
1	 Introduction

Cyberattacks are taking place each and every day, and
their frequency is growing steadily. Many of the cyberat-
tacks make use of malware. For example, banking malware,
a type of cyber threat, has become widely known in recent
years. This malware gains unauthorized access to a PC and
acquires online banking information for siphoning money
from bank accounts. Ransomware is also rampant: it en-
crypts documents on a PC, preventing them from being
read. A PC infected with ransomware may display a screen
showing the steps to send money to the attacker, suggesting
that the user may obtain the key to decode the encrypted
files if he/she sends money. The victim, who desperately
needs the correct key to enable access to the files, has no
other option than to send money. However, the transmis-
sion of money is no guarantee at all that he/she will receive
the correct key. To prevent infection by malware, or, to
enable quick recovery from it, the introduction of effective
measures is urgently needed to capture, analyze, and dis-
infect it. Successful analysis of malware sheds light on its
infection vectors and behaviors, enabling appropriate
measures to be taken. We have conducted study in this
area, placing special focus on attaining greater analysis
efficiency. For obstructing analysis*3, many instances of
malware are known to be packed (compressed and/or en-
crypted). Any attempt to analyze malware in code analysis,
therefore, needs to identify the type of packing and devise

procedures to unpack it, before extracting the malware
code (hereafter referred to as the “original code”). The
process may be quite time consuming. On the other hand,
malware authors can pack the malware almost effortlessly
using such packing tools (hereafter referred to as a
“packer”) as UPX[1] and Themida[2]. Because many pack-
ers are easily available, the type of packer used for the
malware is usually unknown at the point when it is cap-
tured. Suffering from it, an analyst has to identify and
unpack each time he/she captures an instance. Therefore,
automatic extraction of the original code could contribute
to reducing the time required before starting actual analy-
sis, resulting in a drastic increase in efficiency of the entire
process. We have undertaken research and development of
a generic unpacking system, with a view to increasing
analysis efficiency.

Generic unpacking systems have been an active area of
research up to now[3]‒[9], and they generally perform
unpacking procedures taking advantage of the following
characteristic behaviors common to packed programs:
when a packed program is initiated, it first boots up an
unpacking routine (decoding code), which reconstructs the
original code from the packed format and writes it in

*1 	Software developed with an intention to perform malicious acts
*2 	Among the obfuscation techniques used in malware, this study focuses on those

related to packing (encryption/compression).
*3 	Analysis to draw relevant information from programming code

5	Cybersecurity Technologies: Countermeasures Against
Emerging Threats
5-1 Technology for Supporting Obfuscated-Malware Analysis

Ryoichi ISAWA and Tao BAN

Many malware*1 specimens emerge from the Internet every day, making it necessary for analysts
to capture those specimens, analyze them, and create countermeasures more effectively. Our
research focuses on the second step, which means how to further effective malware analysis. To
achieve this, one of the most important challenges is generic unpacking, which can automatically
extract the original binary of packed (compressed and/or encrypted)*2 malware without depending
on the applied packing algorithms. Generic unpacking is a key research topic because most
specimens are packed to shield them from code analysis. This paper presents an effective generic-
unpacking system.

Title:J2016S-05-01.indd　p113　2017/03/15/ 水 09:14:20

113

5 Cybersecurity Technologies: Countermeasures Against Emerging Threats

memory as the decoding process proceeds; then the recon-
structed original code is executed. The point from where
the reconstructed code is executed is called the OEP
(Original Entry Point).

As described above, every packer starts execution after
it writes the original code into memory, meaning that the
original code remains either in written or executed code.
Detection of the OEP enables the researcher to know the
position from where the original code starts executing.
Therefore, detection of the OEP provides a challenge for
researchers.

