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1 �Introduction

DoS attacks exhaust the resources of 
remote hosts or networks that are otherwise 
accessible to legitimate users. Especially, a 
flooding attack is the typical example of DoS 
attacks. In the case of the flooding attack, the 
attackers often used the source IP address 
spoofing technique. IP address spoofing can 
be defined as the intentional misrepresenta-
tion of the source IP address in an IP packet in 
order to conceal the sender of the packet or to 
impersonate another computing system. There-
fore, it is difficult to identify the actual source 
of the attack packets using traditional counter-

measures. IP traceback aims to locate attack 
sources, regardless of the spoofed source IP 
addresses. Several IP traceback methods have 
been proposed [1]‒[3]; especially Source Path 
Isolation Engine (SPIE)[3] is a feasible solu-
tion for tracing individual attack packets. How-
ever, SPIE requires that its systems are widely 
deployed across the Internet for enhancing 
traceability. Traceability would decrease to a 
minimum if there were only a few routers that 
support SPIE.

Web spoofing, also known as phishing, is 
a form of identity theft in which the targets are 
users rather than computer systems. A phish-
ing attacker attracts victims to a spoofed web-
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site, a so-called phishing site, and attempts to 
persuade them to provide their personal infor-
mation. To deal with phishing attacks, a heu-
ristics-based detection method has begun to 
garner attention. A heuristic is an algorithm to 
identify phishing sites based on users’ experi-
ence, and checks whether a site appears to be 
a phishing site. Based on the detection result 
from each heuristic, the heuristic-based solu-
tion calculates the likelihood of a site being a 
phishing site and compares the likelihood with 
the defined discrimination threshold. However, 
current heuristic solutions are far from suitable 
use due to the inaccuracy of detection.

In this paper, we describe our two con-
tributions for thwarting IP address spoofing 
and Web spoofing, respectively. Chapter 2 
describes the deployment scenario for IP trace-
back systems. Chapter 3 figures out a detec-
tion method of phishing sites which aims at 
improving the detection accuracy. Chapter 4 
concludes our findings.

2 �Deployment scenario for IP 
traceback systems

2.1 �Background
Several IP traceback methods have been 

proposed [1]‒[3]. Especially, Source Path Isola-
tion Engine (SPIE)[3] is a feasible solution for 
tracing individual attack packets, however it 
requires large-scale deployment.

Several researchers[4]‒[6] have proposed 
autonomous system (AS)-level deployment to 
facilitate global deployment of IP traceback 
systems (IP-TBSs). In this case, it is necessary 
to deploy an IP-TBS into each AS instead of 
implementing the SPIE in each router. Since 
the IP-TBS monitors the traffic between the 
AS border routers and exchanges information 
for tracing packets, the traceback client can 
identify the source AS of the packets.

However, the traceability can be easily 
affected by the types of network topology and/
or the deployment scenario. Gong et al. simu-
lated traceability by using three types of net-
work topologies[4], but their deployment sce-
nario was the random placement; they selected 

ASes in a random manner. Castelucio et al. 
mentioned that IP-TBS should be deployed 
along with intent[5]. In their proposed “strate-
gic placement”, IP-TBSs should be deployed 
in order of BGP neighbors. Hazeyama et al. 
proposed to emulate the Internet topology[6] 
that resembles the current Internet topology 
observed by CAIDA[7]. Hazeyama et al. also 
introduced four types of deployment scenario 
and estimated the traceability in the case of 
Japanese Internet topology[8].

Herein, we evaluated the traceability in 
China, Japan, and South Korea Internet using 
AS-level deployment. In our simulation, we 
created three types of emulated network topol-
ogies that resemble China, Japan, and South 
Korea, respectively. We also prepare four types 
of deployment scenario, namely, deployment in 
core ASes, leaf ASes, middle-class ASes, and 
deployment in a random manner.

