
1	 Introduction

Cyberattacks are taking place each and every day, and 
their frequency is growing steadily. Many of the cyberat-
tacks make use of malware. For example, banking malware, 
a type of cyber threat, has become widely known in recent 
years. This malware gains unauthorized access to a PC and 
acquires online banking information for siphoning money 
from bank accounts. Ransomware is also rampant: it en-
crypts documents on a PC, preventing them from being 
read. A PC infected with ransomware may display a screen 
showing the steps to send money to the attacker, suggesting 
that the user may obtain the key to decode the encrypted 
files if he/she sends money. The victim, who desperately 
needs the correct key to enable access to the files, has no 
other option than to send money. However, the transmis-
sion of money is no guarantee at all that he/she will receive 
the correct key. To prevent infection by malware, or, to 
enable quick recovery from it, the introduction of effective 
measures is urgently needed to capture, analyze, and dis-
infect it. Successful analysis of malware sheds light on its 
infection vectors and behaviors, enabling appropriate 
measures to be taken. We have conducted study in this 
area, placing special focus on attaining greater analysis 
efficiency. For obstructing analysis*3, many instances of 
malware are known to be packed (compressed and/or en-
crypted). Any attempt to analyze malware in code analysis, 
therefore, needs to identify the type of packing and devise 

procedures to unpack it, before extracting the malware 
code (hereafter referred to as the “original code”). The 
process may be quite time consuming. On the other hand, 
malware authors can pack the malware almost effortlessly 
using such packing tools (hereafter referred to as a 
“packer”) as UPX[1] and Themida[2]. Because many pack-
ers are easily available, the type of packer used for the 
malware is usually unknown at the point when it is cap-
tured. Suffering from it, an analyst has to identify and 
unpack each time he/she captures an instance. Therefore, 
automatic extraction of the original code could contribute 
to reducing the time required before starting actual analy-
sis, resulting in a drastic increase in efficiency of the entire 
process. We have undertaken research and development of 
a generic unpacking system, with a view to increasing 
analysis efficiency.

Generic unpacking systems have been an active area of 
research up to now[3]‒[9], and they generally perform 
unpacking procedures taking advantage of the following 
characteristic behaviors common to packed programs: 
when a packed program is initiated, it first boots up an 
unpacking routine (decoding code), which reconstructs the 
original code from the packed format and writes it in 

*1 	Software developed with an intention to perform malicious acts
*2 	Among the obfuscation techniques used in malware, this study focuses on those 

related to packing (encryption/compression).
*3 	Analysis to draw relevant information from programming code
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memory as the decoding process proceeds; then the recon-
structed original code is executed. The point from where 
the reconstructed code is executed is called the OEP 
(Original Entry Point).

As described above, every packer starts execution after 
it writes the original code into memory, meaning that the 
original code remains either in written or executed code. 
Detection of the OEP enables the researcher to know the 
position from where the original code starts executing. 
Therefore, detection of the OEP provides a challenge for 
researchers.

Commonly used techniques for detecting written/exe-
cuted code includes the single-stepping execution method 
and the data execution prevention method. The single-
stepping execution method is a two-stage strategy: the 
program is run once followed by instruction-by-instruction*4 
execution, for which the written instruction and address 
are each recorded. For each execution of an instruction, 
the address on which it is written/executed is detected as 
an OEP candidate. One drawback of this technique is the 
very long execution time inevitably associated with instruc-
tion-wise execution. In the data execution prevention 
method, an execution prohibition setting is placed in the 
memory area where a write operation is executed. If an 
instruction in the execution-prohibited memory area is 
invoked for execution, an execution prohibition exception 
is thrown, enabling detection of the write/execution op-
eration. Although this method provides much faster pro-
cessing than the single-stepping execution method, 
information on CPU registers and other elements can be 
obtained only when an exception is thrown. A drawback 
to this technique is the paucity of information that can be 
used to identify the OEP-related instructions among those 
written or executed.

