
1	 Introduction

It has been some time since USB devices became into
near-ubiquitous use. USB devices, except for a very spe-
cific use, offer the convenience of connecting devices, just
by inserting it into a USB connector, which led to its
widespread, and USB connectors have become common
feature on many computing devices including PCs.

In recent years, however, it became known that some
USB devices pose serious security threats. A method to
prepare a USB device with malicious firmware installed
(hereafter referred to as a “Malicious USB”) was made
public [1], which uses USB-fuzzing technique to override
the configuration fraudulently, and exploits loopholes in
the OS and device drivers to intentionally halt the system.

Also, BadUSB, a type of malicious USB, was published
[2]. BadUSB is a device whose firmware is modified by a
third party with malicious intention, in an attempt to in-
tercept and falsify information, as well as triggering unex-
pected behavior. It has also been suggested that tampering
of the USB driving firmware installed on the increasingly
popular Android-based smartphones and other devices
enables it to perform malicious actions similar to those of
BadUSB [3]. There has even been a report that suggests
shipping incidents of malicious USB devices, in which mal-
ware is incorporated during the manufacturing process[4].

In recent years, other than PCs, there are a variety of
computing devices with USB connectors, such as digital
multifunction machines, and they are capable of printing
out the data stored on USB memory or storing scanned
images on it. Self-printing terminals, often located in stores,
also provide USB-connection services such as printing

photographs by transferring data from a digital camera.
These machines also require countermeasures against mali-
cious USB devices.

USB devices should be designed, in the first place, so
that they defy modification attempts by any third party
other than the original manufacturer. It has been pointed
out, however, that some USB devices allow firmware al-
teration if an engineer has skill above a certain level of
sophistication[5]. It should be noted, however, that rewrit-
ing the USB firmware to a specific purpose requires
highly sophisticated knowledge. This situation resembles
the security issues of embedded software.

In this report, malicious USB devices are classified into
the following four categories.
z	 USB device with embedded malware

The manufacturer, with some malicious intention,
embeds additional functions in the USB device, en-
abling it to perform maliciously.

z	 USB device with fraudulent descriptor
USB configuration descriptor is overridden by a
fraudulent descriptor, to make the USB device per-
form maliciously.

z	 USB device with added unauthenticated functions
Original configuration descriptor of the USB device
is intentionally modified to give it bad behavior ca-
pability.

z	 USB device with modified functions
Adding function(s) to the USB device without
modifying the original configuration descriptor, to
act maliciously.

To cope with the threat of malicious USB devices, the
authors propose a new type of USB hub capable of detect-

5-4 Studies on Countermeasures for Malicious USB Devices

Tatsuya TAKEHISA, Makoto IWAMURA, and Hayato USHIMARU

USB devices that adapt USB interfaces (USB keyboards and USB mouses) are prevalent.
However, a new attack has been reported that a malicious USB device rewrites USB firmware,
enabling USB host attached to it to do the malicious activity out of users’ intention. Research
community recognizes the urgency of developing countermeasure against this kind of attack, as
malicious third-party in practice makes malicious USB devices and utilize them for cyber-attacks.
Against this activity, we propose in this paper a novel USB hub that detects and blocks malicious
USB devices by inspecting information in USB descriptors.

Title:J2016S-05-04.indd　p135　2017/03/15/ 水 09:15:07

135

5 Cybersecurity Technologies: Countermeasures Against Emerging Threats

ing and blocking a malicious USB device’s attempt to
connect with USB hosts (PCs, digital multifunction ma-
chines, and self-printing terminals). The proposed USB hub
examines the configuration descriptor of a USB device
before it is connected to the PC, and blocks the connection
if the device is identified as a malicious USB device.

This report consists of the following sections: Section 2
presents background knowledge, Section 3 explains the
proposed method, Section 4 discusses the results, and
Section 5 gives a summary.

2	 Background knowledge

This chapter provides a simple overview of USB speci-
fications, with focus on the topics of special importance in
this report: control transfer and protection of the USB
device.

2.1 	 USB specifications and control transfer
In the USB specifications, the unit that controls a USB

device, such as a PC, is called a “host,” and the USB device
a “target.”

As shown in Fig. 1 “An example of USB system con-
figuration,” a host has a host controller that oversees USB

communications that run under it. A root hub with a set
of ports is arranged directly under the host controller to
provide connections (tree configurations) to USB devices.

The hub is capable of cascaded connections up to
5 levels, allowing to increase the number of USB ports (up
to 127 USB devices can be connected to a host controller).

Four transfer modes are defined for a USB device:
control transfer, bulk transfer, interrupt transfer, and iso-
chronous transfer.