2.2 �Simulation of traceback deployment
Deployment of the IP-TBS should be con-

sidered along with the type of network topol-
ogy. Let us assume that a network has a star 
topology and that the IP-TBS is deployed in 
the central node. In this case, all ASes and AS 
links can be traced.

In this section, we measure the trace-
ability with deployment simulation. First, we 
explain the two classes of traceability used in 
our simulation. We then introduce three types 
of outfitted Internet topologies, i.e., emulated 
inter-AS topologies in China, Japan, and South 
Korea. We also introduce four types of deploy-
ment scenarios.
2.2.1 �Metrics

We selected traceability as a performance 
metric. There are two principal classes of 
traceability: packet traceability and path 
traceability. Traceability in the first class is 
that the system can specify the AS number 
where the issued IP packet is generated. The 
second class, path traceability, is that the sys-
tem can designate the datalink of the AS bor-
der.

To calculate the traceability, we refer to 
the deployment case of previous study[8]. In 
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[8], the traceability had been defined in Equa-
tion (1), where NS denotes the number of strict 
ASes, NL denotes the number of loose ASes, 
and N denotes the amount number of ASes in 
the network topology.
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A strict AS is an AS where an IP-TBS is 
deployed. A loose AS is an AS where the IP-
TBS is not deployed but the neighboring AS is 
a strict AS. Because of border tracking in typi-
cal IP-TBS[9], Hazeyama et al. recognized that 
a loose AS can be traced within the traceback 
architecture.

Furthermore, the path traceability is shown 
in Equation (2) where LS denotes the num-
ber of strict AS links, LL denotes the number 
of loose AS links, and L denotes the amount 
number of AS links in the network topology.
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In a strict AS link, both peered ASes 
deploy the IP-TBS. In a loose AS link, on 
the other hand, an AS that deploy an IP-TBS 
is interconnected to another AS that does not 
deploy an IP-TBS.
2.2.2 �Network topology

We employ the emulated network topolo-
gies for several regions. Basically, every trace-
back method can be used to construct attack 
paths. Hence, with the use of such traceback 
methods, communication privacy may be 
affected. Because of diverse legal interpreta-
tions of privacy, deployment across country 
border may not be easy. As the first step in 
deployment simulation, we selected the emu-
lated topologies of China, Japan, and South 
Korea.

We have developed several techniques, 
including Internet emulation[6] to construct 
the emulated topologies. Internet emulation 
involves outfitting an Inter-AS topology to a 
network emulation testbed for carrying out a 
realistic performance test. For this study, we 
used the Region Based Filtering (RBF) algo-
rithm to construct a subgraph of each network 

Japan China
South 
Korea

Deployment Target
(Number of ASes)

500 196 640

Traceback Target
(Number of ASes)

768 308 755

Traceback Target
(Number of Links)

1589 529 1375

Table 1 Numbers of deployment target and 
traceback target

region.
In our simulation, we employ the snapshot 

of CAIDA AS Relationship Database (ASRD) 
published on November 22, 2008. The data-
set can be summarized as shown in Table 1. 
Because there are loose ASes located outside 
of each region, the number of deployment tar-
get AS and traceback target AS are different. 
Note that CAIDA extensively surveys AS rela-
tionships, however, some types of BGP peering 
styles such as private peering hinder the cre-
ation of a perfect ASRD.
2.2.3 �Simulation scenarios

We consider four types of deployment sce-
narios as follows.

S1: Deployment in order of core ASes
In the ideal scenario, IP-TBSs are deployed 

into the core ASes. Since the core ASes are 
interconnected to many BGP neighbors, the 
traceback system can handle many ASes and 
AS links. Hence, traceability is expected to be 
high even if the number of deployed traceback 
system is low.

Although various criteria need to be satis-
fied for identifying the network core, we used 
the number of BGP peers as a metric. In this 
scenario, the traceback system is deployed to 
ASes in the decreasing order of the number of 
established BGP peers.

