
1 Introduction

The influences of viscosity and thermal fluctuation 
(thermal noise) become effective in the nanoscale world[1]. 
This means that nano-sized bio molecular machines 
operate under intense thermal noise conditions which are 
agitated by solvent molecules. So what is it that enables 
them to operate under such noisy conditions? By studying 
and understanding the functional characteristics of 
biomolecular machines[2]Ȃ[4], great expectations are held for 
the discovery of clues to building nano machines, machines 
that operate reliably under very noisy conditions, and 
signal processing technology. To turn these expectations 
into reality, one effective approach is to turn nanoscale 
functional characteristics into a physically consistent 
models to grasp an understanding of the algorithm behind 
functional expression. In this paper, we focused on the 
protein motor to design a simple mathematical model for a 
nano machine that operates under conditions of thermal 
noise. We will report on one example of such a model in 
which its movement (over time) was mathematically and 
physically calculated. Summarizing the results of 
calculations, a machine that functions randomly can be 
designed under large noise conditions by rectifying the 
thermal noise. The mathematical model shows that 
machines that function randomly will control their 
movement (switching directions, adjusting speed of 
movement) naturally and autonomously in accordance 
with external conditions (e.g., ligand concentration) based 
on probability. Understanding the algorithm behind the 

movement of such machines that function randomly, and 
thinking of ways of finding practical applications for them 
may help us find useful ideas in designing machines that 
can control their functions autonomously under a variety 
of environmental conditions.

2 The model design and simulations

2.1 The model design
First is an explanation of the outline of our simulations.
Here we used a simple mathematical model to examine 

a nano-sized (a diameter of 30 nm) particle (hereinafter 
referred to as functional particle) with a function that 
enables it to move linearly along a rail under thermal noise 
conditions. The interaction between the functional particle 
and the rail (we will not discuss the mechanism behind this 
in this paper) exerts a force on the particle. This driving 
force can be thought of as a potential force, and this allows 
the movement of the functional particle to be described as 
particle movements in potential force. The movement of 
the functional particle is dependent on the size of the 
particle (thermal noise, viscosity) and the potential force. It 
could move in all directions, but for the purpose of 
simplification and to ascertain the true nature of this 
movement, we will examine only the movement of the 
particle within one-dimensional periodic potential (Fig. 1). 
Furthermore, the shape of the potential is described as a 
combination of straight lines to simplify calculations 
(Fig. 1). This is the type of mathematical model often used 
when examining moving particles such as protein motors[5]. 
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Here, we show a simple model of a kind of nano machine as an example. We design a simple 
model for a machine which works in the presence of thermal noise, and mathematically calculate 
physical motion (time evolution) of the modeled machine. As a calculation result, we show we can 
design the model, which works by rectifying thermal noise and autonomously regulates the 
motion (direction switching, velocity control) according to environment. Understanding and 
trying to apply such processing algorithms for stochastic functioning would give us useful 
suggestions to design autonomously regulating and functioning machines under various 
(unknown) circumstances.



It is similar to a fine particle (electric or magnetic charge) 
that moves in accordance with a periodic potential set up 
by the periodic positioning of electric charges or magnetic 
charges. However this functional particle undergoes 
cyclical attaching and detaching of ligands (signaling 
molecules, energy supplying molecules, etc.) creating 
different states of potential (hereinafter referred to as state 
potential, Fig. 1: En, Dn, An). In other words, different 
interaction potentials may be created depending on the 

state (e.g., the internal structure of the fine particle), even if 
the positioning of the electric or magnetic charge on the 
rail were to be the same. A prerequisite of this transition 
between the different states is that it is coupled with 
consumption of energy through the cyclical attaching and 
detaching of ligands, and so it obeys the second law of 
thermodynamics. Here we will examine a model that 
creates state change (vertical movement in Fig. 1) coupled 
with energy consumption (transition to lower state) from 
state transition (Fig. 1: Direction of the y-axis). The 
coupling does not have to be between energy consumption 
and movement, but we will do so in order to examine the 
mathematical and physical model under conditions that 
obey the laws of physics. In examining the movement (over 
time) of particles that function under conditions of thermal 
noise, we will use the Langevin equation[6] to simulate the 
movement of the functional particle (changes in state and 
position over time), based on the precondition that we will 
use methods that are not physically impractical. Changes in 
the external environment and internal state of the 
functional particle are also taken into account in designing 
the model, so the simulation will be carried out in discrete 
state potentials under the assumption that each different 
internal state of the functional particle will have a different 
potential. To simplify things, the basic conditions we set 
for the model we designed were two state potentials (Fig. 1: 
Potential (D: Detached state) & (A: Attached state)) 
resulting from a difference in the internal state of the 
functional particle, and the state potential under a ligand-
detached state (Fig. 1: Potential (E: Empty state)) to 
simulate the attachment and detachment of ligands (e.g., 
energy supply molecule).
Here is a simple mathematical and physical explanation 