The control transfer begins with the setting of the USB
device address, followed by acquisition of device configura-
tion information for enabling the system to use the func-
tions installed in the device. A mode of communication,
called a device request, is used to run this process. Figure 2
shows a simplified representation of USB device initializa-
tion steps performed by control transfer.

As shown in Fig. 2, the USB host uses the request
transactions in control transfer mode to examine what type
of USB devices is connected, and what types of functions
it has.

The requests are classified into three types — standard,
class-specific, and vendor-specific — and each format is
shown in Fig. 3. The standard requests include GetDescriptor,

Fig.F 1　An example of USB system configuration

Host Controller

Root Hub

Keyboard Hub

Mouse Mass Storage

PC

Max.
5 Hubs
127 devices

Fig.F 2　An example of USB enumeration sequence

Fig.F 3　USB Device Request format

bRequest
(size:1)

bmRequestType
(size:1)

wIndex
(size:2)

wValue
(size:2)

wLength
(size:2)

Offset

+0 +1 +2 +4 +6

Host Device

136　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-05-04.indd　p136　2017/03/15/ 水 09:15:07

5 Cybersecurity Technologies: Countermeasures Against Emerging Threats

SetAddress and SetConfiguration as described below.
z	 GetDescriptor request

GetDescriptor demands the descriptors that define
the device, configuration and strings. Each descriptor
type has a value as listed in Table 1. The USB device,
upon receiving a GetDescriptor request, sends back
an appropriate descriptor that matches the requested
type. Each request is defined using one of the de-
scriptor types, and the descriptor to be returned is
determined according the “length” values listed in
Table 1.

z	 SetAddress request
SetAddress sets an address on the USB bus.

z	 SetConfiguration request
This request enables the system to select one of the
functions installed on the USB device. In the case
where a USB device has multiple of functions, the
USB host can use this request to select one of them
for optimizing system performance.

In line with a higher transmission rate and increased
variety of functions, the USB specifications have undergone
stepwise upgrades. Table 2 shows the list of transmission
rates corresponding to each USB standard. Upward com-
patibility is guaranteed from USB 1.1 up to USB 3.1.
Therefore, when a USB device is connected, the host first
attempts to perform control transfer at the communication
velocity rated for USB 1.1 on the ground of compatibility.

2.2	 Protection of USB devices
There are several possible locations, as shown in Fig. 4,

to implement inspection functions to protect the system
from bad USBs.

In the configuration shown in Fig. 4(A), the functions
provided by the OS and device drivers protect the USB host
from bad USBs. This approach, however, may not be effec-
tive against the types of attacks (see, for example, Bouyat
et.al [1]) that take advantage of vulnerabilities in the device
driver.

In the configuration shown in Fig. 4(B), the USB hub
can identify if the USB device is bad at the very moment
it is connected. Thus, the bad USB cannot take advantage
of vulnerabilities in the USB host. Configuring a transpar-
ent and bidirectional mediator device in between the USB
host and USB device — a method proposed by Tonder et.
al[6] — may enable the mediator device to block fuzzing
attack against USB. This approach, however, necessarily
involves reduction in communication speed. In addition,
the transparent and bidirectional mediator device needs
many components, increasing the cost.

In the configuration shown in Fig. 4(C), the USB device
must provide certain detection logic that necessitates a
high-performance device implemented in it (such as a
dedicated IC, or CPU with additional functions).

Implementing the inspection capability in location (A)
or (C) requires, from the considerations given above, new
development of detection logic and vulnerability reduction
efforts for each major components — i.e. OS, device
driver, and USB device.

Placing the inspection capability in (B), however,
eliminates the need to consider the problems associated

Descriptor Type Value Length
DEVICE 1 18
CONFIGURATION 2 9
STRING 3 2+N
INTERFACE 4 9
ENDPOINT 5 3

TableT 1　Descriptor types (excerpts)

Version Mode Max. Transfer Rate

USB 1.0
LS(LowSpeed)
FS(FullSpeed)

1.5 Mbps
12 Mbps

USB 1.1 “” “”
USB 2.0 HS(HighSpeed) 480 Mbps
USB 3.0 SS(SuperSpeed) 5 Gbps
USB 3.1 SSP(SuperSpeedPlus) 10 Gbps

TableT 2　Transmission speed for each USB standard

Fig.F 4	 Locations to implement the functions to inspect a USB
device

Host PC

USB Root Hub

USB Hub

Device Driver

USB Device

(A)

(C)

(B)

Title:J2016S-05-04.indd　p137　2017/03/15/ 水 09:15:07

137

﻿ ﻿5-4 Studies on Countermeasures for Malicious USB Devices

with (A) and (C). Inspection performed in the USB hub at
location (B) can be quite an effective option.

	 In this report, the authors propose a bad USB
device counterapproach that takes full advantage of the
locational characteristics of (B), with a minimum perfor-
mance penalty in the USB device.