S2: Deployment in order of leaf ASes
In this scenario, IP-TBSs are deployed to 

ASes in the increasing order of the number of 
established BGP peers. Since the IP-TBSs will 
trace fewer ASes and AS links in this case, 
traceability will be low. However, attacker 
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nodes often exist in the leaf ASes. The major 
ISPs (core ASes) are prone to DoS attacks. 
Hence, it is reasonable to assume that these 
types of AS installed defense schemes against 
DoS attacks, such as Ingress Filtering[10].

S3: Deployment in middle-class ASes
We assumed that the traceability observed 

with deployment into the core AS to be com-
parable to that reported by Hazeyama[8]. How-
ever, deployment in the core AS might be dif-
ficult due to the number of AS border routers. 
Unless hash-based IP-TBSs are used to net-
work traffic among the AS border routers, the 
cost involved for deployment into core ASes 
would be high.

In this scenario, IP-TBSs are deployed to 
ASes in the decreasing order of the number of 
established BGP peers, except for core ASes. 
We assumed that the number of core AS will 
be estimated by the power-law, referring to the 
Barabasi-Albert Model[11]. For example, the 
number of ASes in Japan was 500 as shown 
in Table 1. The number of core AS is roughly 
22 (≈√500), and hence, we measure the trace-
ability by deploying IP-TBSs to the remaining 
ASes.

S4: Deployment in a random manner
Similar to the simulation performed by 

Gong et al.[4], IP-TBSs are deployed in a ran-
dom manner in this scenario. To eliminate 
bias, we repeated trial experiments 10 times 
and calculated the average of the traceability 
values obtained for 1 AS through 50 ASes.

2.3 �Simulation results
First, we calculated the packet traceability 

for the Japanese network topology and sum-
marized in Fig. 1(a), where x axis denoted the 
number of ASes which deployed IP-TBS, y 
axis denoted the packet traceability (Tpacket). If 
IP-TBS were deployed in 15 AS, the highest 
Tpacket was observed in the case of S1 (86.3%), 
followed by S3 (18.5%), S4 (15.4%), and S2 
(3.4%). We also calculated path traceability 
as shown in Fig. 1(b), where x axis denoted 
the number of ASes which deployed IP-TBS, 

y axis denoted the packet traceability (Tpath). 
Given the number of deployed ASes (N) = 15, 
the highest Tpath was 69.0% in the case of S1, 
followed by S3 (11.6%), S4 (3.6%), and S2 
(0.9%).

We then measured the traceability in the 
case of the Chinese network topology and the 
results were shown in Fig. 2(a) and Fig. 2(b). 
Given N = 15, we observed that the highest 
Tpacket was in the case of S1 (74.8%), followed 
by S3 (27.3%), S4 (21.7%), and S2 (8.1%). 
The highest Tpath was 74.9% in the case of S1, 
followed by S3 (22.9%), S4 (13.0%), and S2 
(2.8%).

Finally, we simulated the case of the South 
Korean network topology and the results were 
shown in Fig. 3(a) and Fig. 3(b). The results 
indicated that S1 performed better than oth-
ers. Given N = 15, the highest Tpacket was 92.6% 
in the case of S1, followed by S4 (8.8%), S3 
(4.5%), and S2 (3.1%). The highest Tpath was 
93.4% in the case of S1, followed by S3 (5.0%), 
S4 (2.7%), and S2 (1.1%).

In all cases, the highest Tpacket and the high-
est Tpath were observed in the case of S1. Nota-
bly, in the South Korean network topology, 
traceability in the case of S1 outperformed 
that in the other cases. We assumed that many 
ASes in the South Korea network topology 
were interconnected to a few core ASes.