for the above simulation. If we were to record only the 
changes in state over time, we would use a kinetic model 
based on chemical kinetics, in which case a differential 
equation would be the most appropriate way of expressing 
this[7]. However, we need to consider not only the changes 
in state over time, but also the movement over time relative 
to the potential, which is dependent on the internal state. 
So we used an extended kinetic model for recording this 
state and movement over time[5][8]. Moreover, the signals 
are not necessarily the same all the time in biomolecular 
machines such as proteins[2]Ȃ[4], and in the case of our 
functional particle this means it moves in both negative 
and positive directions randomly. To account for this 
randomness of signal output, the transition rate of changes 
in the state differs depending on the position in our model. 
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Fig. 1 A model using the periodic potential (10 nm periodicity)
 The graph shows two periods both vertically and horizontally. 

White circles indicate the functional particle (φ = 30 nm). The 
gray parts between the potentials show the range within which 
transitions between states are permitted. Along the horizontal 
axis are the x coordinates [nm], and the vertical axis indicates 
potential energy [zJ]. The functional particle moves along the 
x-axis while undergoing successive transitions between the 
D: Detached state and A: Attached state starting from the 
E: Empty state (no-ligand state, the n indicates the number of 
the state). The functional particle switches between the state 
potentials indicated in the graph as En, Dn and An (small letters 
indicate the reference number of the potential), driven by 
thermal noise. It makes transitions randomly (arrows) between 
state potentials within the area in which transitions are 
permitted (gray parts). Assuming the transition rate between the 
various states too, is periodic, its value within one period (0−10 
nm) is En → Dn: kED= 50 to 2 x 109 with a variable parameter 
(total x range)

 Dn → An: kDA1= 1.0 × 108 (x = 0 to 2 nm), kDA2= 2.0 × 106 (x = 8 to 
10 nm)

 An → En-1: kAE1= 1.0 × 107 (x = 3 to 4 nm), kAE2= 5.0 × 106 (x = 6 to 7 
nm)

 The unit is [/sec]



We will not delve into the details here, but in our model 
the positions at which state changes occur, and reaction 
rates, have been adjusted to generate movement in both 
directions. To explain this using Fig. 1, a general kinetic 
transition process would appear as a vertical shift from the 
top of the graph toward the bottom. What we added to this 
was the generation of movement in real space (Fig. 1: 
Horizontal direction along the x-axis) in accordance with 
one state potential when the functional particle is in one 
particular internal state. The transition rate of the state 
transition is set to be dependent on the position along the 
x-axis. In other words, the transition rate changes depending 
on the position of the functional particle, and the particle is 
moved by a different potential force that is dependent on 
the position where the state transition occurred, resulting 
in movement in both directions. The movement of the 
functional particle within one state potential can be 
expressed as a differential equation using the Langevin 
equation, and it is a Brownian motion regulated by the size 
of the functional particle, the temperature, the viscosity 
coefficient of the solvent, and the state potential force [1]. 
The periodic potential is defined by the entire system 
involving the interaction between the internal structure of 
the functional particle and the rail structure. We limited 
our study to three state potentials shown in Fig. 1. 
Furthermore, to simplify things we assumed each of the 
state potentials to be flat (zero inclination overall) as shown 
in Fig. 1. Assuming that transition between state potentials 
occurs in succession, the simple transition rates of kED, kDA1, 
kDA2, kAE1, kAE2 of potential (En) → (Dn), (Dn) → (An), (An) 
→ (En-1)… will be the parameters for the settings (Fig. 1 
explanatory notes), and k exp (-∆ E/kBT) will become the 
opposite transition rate (kB: Boltzmann’s constant, 
T: Absolute temperature)[9]. However, ∆ E is the difference 
in energy between state potentials at the positions where 
state transitions occur, and they are in detailed balance. 
Recording the movement of the functional particle (over 
time) as a state transition in accordance with the Langevin 
equation and detailed balance allowed us to realize a 
physically consistent model. The difference in energy 
between the potentials here is to regulate the transition 
between states in the opposite direction in accordance with 
the detailed balance, and it is not the essence of this model. 
If the difference in energy is large, the transition rate in the 
opposite direction (Fig. 1: From the bottom to the top) 
becomes small, so that transition occurs mostly in one 
direction only (Fig.1: From the top to the bottom). In this 
model, the three state potentials undergo successive 