In view of the situation in which a large number of 
malware occurrences are being observed on a daily basis, 
we selected the data execution prevention method because 
of its potential to deliver faster processing. Based on this 
method, we propose a generic unpacking system featuring 
high accuracy for OEP detection. The proposed system 
provides the following two functions.

The first function tries to detect the unpacking routine, 
which consists of the parent instructions that regenerate 
the code to be written to memory and executed. It takes 
advantage of the behavior of the unpacking routine of 
writing the regenerated code in memory. The address of 
the instruction executed immediately after the unpacking 
routine has finished its operations constitutes the most 

probable candidate for the OEP. The second function sorts 
the OEP candidates in the order of likelihood, starting from 
the most probable one. This likelihood-based sequence 
facilitates the routine to find the authentic OEP in the 
shortest steps: when the most probable candidate is found 
to be false, then the routine tries the next in the sequence. 

The generic unpacking method of our own develop-
ment performs a packer identifying routine[10] as the 
initial step of the whole unpacking procedure. If the 
packer identification routine successfully finds a known 
packer, and if the unpacking algorithm corresponding to 
the packer has already been implemented, then the imple-
mentation is used preferentially. If the packer is unknown 
— i.e. not registered in the system – the generic unpacking 
system is used to locate the OEP.

In view of the ever increasing occurrences of malware 
incidents in recent years, we consider that improving the 
efficiency of malware analysis is a challenge of significant 
importance that NICT should face seriously. Research and 
development of a system capable of locating the OEP ac-
curately, combined with the use of conventional systems 
from the viewpoint of practicality, will reduce the burden 
of the analysts who have to cope with malware incidents.

This report consists of the following sections. Section 2 
provides the basic knowledge for understanding the basic 
operations of the packer and fundamentals of the data 
execution prevention method. Section 3 mainly describes 
how a generic unpacking system works. The results of the 
evaluation experiments are given in Section 4, and sum-
marized in Section 5. See also references [10] and [11] for 
further details of the achievements reported here.

2	 Basic knowledge

2.1 	 Packer
The packer is a software tool used for packing (encrypt-

ing and/or compressing) programs. When it packs a target 
program, it also appends an unpacking routine to it, en-
abling the program to self-extract for subsequent execution. 
Figure 1 illustrates the file structure of a program packed 
with UPX (Hello_upx.exe). This packed file, Hello_upx.exe, 
consists of the following sections: PE header, empty section, 
packed program (Hello.exe), and unpacking routine. When 
put into execution, the unpacking routine has the highest 
priority to run. It unpacks the compressed program and 

*4	 “Instruction” in this paper means machine language instructions such as MOV 
and JMP[18].
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lays it out in memory. In this process, the unpacked execut-
able, Hello.exe, is written in the empty section for execu-
tion.

While UPX is an example of a very simple packer, some 
others, such as Themida and ASProtect[12], employ a very 
complex packing algorithm. The unpacking process may 
differ depending on the selection of the packer. Note, 
however, irrespective of the choice of packer, the original 
program is invariably unpacked in memory, followed by 
writing and then execution.

The key challenge for generic unpacking is to devise an 
efficient method to detect the OEP among the array of 
written/executed code, or to extract the original code.

2.2 	 Basis of analysis
When the single-stepping execution method is used, 

the program proceeds in a step-by-step fashion: one in-
struction is executed at a time, followed by a halt and 
disassembly*5. This procedure enables instruction-by-in-
struction acquisition of such information as: the type of 
instruction executed, execution of the sequence of instruc-
tions, how memory is modified, and the contents of CPU 
registers. The single-stepping execution method can be 
realized either in a virtual environment (e.g., Xen[13], 
KVM[14], and QEMU[15]) or by deploying a Dynamic 
Binary Instrumentation (DBI) tool, notably PIN[16] and 
Valgrind[17].