However, the efficiency of deployment in 
the core AS was not significantly high in the 
Chinese network topology. The pair of trace-
ability (Tpacket, Tpath) was (27.3%, 22.9%) in the 
case of S3, higher than that in the other net-
work topologies. We considered there are two 
reasons. One is the number of deployment 
target. As shown in Table 1, the number of 
deployment target was 196 in China. The other 
one is the geographical restrictions in China; 
we considered that the core ASes were dis-
tributed due to the country size of China. We, 
therefore, assumed middle-class and/or leaf 
ASes have established BGP peers with each 
other.

We found that the South Korean network 
topology was “concentrated” type while the 
Chinese network topology was “distributed” 
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Fig.1(a) Packet traceability in Japan

Fig.2(a) Packet traceability in China

Fig.3(a) Packet traceability in South Korea

Fig.1(b) Path traceability in Japan

Fig.2(b) Path traceability in China

Fig.3(b) Path traceability in South Korea
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type. The characteristics of the Japanese net-
work topology were found to be intermediate 
between South Korean and Chinese network 
topologies. However the path traceability in 
the Japanese network topology was not very 
high. As shown in Table 1, the number of AS 
links in the Japanese network topology (1589) 
was higher than that in the South Korean net-
work topology (1378); however, the number 
of deployment target in the Japanese network 
topology (500) was lower than in the South 
Korean network topology (640). We assumed 
that middle-class and/or leaf ASes have estab-
lished BGP peers with both core ASes and 
other ASes.

3 �Detection methods for phishing 
sites by utilization of past trust 
decisions

3.1 �Background
There are two distinct approaches for 

identifying phishing sites. One is URL filter-
ing. It detects phishing sites by comparing the 
URL of a site where a user visits with a URL 
blacklist, which is composed of the URLs of 
phishing sites. Unfortunately, the effectiveness 
of URL filtering is limited. In 2007, the detec-
tion accuracy of URL blacklist-based systems 
was roughly 70%[12]. In 2009, Sheng et al. 
reported[13] that URL blacklists were ineffec-
tive when protecting users initially, as most of 
them caught less than 20% of phishing sites at 
hour zero. The rapid increase of phishing sites 
hinders URL filtering to work sufficiently due 
to the difficulty of building a perfect blacklist.

The other approach is a heuristic-based 
method. A heuristic is an algorithm to identify 
phishing sites based on users’ experience, and 
checks whether a site appears to be a phishing 
site or not. Checking the life time of a regis-
tered website is well-known heuristic as most 
phishing sites’ URL expires in short time span. 
Based on the detection result from each heuris-
tic, the heuristic-based solution calculates the 
likelihood of a site being a phishing site and 
compares the likelihood with the defined dis-
crimination threshold. The detection accuracy 

of existing heuristic-based solutions is, how-
ever, far from suitable for practical use. Zhang 
et al.[12] mentioned that SpoofGuard[14], 
which is one of the heuristics-based solutions, 
identified more than 90% of phishing sites cor-
rectly, but incorrectly identified 42% of legiti-
mate sites as phishing. Our previous work[15] 
proposed to employ machine learning tech-
niques for detection of phishing sites. By com-
paring with the traditional method and nine 
types of machine learning-based methods, we 
found that machine learning-based methods 
performed better than the traditional methods 
in almost all of evaluation results. The highest 
performance was observed in the case of the 
AdaBoost-based detection method.

A current challenge of the heuristics-based 
solutions is improving the detection accuracy. 
In our study, we proposed HumanBoost, which 
aims at improving AdaBoost-based detection 
methods. The key concept of HumanBoost 
is utilizing Web users’ past trust decisions 
(PTDs). Basically, humans have the potential 
to identify phishing sites, even if existing heu-
ristics cannot detect them. If we can construct 
a database of PTDs for each Web user, we can 
use the record of the user’s trust decisions as 
a feature vector for detecting phishing sites. 
HumanBoost also involves the idea of adjust-
ing the detection for each Web user. If a user is 
a security expert, the most predominant factor 
on detecting phishing sites would be his/her 
trust decisions. Conversely, the existing heuris-
tic will have a strong effect on detection when 
the user is a novice and his/her PTD has often 
failed.