Commonly used techniques for detecting written/exe-
cuted code includes the single-stepping execution method
and the data execution prevention method. The single-
stepping execution method is a two-stage strategy: the
program is run once followed by instruction-by-instruction*4
execution, for which the written instruction and address
are each recorded. For each execution of an instruction,
the address on which it is written/executed is detected as
an OEP candidate. One drawback of this technique is the
very long execution time inevitably associated with instruc-
tion-wise execution. In the data execution prevention
method, an execution prohibition setting is placed in the
memory area where a write operation is executed. If an
instruction in the execution-prohibited memory area is
invoked for execution, an execution prohibition exception
is thrown, enabling detection of the write/execution op-
eration. Although this method provides much faster pro-
cessing than the single-stepping execution method,
information on CPU registers and other elements can be
obtained only when an exception is thrown. A drawback
to this technique is the paucity of information that can be
used to identify the OEP-related instructions among those
written or executed.

In view of the situation in which a large number of
malware occurrences are being observed on a daily basis,
we selected the data execution prevention method because
of its potential to deliver faster processing. Based on this
method, we propose a generic unpacking system featuring
high accuracy for OEP detection. The proposed system
provides the following two functions.

The first function tries to detect the unpacking routine,
which consists of the parent instructions that regenerate
the code to be written to memory and executed. It takes
advantage of the behavior of the unpacking routine of
writing the regenerated code in memory. The address of
the instruction executed immediately after the unpacking
routine has finished its operations constitutes the most

probable candidate for the OEP. The second function sorts
the OEP candidates in the order of likelihood, starting from
the most probable one. This likelihood-based sequence
facilitates the routine to find the authentic OEP in the
shortest steps: when the most probable candidate is found
to be false, then the routine tries the next in the sequence.

The generic unpacking method of our own develop-
ment performs a packer identifying routine[10] as the
initial step of the whole unpacking procedure. If the
packer identification routine successfully finds a known
packer, and if the unpacking algorithm corresponding to
the packer has already been implemented, then the imple-
mentation is used preferentially. If the packer is unknown
— i.e. not registered in the system – the generic unpacking
system is used to locate the OEP.

In view of the ever increasing occurrences of malware
incidents in recent years, we consider that improving the
efficiency of malware analysis is a challenge of significant
importance that NICT should face seriously. Research and
development of a system capable of locating the OEP ac-
curately, combined with the use of conventional systems
from the viewpoint of practicality, will reduce the burden
of the analysts who have to cope with malware incidents.

This report consists of the following sections. Section 2
provides the basic knowledge for understanding the basic
operations of the packer and fundamentals of the data
execution prevention method. Section 3 mainly describes
how a generic unpacking system works. The results of the
evaluation experiments are given in Section 4, and sum-
marized in Section 5. See also references [10] and [11] for
further details of the achievements reported here.

2	 Basic knowledge

2.1 	 Packer
The packer is a software tool used for packing (encrypt-

ing and/or compressing) programs. When it packs a target
program, it also appends an unpacking routine to it, en-
abling the program to self-extract for subsequent execution.
Figure 1 illustrates the file structure of a program packed
with UPX (Hello_upx.exe). This packed file, Hello_upx.exe,
consists of the following sections: PE header, empty section,
packed program (Hello.exe), and unpacking routine. When
put into execution, the unpacking routine has the highest
priority to run. It unpacks the compressed program and

*4	 “Instruction” in this paper means machine language instructions such as MOV
and JMP[18].

114　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-05-01.indd　p114　2017/03/15/ 水 09:14:20

5 Cybersecurity Technologies: Countermeasures Against Emerging Threats

lays it out in memory. In this process, the unpacked execut-
able, Hello.exe, is written in the empty section for execu-
tion.

While UPX is an example of a very simple packer, some
others, such as Themida and ASProtect[12], employ a very
complex packing algorithm. The unpacking process may
differ depending on the selection of the packer. Note,
however, irrespective of the choice of packer, the original
program is invariably unpacked in memory, followed by
writing and then execution.

The key challenge for generic unpacking is to devise an
efficient method to detect the OEP among the array of
written/executed code, or to extract the original code.