The data execution prevention method is character-
ized by its ability to prohibit the code in a specified 
memory area from running. Some CPUs — typically 
Intel64 and IA-32 architecture[18] — virtually partition 
the memory space into 4096-byte memory pages, and 
manage the behavioral attributes of each page — i.e. write 

enabled/disabled and execution enabled/disabled. Figure 2 
illustrates the mechanism to detect written/executed in-
structions. The entire memory is initially set to the R/X 
(Read-only/eXecutable, namely write inhibited) state. 
Then, as shown in the Figure, a write operation is per-
formed to the memory page Q. This write attempt throws 
a write-inhibited exception, informing the system that the 
attempt was made to the memory page Q. Then the system 
assigns the W/NX (Writable/None-eXecutable, i.e. write-
enabled but execution-disabled) attribute to Q. When an 
attempt is made to execute an instruction in the memory 
page Q, an execution-inhibited exception is thrown, in-
forming the system that the write/execution instruction 
was made to the particular page. Upon acknowledging the 
execution-inhibited exception, the system sets the R/X 
attribute to the memory page Q again. The system can 
obtain the address of an OEP candidate instruction by 
following these steps. Note, however, as this is a page-by-
page memory management scheme, it does not permit 
inhibiting any particular instruction from executing. 
Because acquisition of information (CPU register and 
others) is triggered only by the throw of an exception, the 
amount of information obtainable using this method is 
necessarily smaller than that accessible by the single-
stepping execution method. On the other hand, thanks to 
smaller frequencies of execution halts, this method is 
capable of faster processing than the single-stepping ex-
ecution method.

Fig.F 1	 File structure and behavior of a program packed through 
the use of UPX
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3	 Generic unpacking system

3.1	 Basic idea
The generic unpacking system does not target all the 

packed programs: rather, it is a selective method — it runs 
a packer identification routine[10] in an early stage to find 
out the type of packer used. If it is a known packer and a 
corresponding unpacker is available, the unpacker should 
be used. In general, the unpacker specifically designed to 
meet the characteristics of a packer has better accuracy to 
locate the OEP than a generic unpacking system.

Our generic unpacking system uses the data execution 
prevention method with a view to locating the OEP faster. 
This method, in addition to outputting the address associ-
ated with the instruction that performed a write/execution 
operation, is capable of outputting a set of OEP candidates 
with order of priority (determined by using the following 
two functions). The first of these two functions, after run-
ning of the packed program, examines the written/execut-
ed instructions to identify those that constitute the 
unpacking routine. The role of the unpacking routine, as 
has been explained in Subsection 2.1, is to generate instruc-
tions that are written/executed. The technique used here is 
to detect the parental instruction that generated the writ-
ten/executed instruction using the data execution preven-
tion method, and use it as an unpacking routine instruction. 
The address of the instruction executed immediately after 
the unpacking routine is assumed to be the most probable 
OEP candidate.

The second function searches for the next probable 
OEP candidate under an assumption that the likelihood is 
higher if it is located nearer to the most probable OEP in 
the execution sequence. Based on this idea, the function 
sorts and outputs all of the instruction addresses that were 
written/executed. Figure 3 shows two diagrams illustrating 
case studies to identify the most probable OEP candidate. 

In case 1, the instruction in memory page E is written to 
F, followed by writing it to G as well. Next, based on the 
fact that the instruction in F is executed, all of the instruc-
tions in E are judged to constitute the unpacking routine. 
Subsequently, an instruction in F performs a write opera-
tion to E. In this case, a page is also considered to belong 
to the unpacking routine if its instruction makes a write 
operation to the page that has been judged to be a part of 
the unpacking routine. The idea behind this judgement is 
that the unpacking routine pages share data between each 
other. Lastly, an instruction in G is executed. Here, because 
E and F have been judged to belong to the unpacking 
routine, steps (1) to (4) are considered to be the instruc-
tions executed by the unpacking routine. From all these, 
the address of the next executed instruction, step (5), is 
assumed to be the most probable OEP candidate. In case 2, 
an instruction in K performs a write operation to L and 
M, and an instruction in L is executed subsequently. 
Therefore, K is judged to contain the unpacking routine. 
In case 2, because K is the only page that is judged to 
contain the unpacking routine, the address of the instruc-
tion executed immediately after the completion of instruc-
tions in K, i.e. step (3), presents the most probable OEP 
candidate.