transition over time. There is a fixed amount of energy 
between all the state potentials, and a difference in speed is 
observed in the transition rate from the top to the bottom, 
and from the bottom to the top that is dependent on 
energy differences. This difference in rate is equivalent to 
the energy consumption, and transition reactions occur 
autonomously in this model in the direction of energy 
consumption (from the top to the bottom). In addition, all 
state potential shapes have been made symmetrical or flat 
to simplify the model. For this reason, unidirectional 
movement is not observed along the x-axis by only one 
potential. Directional movement is produced upon the 
generation of a bias in the position distribution of 
functional particles, through the repeating of the transition 
process between states at limited positions while 
consuming energy. The state potential (En) and transition 
process to (Dn) were included to take account of the 
transition rate, which is dependent on the variable quantity 
of ligand (signaling molecules, energy supplying molecules, 
etc.) concentration in this model. (En) → (Dn) represents 
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Fig. 2 A: The distance moved in 50 msec in the case of the 
transition rate from (En) → (Dn) being kED= 5.0 × 105. It is a 
random process so the displacement shows distribution. 
The different line colors indicate different traces (shows 10 
traces).

 B: Profile of the average value of the amount of 
displacement generated when the ligand concentration-
dependent transition rate (kED the transition rate from (En) 
→ (Dn)) is changed. Horizontal axis: The ligand 
concentration-dependent transition rate (In Fig. 1: Transition 
rate from (En) → (Dn) [/sec]) Vertical axis: Amount of 
displacement in 50 msec [nm]. Black squares indicate 
average amounts of displacement. Blue vertical lines 
indicate standard errors.



the transition of a ligand from a detached state to an 
attached state, and the value is the same at any point along 
the x-axis. The (En) → (Dn) transition rate is set between 
50−2 × 109[/sec] in accordance with the set ligand 
concentration, and the movement generated is calculated 
for each value. Simulation calculations are carried out every 
0.2 nsec, and the distance moved along the x-axis in 
50 msec after relaxing from the initial state is calculated. 
Furthermore, the reaction speed of the state transition is 
regarded as a probability in accordance with the 0.2 nsec 
intervals between calculations in the simulation, and it is a 
stochastic process in which random transitions are 
attempted for every calculation.

3 The results from the model

3.1 The results of calculations in the simulation
Below are the results of calculations. Time evolution of 

particle movement is a stochastic process, so individual 
movements are widely distributed (Fig. 2A). The average 
amounts of displacement are calculated statistically 
(Fig. 2B: average ± standard error (vertical blue lines)). 
Discussions below will be based on these average values. 
The internal processes remained the same (the internal 
state transition and Brownian motion remained the same), 
and the transition rate (probability of transition) between 
the different states in the ligand attachment step (transition 
step (En) → (Dn)) were changed to 50−2 × 109[/sec]. 
Figure 2B shows the results of calculating the movement of 
functional particles under the various conditions. The 
results of calculations in the simulation show that the 
output can be changed autonomously in accordance with 
the reaction speed of the ligand attachment step (ligand 
concentration). To simplify things here, no limitations 
were imposed on the location of state transitions 
(transition step (En) → (Dn)) as the result of ligand 
attachment, while other transitions between state potentials 
were limited to a certain range (Fig. 1). In consideration of 
the movement of the functional particle within the state 
potential (An), we made it so that a transition would be 
possible to the state potential (En-1) near the point where 
the potential peaks, and not where it dips. So far to this 
point, the functional particle is moving against the 
potential force, driven by fluctuations from the thermal 
noise. In other words, the overall unidirectional movement 
of the functional molecule here is being generated as the 
result of the selection of unidirectional thermal noise 
(rectification of the thermal noise) from what is essentially 

random in direction, through the interrelationship with the 
shape of the state potential. Our results are from 
simulations under these conditions of rectified thermal 
noise, and ligand concentrations being expressed as 
transition rates. The results show that the speed of particle 
movement changes and the direction of movement reverses 
depending on the transition rate (transition probability) of 
the step in which transition progresses (Fig. 1: The (En) → 
(Dn) step) due to ligand attachment. In other words it is a 
simple model, but it autonomously adjusts the speed of 
movement in accordance with external environmental 
conditions, and realizes a mechanism for switching the 
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Fig. 3 A: State potential graph showing partially changed transition 
rate. A part of the transition rate (kDA2, diagonal lines) is 
changed (modified) from the values used in Fig. 1, 2.0 × 106 
[/sec].