2.2 	 Basis of analysis
When the single-stepping execution method is used,

the program proceeds in a step-by-step fashion: one in-
struction is executed at a time, followed by a halt and
disassembly*5. This procedure enables instruction-by-in-
struction acquisition of such information as: the type of
instruction executed, execution of the sequence of instruc-
tions, how memory is modified, and the contents of CPU
registers. The single-stepping execution method can be
realized either in a virtual environment (e.g., Xen[13],
KVM[14], and QEMU[15]) or by deploying a Dynamic
Binary Instrumentation (DBI) tool, notably PIN[16] and
Valgrind[17].

The data execution prevention method is character-
ized by its ability to prohibit the code in a specified
memory area from running. Some CPUs — typically
Intel64 and IA-32 architecture[18] — virtually partition
the memory space into 4096-byte memory pages, and
manage the behavioral attributes of each page — i.e. write

enabled/disabled and execution enabled/disabled. Figure 2
illustrates the mechanism to detect written/executed in-
structions. The entire memory is initially set to the R/X
(Read-only/eXecutable, namely write inhibited) state.
Then, as shown in the Figure, a write operation is per-
formed to the memory page Q. This write attempt throws
a write-inhibited exception, informing the system that the
attempt was made to the memory page Q. Then the system
assigns the W/NX (Writable/None-eXecutable, i.e. write-
enabled but execution-disabled) attribute to Q. When an
attempt is made to execute an instruction in the memory
page Q, an execution-inhibited exception is thrown, in-
forming the system that the write/execution instruction
was made to the particular page. Upon acknowledging the
execution-inhibited exception, the system sets the R/X
attribute to the memory page Q again. The system can
obtain the address of an OEP candidate instruction by
following these steps. Note, however, as this is a page-by-
page memory management scheme, it does not permit
inhibiting any particular instruction from executing.
Because acquisition of information (CPU register and
others) is triggered only by the throw of an exception, the
amount of information obtainable using this method is
necessarily smaller than that accessible by the single-
stepping execution method. On the other hand, thanks to
smaller frequencies of execution halts, this method is
capable of faster processing than the single-stepping ex-
ecution method.

Fig.F 1	 File structure and behavior of a program packed through
the use of UPX

Code section

Data section

PE header

Code section

Data section

Loading the
original binary

Empty section

PE header

Packed binary

Unpacking
Routine

Hello_upx.exe

Hello.exe

Fig.F 2	 Flag state transitions (R/X: Read-only(write-inhibited)/
eXecutable, W/NX:Writable/non-eXecutable)

P

...

Q

R/X

W/NX

(1) Write

(3) Execute

Memory pages Q’s flags

(2)

(4)

*5	 Process to convert binary data into an instruction

Title:J2016S-05-01.indd　p115　2017/03/15/ 水 09:14:20

115

5-1 Technology for Supporting Obfuscated-Malware Analysis

3	 Generic unpacking system

3.1	 Basic idea
The generic unpacking system does not target all the

packed programs: rather, it is a selective method — it runs
a packer identification routine[10] in an early stage to find
out the type of packer used. If it is a known packer and a
corresponding unpacker is available, the unpacker should
be used. In general, the unpacker specifically designed to
meet the characteristics of a packer has better accuracy to
locate the OEP than a generic unpacking system.

Our generic unpacking system uses the data execution
prevention method with a view to locating the OEP faster.
This method, in addition to outputting the address associ-
ated with the instruction that performed a write/execution
operation, is capable of outputting a set of OEP candidates
with order of priority (determined by using the following
two functions). The first of these two functions, after run-
ning of the packed program, examines the written/execut-
ed instructions to identify those that constitute the
unpacking routine. The role of the unpacking routine, as
has been explained in Subsection 2.1, is to generate instruc-
tions that are written/executed. The technique used here is
to detect the parental instruction that generated the writ-
ten/executed instruction using the data execution preven-
tion method, and use it as an unpacking routine instruction.
The address of the instruction executed immediately after
the unpacking routine is assumed to be the most probable
OEP candidate.

The second function searches for the next probable
OEP candidate under an assumption that the likelihood is
higher if it is located nearer to the most probable OEP in
the execution sequence. Based on this idea, the function
sorts and outputs all of the instruction addresses that were
written/executed. Figure 3 shows two diagrams illustrating
case studies to identify the most probable OEP candidate.