3.2	 Generic unpacking algorithm
Two types of memory page are defined. Suppose an 

instruction A writes data*6 to an arbitrary location in a 
page, and a certain instruction in the page is executed. 
Then the memory page to which the instruction A belongs 
is defined as a “code generating page.” Suppose an instruc-
tion B writes data in a code generating page. Then the 
memory page to which the instruction B belongs is defined 
as a “data sharing page.” In case 1 of Fig.3, E is a code 
generating page and F is a code sharing page. By the same 
token, K in case 2 is a code generating page. Based on the 
reasons described in Subsection 3.1, a code generating page 
and data sharing page are identified as being an unpacking 
routine.

In order to determine the type of a memory page, the 
following steps are taken following the execution of the 
packed program. Each time a write inhibit exception is 
thrown, a pair of addresses — the address of the instruction 
that executed the write operation (hereafter “src”) and the 

Fig.F 3	 A case study of OEP identification (E-G, K-M: memory 
page)
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destination address of the operation (hereafter “dest”) — 
are saved in an array W. In parallel to this, when an execu-
tion inhibit exception is thrown, the address of the 
corresponding instruction is saved in an array X. These 
steps are repeatedly carried out until the execution of the 
packed program comes to an end, or for the duration of 
the pre-configured timeout period. The next step is to 
check for each pair in W, if the memory page to which dest 
belongs coincides with one of the memory pages to which 
any one address in X belongs. If the page is determined, 
the memory page to which the src (which is paired with 
the dest) belongs is assumed to be the code generation page. 
Then a check is made to confirm if the dest writes data, for 
each pair in W, to the code generation page. If true, the 
memory page to which the src belongs is assumed to be 
the data sharing page. Next, a check is made if each address 
in X belongs either to the code generation page, or to the 
data sharing page. If true, the address is assumed to be the 
address of the unpacking routine.

Lastly, the addresses in X and all the src’s in W are si-
multaneously sorted to determine the address of the un-
packing routine. The address in X that immediately follows 
it is assumed to be the most probable OEP candidate.

To define the priority order for OEP candidates, all the 
addresses in X are arranged in the order of the execution 
sequence, creating an array X=(X0, Xi,…,Xi,…,Xp,…,Xl-1,…), 
where Xp is the address of the most probable OEP candi-
date, p is its index, Xl-1 is the address of the last executed 
instruction, l is the address number in x, and i=0,1,2,…, 
l-1.
Then x is sorted using the following formula:

j 
0                                          (i  p)
2 p i  (1 sign(p i)) / 2  (otherwise)






� (1)

where j is the index for xi after sorting, |･| represents an 
absolute value, and sign (・) represents a sign function that 
returns -1 if the input is negative, and +1 otherwise. In 
summary, x is sorted to form an array (Xp, Xp-1, Xp＋1, Xp-2, 
Xp-2,…). For example, if p is set to 2 when x is represented 
by an array (x0, x1, x2, x3, x4, x5, x6), the sorted result 
would look like (x2, x1, x3, x0, x4, x5, x6).

In case 1 of Fig.3, the address of the step (5) instruction 
is assumed to be the address of the most probable OEP 
candidate. This comes from the fact that step (4) is the last 
address of the unpacking routine, and step (5) represents 
the instruction executed immediately following it. In case 
2 of Fig.3, the address of the step (3) instruction is assumed 
to be the address of the most probable OEP candidate.

