. 11 (a) was 10,962 seconds (about
183 minutes) or equal to the total execution
time of parallel visualization processing. Simi-
lar visualization processing executed as
sequential processing on a single file system
node took about 4.5 times longer, or 49,726
seconds (about 829 minutes). Though these
findings attest to the usefulness of parallel
visualization processing, the gap of 8,160 sec-
onds (about 136 minutes) recorded between
the shortest and longest visualization process-
ing times in Fig. 11 (a) with a low paralleliza-
tion efficacy of 56.7% suggests room for fur-
ther improvement.

（a） （b） （c）

Fig.9 3D visualization of the terrestrial magnetosphere
(a) first step, (b) 82nd step, (c) 100th steps

（a） （b）

Fig.10 Execution times by time step
(a) files allocated uniformly to nodes, (b) files allocated by FIFO scheduling 
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4.4  Review of load balancing opti-
mization

When many magnetic lines of force are
involved, the visualization processing time
required to plot those lines increases as shown
in Fig. 9 (b). This in turn increases the pro-
cessing times on nodes 4 and 5 in Fig. 11 (a),
thereby disrupting the load balance. This
occurs because the Gfarm scheduler initially
allocates jobs to all segment files in a batch
(Fig. 12 (a)). This method, however, would
not allow load balancing to be optimized in
case of non-uniform file processing times.
Batch scheduling at job submission has there-
fore been improved to the FIFO scheduling
solution (Fig. 12 (b)), whereby jobs are placed
in a queue, and then dequeued and allocated in
sequence to the job ending nodes. With this
method, the files allocated to individual nodes
are unpredictable, and if an allocated file does
not reside on the local disk, the data transfer
time would be added to the data processing
time. In this experiment, all data files are
replicated on the individual nodes beforehand
by using the Gfarm gfrep command.

Figure 10 (b) shows the visualization pro-
cessing time per step based on the improved
method; Figure 11 (b) shows the total visual-
ization time of all file system nodes. The gap
between the shortest and longest visualization

processing times has been narrowed to 360
seconds (6 minutes) in Fig. 11 (b), with load
balancing being more optimized than in
Fig. 11 (a). The total execution time for paral-
lel visualization processing has also been cut
to 6,360 seconds (106 minutes). High paral-
lelization efficiency is thus promising even in

（a） （b）

Fig.11 Total of visualization processing times on individual file nodes
(a) files allocated uniformly to nodes, (b) files allocated by FIFO scheduling 

Fig.12 Visualization scheduling flowchart 
(a) files allocated uniformly to nodes,
(b) files allocated by FIFO scheduling 
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distributed parallel processing where data files
vary in terms of data processing granularity.

4.5  Discussions
Because the method proposed by this

paper optimizes load balancing regardless of
the number of nodes running in parallel, a
scalable distributed parameter is made possi-
ble. Given the need to replicate all data files
on individual nodes, however, a tradeoff exists
between parallelization efficacy and data file
duplication time. In this experiment, the
process of duplicating all data files measuring
12 GB on all nodes took about 77 minutes to
complete. The two scheduling methods did not
show noticeable differences in processing time
for the first visualization session. Since the
replication process is bypassed in the second
and subsequent visualization sessions, the pro-
posed method would prove more efficient
when visualizing the same set of data by vary-
ing the visualization parameters. The evolving
task is how to resolve problems by pipelining
the visualization process and the process of
transferring data files to the file system nodes.

5  Conclusions

Observation data continues being increas-
ingly digitized in many fields of geoscience,
resulting in growing volumes of all kinds of
data, including computer simulation data. This
paper proposed a distributed data-type/data-
intensive processing system that builds on
STARS and Gfarm as a solution to large-scale
data processing in the context of distributed
data management and data processing envi-
ronments in the field of solar-terrestrial
physics. The usefulness of a system built of
eight file system nodes was verified using
satellite observation and computer simulation
data. Distributed parallel processing proved
useful even when processing small files of
data, given the combined use of meta-data
local disk caching with hierarchical segment
files. In the parallel 3D visualization of com-

puter simulation data varying in terms of data
processing granularity, optimized load balanc-
ing through FIFO scheduling yielded paral-
lelization efficacy as high as 97.6% in pro-
cessing on eight modules running in parallel.

Satellite observation data and computer
simulation data have a complementary relation
in the field of solar-terrestrial physics, calling
for the implementation of a multidisciplinary
integrated data analysis environment migrat-
ing from existing goal-specific data analysis
environments. The research group formed by
the authors has attempted to merge and ana-
lyze these two different sources of data［20］.
The authors sought to develop research find-
ings to realize an integrated, multi-purpose
data processing environment operating on the
principles of integral-intensive processing
involving datasets of heterogeneous data vary-
ing in file size or data processing granularity.
The authors also hope that file system nodes
will be installed at data sites that provide
meta-data, in order to standardize the schemes
of STARS meta-damage management in a vir-
tual directory that can be shared among virtual
organizations (VOs) in the field of solar-ter-
restrial physics, thereby creating a data-inten-
sive processing environment.
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space Exploration Agency (JAXA) for his
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was conducted by using satellite observation
data made available from the JAXA Center for
Science-satellite Operation and Data Archive,
and the Research Institute for Sustainable
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