In case 1, the instruction in memory page E is written to
F, followed by writing it to G as well. Next, based on the
fact that the instruction in F is executed, all of the instruc-
tions in E are judged to constitute the unpacking routine.
Subsequently, an instruction in F performs a write opera-
tion to E. In this case, a page is also considered to belong
to the unpacking routine if its instruction makes a write
operation to the page that has been judged to be a part of
the unpacking routine. The idea behind this judgement is
that the unpacking routine pages share data between each
other. Lastly, an instruction in G is executed. Here, because
E and F have been judged to belong to the unpacking
routine, steps (1) to (4) are considered to be the instruc-
tions executed by the unpacking routine. From all these,
the address of the next executed instruction, step (5), is
assumed to be the most probable OEP candidate. In case 2,
an instruction in K performs a write operation to L and
M, and an instruction in L is executed subsequently.
Therefore, K is judged to contain the unpacking routine.
In case 2, because K is the only page that is judged to
contain the unpacking routine, the address of the instruc-
tion executed immediately after the completion of instruc-
tions in K, i.e. step (3), presents the most probable OEP
candidate.

3.2	 Generic unpacking algorithm
Two types of memory page are defined. Suppose an

instruction A writes data*6 to an arbitrary location in a
page, and a certain instruction in the page is executed.
Then the memory page to which the instruction A belongs
is defined as a “code generating page.” Suppose an instruc-
tion B writes data in a code generating page. Then the
memory page to which the instruction B belongs is defined
as a “data sharing page.” In case 1 of Fig.3, E is a code
generating page and F is a code sharing page. By the same
token, K in case 2 is a code generating page. Based on the
reasons described in Subsection 3.1, a code generating page
and data sharing page are identified as being an unpacking
routine.

In order to determine the type of a memory page, the
following steps are taken following the execution of the
packed program. Each time a write inhibit exception is
thrown, a pair of addresses — the address of the instruction
that executed the write operation (hereafter “src”) and the

Fig.F 3	 A case study of OEP identification (E-G, K-M: memory
page)

E

F

G

K

L

M

(1) Write

(2) Write

(3) Execute
(4) Write

(5) Execute

Case 1 Case 2

(1) Write

(2) Write

(3) Execute

(4) Execute

*6 	Generically called “data,” because it is often difficult to draw a clear distinction
between an instruction and a value of a program variable at the moment of
writing.

116　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-05-01.indd　p116　2017/03/15/ 水 09:14:20

5 Cybersecurity Technologies: Countermeasures Against Emerging Threats

destination address of the operation (hereafter “dest”) —
are saved in an array W. In parallel to this, when an execu-
tion inhibit exception is thrown, the address of the
corresponding instruction is saved in an array X. These
steps are repeatedly carried out until the execution of the
packed program comes to an end, or for the duration of
the pre-configured timeout period. The next step is to
check for each pair in W, if the memory page to which dest
belongs coincides with one of the memory pages to which
any one address in X belongs. If the page is determined,
the memory page to which the src (which is paired with
the dest) belongs is assumed to be the code generation page.
Then a check is made to confirm if the dest writes data, for
each pair in W, to the code generation page. If true, the
memory page to which the src belongs is assumed to be
the data sharing page. Next, a check is made if each address
in X belongs either to the code generation page, or to the
data sharing page. If true, the address is assumed to be the
address of the unpacking routine.

Lastly, the addresses in X and all the src’s in W are si-
multaneously sorted to determine the address of the un-
packing routine. The address in X that immediately follows
it is assumed to be the most probable OEP candidate.