4	 Evaluation experiment

4.1	 Data sets and environment for the 
experiment

Malware samples for evaluation experiments, 35 in all, 
were selected in the following fashion. Analysis of the 
hundreds of thousands of malware samples we have col-
lected in the past few years using the “Antivirus software” 
(Symantec) revealed that they can be classified into any one 
of 135 categories. The categories include such species as 
“Backdoor.IRC.Bot” and “Unknown.” Among them, we 
selected 35 categories in the order of malware population 
(note, however, that “unknown” is excluded). The next step 
was the examination to determine if the samples of each 
category were packed. We used PEID and the method 
proposed by Lyda et al.[19] in this procedure. PEID is a 
signature based tool that determines if a program is packed. 
On the other hand, Lyda et al.’s method uses the entropy 
principle to determine if a program is packed or not. 
Subsequently, random selection was made to extract one 
— excluding packed ones — from each category, resulting 
in a set of 35 samples. The hash value (SHA256[20] of each 
sample was calculated to make sure that none coincide with 
others. Then all 35 samples were packed using 25 types of 
packers, and the samples that were found to be inoperative 
were discarded. The remaining packed samples — 753 in 
all — served for the experiment. Table 1 lists the names of 
the packers used in this experiment. We made sample se-
lection from the un-packed ones for reliable OEP determi-
nation.

To provide the environment of the experiment, 
Windows XP was installed as a guest OS in VirtualBox[21]. 
Each of the samples was unpacked on this guest OS to 
guarantee accuracy of the generic unpacking system. Note 
that the packer identification function described in 
Subsection 3.1 “Basic Idea” was not used. Unpacking was 
carried out solely by applying the algorithms described in 
Subsection 3.2.

4.2	 Experimental Results
Table 1 summarizes the results of the data execution 

prevention method: column 4 shows the average of the 
number of addresses corresponding to the written/execut-
ed instructions, and column 5 shows the standard devia-
tion. For example, ASPack 2.33 was used to pack 35 
samples, and generated on average 9.23 instructions that 
were written/executed. The standard deviation was 5.14.

Our generic unpacking system sorts the addresses of 
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written/executed instructions in the order of OEP likeli-
hood. We considered the unpacking was successful if the 
authentic OEP fell within the n-th on the list arranged in 
the order of likelihood. We examined the ratio of success-
fully unpacked samples, with varied n values, for each 
packer’ samples. This evaluation index is called Recall[22]
[23]. The Recall values for each packer are listed in Table 1. 
For example, in case n=2 for ASPack 2.33, the Recall value 
becomes 97%, indicating successful unpacking for 34 
samples (97% of the total sample number #).

The column headed by “n=1” in Table 1 indicates that 
19 packers achieved a ≧90% success ratio of unpacking. 
The value n=1 means that the most probable candidate was 
indeed the OEP. The column headed by “n=8” in Table 1 
indicates that 23 packers achieved a ≧97% success ratio of 
unpacking. That is, the authentic OEP could be reached 
within the 8th unpacking attempt on the sorted candidate 

list. See reference [13] for comparison with other systems. 
It also proposes a Recall improvement method applicable 
to ASProtect 1.7.

A measurement was made to evaluate the level of 
performance overhead produced by this system using a PC 
installed with an Intel Core i7 3.4 GHz CPU. A sample was 
run on this system without using the generic unpacking 
system, and the time required from the start to end of the 
process was measured. This process was repeated 5 times, 
and the average was calculated. Subsequently, the same 
sample was run on this system using the generic unpacking 
system, and the time required from the start to end of the 
process was measured. This process was also repeated 5 
times, and the average was calculated. The sample selected 
for this experiment was Trojan.Panddos. Note, however, for 
the experiment that used PKLITE32, a different sample, 
Trojan.Usugelgen 3, was selected instead, because the 

Packer OEP candidates Recall (%)

No.  Name # AVG SD n = 1 2 4 6 8 16 32

1  ASPack 2.33 35 9.23 5.14 94 97 100 －  －  － － 
2  ASProtect 1.70 35 67.20 12.66 37 40 43 43 43 43 86

3  exe32pack 1.42 trial 10 7.00 2.86 90 100  － －  －  － － 
4  Exe Stealth 2.73 trial 35 9.43 6.23 97 97 97 100  －  － － 
5  Ezip 1.0 35 10.00 6.03 94 97 97 100  －  － － 
6  FSG 2.0 34 8.76 5.37 94 97 100 －  －  － － 
7  Mew11SE 1.2 33 11.42 7.50 94 97 97 100  －  － － 
8  MoleBoxPro 2.6.4 trial    35 23.29 5.16 0 3 6 37 97 100 － 
9  mpress 2.19 31 9.87 4.46 94 97 100 －  －  － － 