3.2 �Experiments and results
To check the availability of PTDs, we 

invited participants and performed a phishing 
IQ test to construct PTDs, in November 2007, 
in March 2010, and July 2010. This section 
describes our first test and explains the dataset 
description of the phishing IQ test, introduces 
the heuristics that we used, and then explains 
our experimental design and finally show the 
results.
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3.2.1 �Dataset description
Similar to the typical phishing IQ tests 

performed by Dhamija et al.[16], we prepared 
14 simulated phishing sites and six legitimate 
ones, all of which contained Web forms in 
which users could input their personal infor-
mation such as user ID and password. The con-
ditions of the sites are shown in Table 2. The 
detailed explanation of phishing tricks is avail-
able in [17].
3.2.2 �Heuristics

Our experiment employs eight types of 
heuristics, all of which were employed by 

CANTINA[18]. To the best of our knowl-
edge, CANTINA is the most successful tool 
for combining heuristics, since it has achieved 
high accuracy in detecting phishing sites with-
out using the URL blacklist.
3.2.3 �Experimental design

We used a within-subjects design, where 
every participant saw every website and judged 
whether or not it appeared to be a phishing site. 
In our test we asked 10 participants to freely 
browse the websites. Each participant’s PC 
was equipped with Windows XP and Internet 
Explorer (IE) version 6.0 as the browser. Other 

# Website Real / 
Spoof Lang Description

1 Live.com real EN URL (login.live.com)

2 Tokyo-Mitsubishi UFJ spoof JP
URL (www-bk-mufg.jp),
similar to the legitimate URL (www.bk.mufg.jp)

3 PayPal spoof EN
URL (www.paypal.com.%73%69 ... %6f%6d)
(URL Encoding Abuse)

4 Goldman Sachs real EN URL (webid2.gs.com), SSL

5 Natwest Bank spoof EN
URL (onlinesession-0815.natwest.com.esb6eyond.gz.cn),
derived from PhishTank.com

6 Bank of the West spoof EN
URL (www.bankofthevvest.com), 
similar to the legitimate URL (www.bankofthewest.com)

7 Nanto Bank real JP URL (www2.paweb.anser.or.jp), SSL, third party URL

8 Bank of America spoof EN
URL (bankofamerica.com@index.jsp-login-page.com)
(URL Scheme Abuse)

9 PayPal spoof EN
URL (www.paypal.com), first “a’’ letter is a Cyrillic small 
letter “а’’ (U+430) (IDN Abuse)

10 Citibank spoof EN URL (IP address) (IP Address Abuse)

11 Amazon spoof EN
URL (www.importen.se), contains “amazon’’ in its path, 
derived from PhishTank.com

12 Xanga real EN URL (www.xanga.com)

13 Morgan Stanley real EN URL (www.morganstanleyclientserv.com), SSL

14 Yahoo spoof EN URL (IP address) (IP Address Abuse)

15 U.S.D. of the Treasury spoof EN URL (www.tarekfayed.com), derived from PhishTank.com

16 Sumitomo Mitsui Card spoof JP
URL (www.smcb-card.com), 
similar to the legitimate URL (www.smbc-card.com)

17 eBay spoof EN URL (secuirty.ebayonlineregist.com)

18 Citibank spoof EN URL (シテイバンク.com), is pronounced “Shi Tee Ban Ku’’, 
look-alike “Citibank’’ in Japanese Letter (IDN Abuse)

19 Apple real EN
URL (connect.apple.com), SSL, 
popup warning by accessing non-SSL content

20 PayPal spoof EN
URL (www.paypal.com@verisign-registered.com), 
(URL Scheme Abuse)

Table 2 Conditions of each website
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than configuring IE to display International-
ized Domain Names, we installed no security 
software and/or anti-phishing toolbars. We 
also did not prohibit participants from access-
ing websites not listed in Table 2. Some par-
ticipants therefore inputted several terms into 
Google and compared the URL of the site with 
the URLs of those listed in Google’s search 
results.