To define the priority order for OEP candidates, all the
addresses in X are arranged in the order of the execution
sequence, creating an array X=(X0, Xi,…,Xi,…,Xp,…,Xl-1,…),
where Xp is the address of the most probable OEP candi-
date, p is its index, Xl-1 is the address of the last executed
instruction, l is the address number in x, and i=0,1,2,…,
l-1.
Then x is sorted using the following formula:

j 
0 (i  p)
2 p i  (1 sign(p i)) / 2 (otherwise)






� (1)

where j is the index for xi after sorting, |･| represents an
absolute value, and sign (・) represents a sign function that
returns -1 if the input is negative, and +1 otherwise. In
summary, x is sorted to form an array (Xp, Xp-1, Xp＋1, Xp-2,
Xp-2,…). For example, if p is set to 2 when x is represented
by an array (x0, x1, x2, x3, x4, x5, x6), the sorted result
would look like (x2, x1, x3, x0, x4, x5, x6).

In case 1 of Fig.3, the address of the step (5) instruction
is assumed to be the address of the most probable OEP
candidate. This comes from the fact that step (4) is the last
address of the unpacking routine, and step (5) represents
the instruction executed immediately following it. In case
2 of Fig.3, the address of the step (3) instruction is assumed
to be the address of the most probable OEP candidate.

4	 Evaluation experiment

4.1	 Data sets and environment for the
experiment

Malware samples for evaluation experiments, 35 in all,
were selected in the following fashion. Analysis of the
hundreds of thousands of malware samples we have col-
lected in the past few years using the “Antivirus software”
(Symantec) revealed that they can be classified into any one
of 135 categories. The categories include such species as
“Backdoor.IRC.Bot” and “Unknown.” Among them, we
selected 35 categories in the order of malware population
(note, however, that “unknown” is excluded). The next step
was the examination to determine if the samples of each
category were packed. We used PEID and the method
proposed by Lyda et al.[19] in this procedure. PEID is a
signature based tool that determines if a program is packed.
On the other hand, Lyda et al.’s method uses the entropy
principle to determine if a program is packed or not.
Subsequently, random selection was made to extract one
— excluding packed ones — from each category, resulting
in a set of 35 samples. The hash value (SHA256[20] of each
sample was calculated to make sure that none coincide with
others. Then all 35 samples were packed using 25 types of
packers, and the samples that were found to be inoperative
were discarded. The remaining packed samples — 753 in
all — served for the experiment. Table 1 lists the names of
the packers used in this experiment. We made sample se-
lection from the un-packed ones for reliable OEP determi-
nation.

To provide the environment of the experiment,
Windows XP was installed as a guest OS in VirtualBox[21].
Each of the samples was unpacked on this guest OS to
guarantee accuracy of the generic unpacking system. Note
that the packer identification function described in
Subsection 3.1 “Basic Idea” was not used. Unpacking was
carried out solely by applying the algorithms described in
Subsection 3.2.

4.2	 Experimental Results
Table 1 summarizes the results of the data execution

prevention method: column 4 shows the average of the
number of addresses corresponding to the written/execut-
ed instructions, and column 5 shows the standard devia-
tion. For example, ASPack 2.33 was used to pack 35
samples, and generated on average 9.23 instructions that
were written/executed. The standard deviation was 5.14.

Our generic unpacking system sorts the addresses of

Title:J2016S-05-01.indd　p117　2017/03/15/ 水 09:14:20

117

5-1 Technology for Supporting Obfuscated-Malware Analysis

written/executed instructions in the order of OEP likeli-
hood. We considered the unpacking was successful if the
authentic OEP fell within the n-th on the list arranged in
the order of likelihood. We examined the ratio of success-
fully unpacked samples, with varied n values, for each
packer’ samples. This evaluation index is called Recall[22]
[23]. The Recall values for each packer are listed in Table 1.
For example, in case n=2 for ASPack 2.33, the Recall value
becomes 97%, indicating successful unpacking for 34
samples (97% of the total sample number #).

The column headed by “n=1” in Table 1 indicates that
19 packers achieved a ≧90% success ratio of unpacking.
The value n=1 means that the most probable candidate was
indeed the OEP. The column headed by “n=8” in Table 1
indicates that 23 packers achieved a ≧97% success ratio of
unpacking. That is, the authentic OEP could be reached
within the 8th unpacking attempt on the sorted candidate

list. See reference [13] for comparison with other systems.
It also proposes a Recall improvement method applicable
to ASProtect 1.7.