10  nPack 1.1.300 33 9.39 5.27 97 100  － －  －  － － 
11  NsPack 3.7 trial 34 10.00 6.15 94 97 97 100  －  － － 
12  Packman 1.0 35 9.29 5.08 97 100  － －  －  － － 
13  PECompact 2.79 trial     34 10.94 6.05 94 97 97 100  －  － － 
14  PESpin 1.33 34 13.12 5.51 94 97 97 97 97 97 100

15  Petite 1.4 18 11.56 7.10 56 61 94 100  －  － － 
16  PKLITE32 1.1             14 9.57 5.43 14 100  － －  －  － － 
17  RLPack 1.20              34 10.00 5.20 94 97 100 －  －  － － 
18  SimplePack 1.0           33 10.00 6.14 94 97 97 100  －  － － 
19  tElock 0.99              19 8.42 5.32 95 100  － －  －  － － 
20  Themida 2.2.7.0          32 300.47 16.57 0 0 3 44 75 97 97

21  Upack 0.399              26 11.73 6.18 88 92 96 100  －  － － 
22  UPX 3.08                 34 10.09 6.05 94 97 97 100  －  － － 
23  WinUpack 0.31            33 10.21 6.17 94 97 97 100  －  － － 
24  WWPack32 1.20 trial      22 9.18 4.41 95 100  － －  －  － － 
25  yoda’s protector 1.02    35 14.71 5.58 97 97 97 97 97 100 － 

Total 753 Average 81 85 87 92 96 97 99

TableT 1　Results from the experiments (‘#’ designates the number of samples, ‘－‘ indicates 100%)
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packer failed to unpack Trojan.Panddos.
The third column in Table 2, “Required time without 

using the system” (hereafter referred to as “original time”), 
shows the measured time without using the system. The 
fourth column “Time difference: With and without using 
the system” lists the measured time differences between the 
two modes of running the process, i.e. with or without 
using the system. The fifth column lists the increase ratios 
(%) of the running time. It is well understood from the 
table that time elongation due to the use of the generic 
unpacking system is commonly very small. For several 
packers, such as exe32.pack, the time required to complete 
the process was even reduced by using the system.

The time difference between the two operation modes 
hit the largest value for Themida, indicating an increase by 
41 msec. This can be ascribed to Themida’s characteristics: 

the unpacking routine very frequently throws write/execu-
tion exceptions, creating 27 msec of overhead for our 
system to extract the written/executed instructions. A re-
sidual 14msec was consumed for sorting the written/exe-
cuted instructions (including the time required to determine 
the most probable OEP candidate). For other packers, the 
time required to complete the sorting of written/executed 
instructions fell invariably within 2 msec. From these re-
sults, it can be concluded that the overhead generated due 
to the use of the generic unpacking system is very small. 
With the use of the system, the sum of the time required 
to complete the process for 753 samples amounted to 1,061 
seconds, thus, the per-sample average was 1.41 seconds. In 
conclusion, the researcher/engineer has to wait only 1 or 2 
seconds before he/she can obtain the OEP candidate for 
one sample.

5	 Conclusion

We have undertaken research and development of ge-
neric unpacking systems, an overview of which is pre-
sented here. In the face of the ever-increasing number and 
variety of malware attacks, stepping up the efficiency of 
malware analysis is urgently needed. The generic unpack-
ing system provides an enabling technology to attain sig-
nificantly higher efficiency in the analysis.

We are planning to continue research to cope with the 
threats of malware. In addition to aiming at highly efficient 
analysis, we will also identify other challenges to solve 
through collecting malware instances, detailed analysis, 
and derivation of optimal measures. Major contents and 
achievements described in this report have been published 
elsewhere: see reference [10] (packer identification) and 
[11] (generic unpacking).
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