In this experiment, we used the average 
error rate as a performance metric. To average 
the outcome of each test, we performed 4-fold 
cross validation and repeated 10 times.
3.2.4 �Experiment results

First, we invited 10 participants, all Japa-
nese males, from the Nara Institute of Science 
and Technology. Three had completed their 
master’s degree in engineering within the last 
five years, and the others were master’s degree 
students. We let participants to label the web-

sites described in Table 2.
Next, we determined the detection accu-

racy of the AdaBoost-based detection method 
along with our experimental designs as men-
tioned in Section 3.2.3. We used eight heuris-
tics and outputted a binary variable represent-
ing phishing or not-phishing. The detection 
results by each heuristic are shown in [17].

Finally, we measured the detection accu-
racy of HumanBoost. We constructed 10 PTD 
databases. In other words, we made ten types 
of 20 * 9 binary vectors. Under the same con-
ditions described above, we calculated the 
average error rate for each case of Human-
Boost.

The results are summarized in Fig. 4, 
where the gray bars denote the error rate of 
each participant, the white bar denotes the 
average error rate of the AdaBoost-based 
detection method, and the black bars denote 
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Average
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Fig.4 Average error rates of each participant, AdaBoost-based detection method, and HumanBoost in the 
pilot study, in November 2007



107MIYAMOTO Daisuke et al.

that of HumanBoost. The average error rate for 
HumanBoost was 13.4%, 19.0% for the par-
ticipants and 20.0% for the AdaBoost-based 
detection method. The lowest false positive 
rate was 19.6% for HumanBoost, followed by 
28.1% for AdaBoost and 29.7% for the par-
ticipants. The lowest false negative rate was 
8.5% for HumanBoost, followed by 13.5% for 
AdaBoost, 14.0% for the participants.

We found that the average error rate 
of some participants increased by employ-
ing HumanBoost. We analyzed the assigned 
weights and found that some heuristics were 
assigned higher weights than such users’ 
trust decision. For instance, participant 9 had 
labeled three legitimate sites as phishing sites, 
whereas the existing heuristics had labeled 
these three sites correctly. His trust decision 
was therefore inferior to that of existing heuris-
tics and we assumed that this is the reason for 
the increase in error rate.

3.3 �Follow-up study
Increasing the number of participants 

essentially enables us to generalize the out-
come of HumanBoost. In this section, we 
explain the two cases of the follow-up studies 
performed in 2010. Note that the pilot study 
was performed in November 2007 and the fol-
low-up studies were performed in March 2010 
and July 2010, therefore there may be differ-
ence based on the demographics of the par-
ticipants and substantial media coverage about 
phishing.
3.3.1 �A case of the follow-up study in 

March 2010
Our follow-up study had 11 new partici-

pants, aged 23 to 30. All were from the Japan 
Advanced Institute of Science and Technology. 
All were Japanese males, two had completed 
their master’s degree in engineering within the 
last five years, and the others were master’s 
degree students.

Before conducting the follow-up study, 
we modified the dataset described in Table 2. 
Due to the renewal of PayPal’s website dur-
ing 2007–2010, we updated websites 9 and 
20 to mimic the current PayPal login pages. 

Particularly, Nanto Bank, website 6 in Table 
2, had changed both the URL and the con-
tent of its login page. Nanto Bank is also not 
well-known in Ishikawa Prefecture, where the 
participants of the follow-up study lived. We 
therefore changed website 6 to Hokuriku Bank 
(another Japanese regional bank in Ishikawa). 
The domain name of Hokuriku Bank is 
www2.paweb.answer.or.jp, the same as Nanto 
Bank.