A measurement was made to evaluate the level of
performance overhead produced by this system using a PC
installed with an Intel Core i7 3.4 GHz CPU. A sample was
run on this system without using the generic unpacking
system, and the time required from the start to end of the
process was measured. This process was repeated 5 times,
and the average was calculated. Subsequently, the same
sample was run on this system using the generic unpacking
system, and the time required from the start to end of the
process was measured. This process was also repeated 5
times, and the average was calculated. The sample selected
for this experiment was Trojan.Panddos. Note, however, for
the experiment that used PKLITE32, a different sample,
Trojan.Usugelgen 3, was selected instead, because the

Packer OEP candidates Recall (%)

No. Name # AVG SD n = 1 2 4 6 8 16 32

1 ASPack 2.33 35 9.23 5.14 94 97 100 － － － －
2 ASProtect 1.70 35 67.20 12.66 37 40 43 43 43 43 86

3 exe32pack 1.42 trial 10 7.00 2.86 90 100 － － － － －
4 Exe Stealth 2.73 trial 35 9.43 6.23 97 97 97 100 － － －
5 Ezip 1.0 35 10.00 6.03 94 97 97 100 － － －
6 FSG 2.0 34 8.76 5.37 94 97 100 － － － －
7 Mew11SE 1.2 33 11.42 7.50 94 97 97 100 － － －
8 MoleBoxPro 2.6.4 trial 35 23.29 5.16 0 3 6 37 97 100 －
9 mpress 2.19 31 9.87 4.46 94 97 100 － － － －

10 nPack 1.1.300 33 9.39 5.27 97 100 － － － － －
11 NsPack 3.7 trial 34 10.00 6.15 94 97 97 100 － － －
12 Packman 1.0 35 9.29 5.08 97 100 － － － － －
13 PECompact 2.79 trial 34 10.94 6.05 94 97 97 100 － － －
14 PESpin 1.33 34 13.12 5.51 94 97 97 97 97 97 100

15 Petite 1.4 18 11.56 7.10 56 61 94 100 － － －
16 PKLITE32 1.1 14 9.57 5.43 14 100 － － － － －
17 RLPack 1.20 34 10.00 5.20 94 97 100 － － － －
18 SimplePack 1.0 33 10.00 6.14 94 97 97 100 － － －
19 tElock 0.99 19 8.42 5.32 95 100 － － － － －
20 Themida 2.2.7.0 32 300.47 16.57 0 0 3 44 75 97 97

21 Upack 0.399 26 11.73 6.18 88 92 96 100 － － －
22 UPX 3.08 34 10.09 6.05 94 97 97 100 － － －
23 WinUpack 0.31 33 10.21 6.17 94 97 97 100 － － －
24 WWPack32 1.20 trial 22 9.18 4.41 95 100 － － － － －
25 yoda’s protector 1.02 35 14.71 5.58 97 97 97 97 97 100 －

Total 753 Average 81 85 87 92 96 97 99

TableT 1　Results from the experiments (‘#’ designates the number of samples, ‘－‘ indicates 100%)

118　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-05-01.indd　p118　2017/03/15/ 水 09:14:20

5 Cybersecurity Technologies: Countermeasures Against Emerging Threats

packer failed to unpack Trojan.Panddos.
The third column in Table 2, “Required time without

using the system” (hereafter referred to as “original time”),
shows the measured time without using the system. The
fourth column “Time difference: With and without using
the system” lists the measured time differences between the
two modes of running the process, i.e. with or without
using the system. The fifth column lists the increase ratios
(%) of the running time. It is well understood from the
table that time elongation due to the use of the generic
unpacking system is commonly very small. For several
packers, such as exe32.pack, the time required to complete
the process was even reduced by using the system.