 B: Changes over a time interval of 50 msec are calculated, 
and the average amounts of displacement are plotted on a 
graph. The transition rates kDA2 (diagonal lines) are changed 
(different colors), and average amounts of displacement 
(along the vertical axis) relative to the transition rate kED 
(equivalent to ligand concentration) are plotted on a graph. 
The graph shows the dependence of the distance moved 
on kED. The values of the transition rates kDA2 (diagonal lines) 
are 2.0 × 106 (black line as in Fig. 2B), 1.0 × 106 (red line), 
3.0 × 106 (green line), and 5.0 × 106 (blue line) [/sec]. It can 
be seen that the particles continue to function even after the 
transition rates kDA2 (diagonal lines) have been changed 
(modified).

（B）

（A）



direction of movement through rectification of noise.

3.2 The Characteristics of the Model
The essence of noise rectification by the functional 

particle discussed here is the inclusion of a function in the 
mechanism for transition between states for selecting a 
single direction from opposing positive and negative 
directions in potential movement. External environmental 
conditions are regarded in terms of their probability, and 
the processing of the probability is changed through the 
internal processing mechanism (transition between the 
states and Brownian motion). This allows the changing of 
the output in accordance with the conditions. Furthermore, 
in the case of this kind of noise-rectifying random 
movement mechanism, the driving force is essentially 
random, so the results of processing are always outputted. 
In summary, the interaction between noise (here it is 
movement in random directions) and the internal structure 
of the machine leads to rectification of directional 
movement from the noise. In this movement-rectifying 
process, the external environment is considered in terms of 
probability, and the output is controlled autonomously in 
accordance with the conditions (through the reversal of 
direction). This is the kind of machine that will be created.
In conditions under which numerous random 

phenomena are observed on nanoscales and in biological 
phenomena, there is a high possibility that this kind of 
design algorithm that functions by rectifying noise instead 
of simply removing it, will be very effective. This kind of 
control mechanism may also be effective in the 
autonomous control of numerous machines. It is hoped 
that this will result in the realization of overall functions 
that are well-balanced, in which individual machines 
function randomly in accordance with the external 
conditions in their immediate surroundings.
This noise-rectifying design has its merits and demerits, 

of course. A merit is that it is designed to function 
randomly, so it is resistant to noise disturbances and it 
functions with stability. It is also resistant to irregular 
incidents. Examples of this may include the appearance of a 
displacement that changes the shape of the potential, or a 
change in the transition rate between potentials. Here are 
the results of calculations (Fig. 3B) after a part of the 
transition rates changed (Fig. 3A). The profile of the 
response to the external environment (ligand concentra-
tion) has changed, and the autonomous direction switching 
function sometimes weakens (is lost). If the change is small 
(kDA2= 2.0 × 106 → 1.0 × 106: Black line in Fig. 3B → 3.0 × 106: 

Green line), the switching function that responds to changes 
in the external environment remains, but its speed response 
profile changes. If the change is large (kDA2 = 2.0 × 106 → 
5.0 × 106: Blue line in Fig 3B), the switching function is 
sometimes lost in the zone where the value of kDA2 is large. 
Incidentally, even when a function (switching) is lost in 
this way, a characteristic of functional particles is that its 
other functions are not lost. In other words, even when the 
internal structure is changed (modified), because its 
movement is random it does not suffer a dramatic loss of 
its original functions. Because the movement is random to 
begin with, changes (modifications) in the internal 
structure often results in unpredictable outputs. Some 
people are of the opinion that the generation of 
unpredictable outputs may cause damage, but from the 
perspective of creating new functions, it is possible to think 
of it as a mechanism for autonomous improvement or 
addition of functions. What we need to consider is a way of 
designing that can make use of such new functions. In the 
future, we must think of designs that adapt this random 
movement type mechanism to the output demanded.
Lastly, noise itself shows complicated behavior. It 

would be believed to be easier to selectively pick up what is 
needed from the variation of complicated behaviors, rather 
than to try and create the complicated behavior itself. In 
this paper, we reported on (one-dimensional diffusion) a 
simple example of a model (algorithm) in which a 
functional particle generates a signal output (the size and 
direction of movement in this case) through the selection 
and use of an overall unidirectional movement from noise 
including movement in both directions, in accordance with 
external environmental conditions (ligand concentration in 
this case). The model fulfills physical requirements so in 
theory it can be turned into a real device for which there 
are high expectations. Expectations are also held for its 
development for application in systems that include 
chemical reactions, through the use of reaction coordinates 
as coordinates, and not just its movement.
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