In March 2010, we invited 11 participants 
and asked them to label 20 websites as legiti-
mate or phishing. Different from the pilot 
study described in Section 3.2, we prepared 
printed documents to expedite this experiment. 
Instead of operating a browser, participants 
looked at 20 screen shots of a browser that had 
just finished rendering each website. These 
screen shots were taken on Windows Vista and 
IE 8.0 because IE 6.0 was out of date in March 
2010. Additionally, showing a browser screen 
shot is often used for phishing IQ tests.

The results are shown in Fig. 5, where the 
gray bars denote the error rate of each partici-
pant, the white bar denotes the average error 
rate of the AdaBoost-based detection method, 
and the black bars denote that of HumanBoost. 
The lowest error rate was 10.7% for Human-
Boost, followed by 12.0% for AdaBoost and 
31.4% for the participants. The lowest false 
positive rate was 15.4% for AdaBoost, followed 
by 18.1% for HumanBoost and 39.9% for the 
participants. The lowest false negative rate 
was 6.1% for HumanBoost, followed by 8.4% 
for AdaBoost and 25.9% for the participants. 
In comparison to the pilot study, the average 
error rate in participants increased due to the 
difference in the experimental design; the pilot 
study allowed participants to operate a browser 
but the follow-up study did not. However, we 
observed that HumanBoost achieved higher 
detection accuracy.
3.3.2 �A case of the follow-up study in 

July 2010
In order to collect more users’ PTDs, we 

recruited participants via Internet research 
company. In this section, we summarize the 
results briefly.
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Of the recruited 309 participants, 42.4% 
(131) were male and 57.6% (178) were female. 
Age ranged from 16 to 77 years old. 48.2% 
of participants (149) were office workers, and 
19.7% (61) were households and 5.8% (18) 
were students. Of the students, 66.7% (12) 
were Bachelors, 11.1% (2) were high school 
students, 5.6% (1) was a master’s degree stu-
dent. They mainly lived around Tokyo area. 
We therefore changed website 6 to Tokyo 
Tomin Bank (another Japanese regional bank 
in Tokyo). The domain name of Tokyo Tomin 
Bank is also www2.paweb.answer.or.jp. The 
other conditions of this study are the same as 
the follow-up study described in Section 3.3.1. 
In July 2010, recruited 309 participants looked 
at 20 screen shots and judged whether the site 
seems to be phishing or legitimate.

Based on the detection results, we also cal-
culated the average error rate for each partici-

pant, the AdaBoost-based detection method, 
and HumanBoost. The lowest error rate was 
9.7% for HumanBoost, followed by 10.5% 
for AdaBoost and 40.5% for the participants. 
The lowest false positive rate was 18.3% for 
AdaBoost, followed by 19.5% for HumanBoost 
and 57.4% for the participants. The lowest 
false negative rate was 5.5% for HumanBoost, 
followed by 7.1% for AdaBoost and 33.2% for 
the participants.

4 �Conclusion

We tackled two types of deception, namely 
IP address spoofing and Web spoofing. For 
tracing spoofed IP address, practical deploy-
ment of IP traceback system (IP-TBS) is nec-
essary. We simulated the traceability by using 
our strategy for deployment of IP-TBS into 
Autonomous Systems (ASes). We used two 

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

P21

Average

AdaBoost

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

15.0%

25.0%

50.0%

45.0%

30.0%

45.0%

15.0%

25.0%

55.0%

20.0%

20.0%

31.4%

11.1%

7.8%

11.1%

11.7%

7.8%

13.9%

11.1%

6.7%

13.9%

13.3%

9.4%

10.7%

12.0%

Participant AdaBoost HumanBoost

Fig.5 Average error rates of each participant, AdaBoost-based detection method, and HumanBoost in the 
follow-up study, in March 2010



109MIYAMOTO Daisuke et al.

types of traceabilities — packet traceability 
and path traceability — as performance met-
rics in our simulation. Generally, traceability 
was affected by the types of network topol-
ogy and the deployment scenario. For practical 
simulations, we used emulated Chinese, Japa-
nese, and South Korean network topologies. 
We also introduced four types of deployment 
scenario, namely, deployment in core ASes, 
leaf ASes, middle-class ASes, and deployment 
in a random manner.