The time difference between the two operation modes
hit the largest value for Themida, indicating an increase by
41 msec. This can be ascribed to Themida’s characteristics:

the unpacking routine very frequently throws write/execu-
tion exceptions, creating 27 msec of overhead for our
system to extract the written/executed instructions. A re-
sidual 14msec was consumed for sorting the written/exe-
cuted instructions (including the time required to determine
the most probable OEP candidate). For other packers, the
time required to complete the sorting of written/executed
instructions fell invariably within 2 msec. From these re-
sults, it can be concluded that the overhead generated due
to the use of the generic unpacking system is very small.
With the use of the system, the sum of the time required
to complete the process for 753 samples amounted to 1,061
seconds, thus, the per-sample average was 1.41 seconds. In
conclusion, the researcher/engineer has to wait only 1 or 2
seconds before he/she can obtain the OEP candidate for
one sample.

5	 Conclusion

We have undertaken research and development of ge-
neric unpacking systems, an overview of which is pre-
sented here. In the face of the ever-increasing number and
variety of malware attacks, stepping up the efficiency of
malware analysis is urgently needed. The generic unpack-
ing system provides an enabling technology to attain sig-
nificantly higher efficiency in the analysis.

We are planning to continue research to cope with the
threats of malware. In addition to aiming at highly efficient
analysis, we will also identify other challenges to solve
through collecting malware instances, detailed analysis,
and derivation of optimal measures. Major contents and
achievements described in this report have been published
elsewhere: see reference [10] (packer identification) and
[11] (generic unpacking).

ReferenceR
	 1	 M. F. Oberhumer, L. Molnar, and J. F. Reiser, “UPX: Ultimate Packer for eXe-

cutables,” available at http://upx.sourceforge.net/, (Last access: April 21st, 2016).
	 2	 Oreans Technologies, “Themida,” available at http://www.oreans.com/themida.

php, (Last access: April 21st, 2016).
	 3	 P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, “PolyUnpack:

Automating the Hidden-Code Extraction of Unpack- Executing Malware,”
Proceedings of the 22nd Annual Computer Se- curity Applications Conference
(ACSAC’06), pp.289–300, 2006.

	 4	 M.G. Kang, P. Poosankam, and H. Yin, “Renovo: A hidden code ex- tractor for
packed executables,” Proceedings of the 5th ACM work- shop on Recurring
Malcode (WORM’07), New York, NY, USA, pp.46–53, ACM, 2007.

	 5	 A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware Analysis via
Hardware Virtualization Extensions,” Proceedings of the 15th ACM Conference
on Computer and Communications Security (CCS’08), New York, NY, USA,

TableT 2　Overhead associated with generic unpacking systems

Packers used for
samples

Size
(KB)

Original time
(msec)

Time margine
(msec) (%)

ASPack 29 103 5 4.9

ASProtect 176 153 5 3.3

exe32pack 30 103 -3 -2.9

Exe Stealth 69 99 13 13.1

Ezip 69 101 4 4.0

FSG 24 100 -1 -1.0

Mew11SE 24 102 5 4.9

MoleBoxPro 94 119 12 10.1

mpress 26 109 -1 -0.9

nPack 29 98 9 9.2

NsPack 25 100 12 12.0

Packman 24 94 9 9.6

PECompact 26 107 -2 -1.9

PESpin 47 130 3 2.3

Petite 31 99 4 4.0

PKLITE32 111 36 6 16.7

RLPack 24 97 4 4.1

SimplePack 25 98 0 0.0

tElock 38 107 5 4.7

Themida 1184 1220 41 3.4

Upack 22 107 5 4.7

UPX 26 93 8 8.6

WinUpack 22 103 12 11.7

WWPack32 36 103 5 4.9

yoda’s protector 44 6399 33 0.5

Title:J2016S-05-01.indd　p119　2017/03/15/ 水 09:14:20

119

5-1 Technology for Supporting Obfuscated-Malware Analysis

pp.51–62, ACM, 2008.
	 6	 Y. Kawakoya, M. Iwamura, and M. Itoh, “Memory behavior-based automatic

malware unpacking in stealth debugging environment,” Proceedings of the 5th
International Conference on Malicious and Unwanted Software (MALWARE’10),
pp.39–46, 2010.

	 7	 H.C. Kim, T. Orii, K. Yoshioka, D. Inoue, J. Song, M. Eto, J. Shikata,
T. Matsumoto, and K. Nakao, “An Empirical Evaluation of an Unpacking
Method Implemented with Dynamic Binary Instrumentation,” IEICE Trans. Inf.
& Syst., vol.94-D, no.9, pp.1778–1791, 2011.

	 8	 L. Martignoni, M. Christodorescu, and S. Jha, “OmniUnpack: Fast, Generic,
and Safe Unpacking of Malware,” Proceedings of the 23rd Annual Computer
Security Applications Conference (ACSAC’07), pp.431–441, 2007.

	 9	 F. Guo, P. Ferrie, and T.C. Chiueh, “A Study of the Packer Problem and Its
Solutions,” Proceedings of the 11th International Symposium on Recent
Advances in Intrusion Detection (RAID’08), Berlin, Hei- delberg, pp.98–115,
Springer-Verlag, 2008.

	10	 R. Isawa, T. Ban, S. Guo, D. Inoue, and K. Nakao, “An Accurate Packer
Identification Method using Support Vector Machine,” IEICE Trans.
Fundamentals, vol.E97-A, no.1, pp.253–263, Jan. 2014.

	11	 R. Isawa, D. Inoue, and K. Nakao, “An Original Entry Point Detection Method
with Candidate-Sorting for More Effective Generic Unpacking,” IEICE Trans.
on Info. & Syst., vol.E98-D, no.4, pp.883–893, April 2015.

	12	 StarForce Technologies Ltd., “ASPack Software,” http://www.aspack.com/aspro-
tect32.html, (Last access: April 21st, 2016).

	13	 XenProject, “TheXenProject,” available at http://www.xenproject.org/, (Last
access: April 21st, 2016).

	14	 R.H.O.S. Community, “Kvm: Kernel-based virtual machine,” available at http://
www.linux- kvm.org/, (Last access: April 21st, 2016).

	15	 F. Bellard, “QEMU.” http://www.qemu.org/, (Last access: April 21st, 2016).
	16	 Intel Corporation, “Pin - a dynamic binary instrumentation tool,” available at

http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumenta-
tion-tool, (Last access: April 21st, 2016).

	17	 N. Nethercote and J. Seward, “Valgrind: A framework for heavy-weight dy-
namic binary instrumentation,” SIGPLAN Not., vol.42, no.6, pp.89–100, June
2007.

	18	 Intel Corporation, “Intel 64 and ia-32 architectures software developer's man-
ual,” available at http://www.intel.com/content/dam/www/public/us/en/docu-
ments/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf,
2014.

	19	 R. Lyda and J. Hamrock, “Using entropy analysis to find encrypted and packed
malware,” IEEE Security and Privacy, vol.5, no.2, pp.40–45, March 2007.

	20	 P.G. John Bryson, “Secure hash standard (shs) (federal information processing
standards publication 180-4),” available at http://csrc.nist.gov/publications/fips/
fips180-4/fips-180-4.pdf, 2012.

	21	 Oracle, “Oracle VM VirtualBox,” available at https://www.virtualbox.org/, (Last
access: April 21st., 2016).

	22	 J. Han, M. Kamber, and J. Pei, “Data Mining: Concepts and Techniques,” Third
Edition, Morgan Kaufmann, 2011.

	23	 B. Croft, D. Metzler, and T. Strohman, “Search Engines: Information Retrieval
in Practice,” 2009.

Ryoichi ISAWA, Ph.D.
Senior Researcher, Cybersecurity Laboratory,
Cybersecurity Research Institute
Malware Analysis, Network Security

Tao BAN, Dr. Eng.
Senior Researcher, Cybersecurity Laboratory,
Cybersecurity Research Institute
Cybersecurity, Network Security

120　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-05-01.indd　p120　2017/03/15/ 水 09:14:20

5 Cybersecurity Technologies: Countermeasures Against Emerging Threats