Our simulation results showed that the 
traceability obtained for deployment into core 
ASes outperformed those numbers obtained 
for the other scenarios, regardless of the type 
of network topology. When the number of 
ASes that deployed IP-TBS was 15, the pair of 
packet traceability and path traceability was 
(86.3%, 69.0%) in the case of Japan, (74.8%, 
74.9%) in the case of China, and (92.6%, 
93.4%) in the case of South Korea. Deploy-
ment for middle-classes was the second high-
est in almost of all cases, however, the pair of 
traceability was (18.5%, 11.6%) in the case of 
Japan, (27.3%, 22.9%) in the case of China, 
and (4.5%, 5.0%) in the case of South Korea.

The results also revealed the characteris-
tics of three network topologies. In the Chinese 
network topology, middle-class ASes and/or 
leaf ASes were interconnected. On the con-
trary, in the South Korean network topology, 
many ASes established BGP peers with a few 
core ASes. By comparing these two regions, 
Japanese network topology was intermediate 
between South Korea and China.

For thwarting Web spoofing, a sophis-
ticated detection method for phishing sites 
is desired. We presented an approach called 
HumanBoost to improve the accuracy of 
detecting phishing sites. The key concept was 
utilizing users’ past trust decisions (PTDs). 
Since Web users may be required to make 
trust decisions whenever they input their per-
sonal information into websites, we considered 
recording these trust decisions for learning 
purposes. We simply assumed that the record 
can be described by a binary variable, repre-
senting phishing or not-phishing, and found 

that the record was similar to the output of the 
existing heuristics.

As our pilot study, in November 2007, we 
invited 10 participants and performed a subject 
experiment. The participants browsed 14 sim-
ulated phishing sites and six legitimate sites, 
and judge whether or not the site appeared to 
be a phishing site. We utilized participants’ 
trust decisions as a new heuristic and we let 
AdaBoost incorporate it into eight existing 
heuristics.

The results showed that the average error 
rate for HumanBoost was 13.4%, whereas 
that of participants was 19.0% and that for 
AdaBoost was 20.0%. We also conducted the 
follow-up study in March 2010. This study 
invited 11 participants, and was performed in 
the same fashion of the pilot study. The results 
showed that the average error for Human-
Boost was 10.7%, whereas that of participants 
was 31.4%, and that for AdaBoost was 12.0%. 
Finally, we invited 309 participants and per-
formed the follow-up study in July 2010. The 
results showed that the average error rate for 
HumanBoost was 9.7%, whereas that of par-
ticipants was 40.5% and for AdaBoost was 
10.5%. We therefore concluded that PTDs are 
available as new heuristics and HumanBoost 
has the potential to improve detection accuracy 
for Web user.

As future work, our research items are 
summarized as follows. In the case of IP trace-
back, we plan to estimate the traceability when 
IP-TBSs that deployed in China, Japan, and 
South Korea are interconnected. Although 
there are several legal interpretations of pri-
vacy in communication, the IP-TBSs should be 
capable of exchanging traceback queries; this 
is because DoS attacks often originate regard-
less of the regions. We will also perform simu-
lation studies using emulated network topolo-
gies derived from other network regions.

In the case of HumanBoost, we perform 
a field test in a large-scale manner. Removing 
bias is generally important for a participant-
based test. Though we used cross validation, 
the presence of bias can still be assumed due 
to the biased dataset and/or biased samples. 
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A field test is possible by distributing it as 
browser extension with some form of data col-

lection and getting a large population of users 
to agree to use it.
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