3	 The proposed approach

In this section, the configuration and functions of the
USB hub — characterized by its implementation of inspec-
tion functions — proposed by the authors (hereinafter
referred to as the “proposed USB hub”) are described in
3.1, and the specific inspection method enabled by using
it is explained in 3.2.

This proposed method attempts to detect and inspect
a malicious USB device by solely using control transfer
defined in the USB protocol. As described in Section 2, the
control transfer that can be used for identifying the device
configuration and functions of a USB device is only defined
in the USB 1.1 standard. Upward compatibility of the USB
standards, however, makes it possible to construct a low-
cost USB hub based on the earlier standard, without the
need for the higher transmission rates of USB2.0 and 3.x.

3.1	 USB hub with inspection function
The proposed USB hub consists of the following ele-

ments (see Fig. 5): a USB host (an embedded CPU) for
performing inspection, a USB hub (USB Hub A) for con-
necting to the USB host, another USB hub (USB Hub B)
for connecting to the upper layer host (PC), USB switch
ICs (#A - #D) for each port for connecting USB devices,
and corresponding push buttons (#A - #D).

The following three modes of operation are available to
the proposed USB hub.
z	 Registration of a USB device:

A USB device is registered when it is inserted into a
USB port while a push button with the correspond-
ing number (#n) is pressed.

z	 Deletion of a USB device:
A USB device is deregistered when it is removed
from a USB port while a push button with the cor-
responding number (#n) is pressed.

z	 Recognition of a USB device:
A USB device is recognized when inserted into a port
without pressing a button.

When a USB device is registered/recognized, the in-

spector USB device controls the USB switch of the port,
and connects it to the USB Hub A.

Upon completion of the connection, the USB Hub A
notifies the successful connection of the device to the in-
spector USB host, triggering the host to start inspection
procedures.

When the inspection procedures complete successfully,
the inspector USB host registers the hash value of the USB
device descriptor as identification information for the de-
vice, whereby a pair of values (VID and PID) obtained
during the registration procedures are used as the key.

When the inspection procedures complete successfully,
the inspection USB host controls the USB switches of the
USB port to connect it to USB Hub B.

In this way, the proposed USB hub performs inspection
procedures before the USB device is connected to a host.
If the USB device failed inspection, its functions are put
on hold.

When a USB device is unregistered, the inspector USB
host deletes the device’s descriptor information (i.e. VID
and PID).

Deletion of the information blocks the USB device
when it tries to connect again. It must go through the
registration procedures over again to seek a connection to
the host. In the next section, the inspection procedures
performed by the proposed USB hub are described.

Fig.F 5　Block diagram of a USB hub with inspection functions

Inspection
USB Host

USB Hub BUSB Hub A

USB
Switch

#A1 #B1 #C1 #D1

#1
#2

#A2 #B2 #C2 #D2

USB
Switch#1

#2

USB
Switch#1

#2

USB
Switch#1

#2

Host

#D

#C

#B

#A

PB #D

PB #C

PB #B

PB #A

138　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-05-04.indd　p138　2017/03/15/ 水 09:15:07

5 Cybersecurity Technologies: Countermeasures Against Emerging Threats

3.2	 Inspection method
In this section, the procedures taken by the inspector

USB host are described.
The inspection methods are based either on a whitelist,

blacklist or fraudulent descriptor, each of which requires
acquisition and examination of a USB device descriptor.

The following sections provide detailed descriptions of
each method.
3.2.1	 Whitelist screening

Figure 6 shows the examination flow of whitelist
screening.

(A)	The GetDescriptor request is issued to acquire the
descriptors needed (device, configuration, string,
interface and end point). For each descriptor, a hash
function is used to create information for device
confirmation (the hash function maps the input
onto a certain range of values, and it must always
return the same value for each specific input. To
ensure this property, use of a cryptographic hash
function, such as SHA-1, is recommended wher-
ever possible).

(B)	The PID and VID are extracted from the device
descriptor obtained in step (A), and, by using them,
registered device information is identified in the
list.

(C)	The device information for confirmation is com-
pared with the registered device information. The
checking reports good (OK) if all items in both
device information exactly match. Otherwise, the
checking reports fail (NG).

This enables the system to judge the USB device to be
identical with the registered one in terms of device, con-
figuration, string, interface and end point descriptors, and
distinguish it from a bad USB device, even if it has the
same PID and VID (a bad USB device needs descriptor
modification to add one or more functions to perform its
malicious intentions).

USB devices of the same type can be clearly distin-
guished if the serial number is given by string descriptor.
Therefore, only the registered one can gain an “OK” in the
examination (an identical USB device fails the examination
if it has a different serial number).
3.2.2	 Blacklist screening

Figure 7 shows the examination flow of blacklist screen-
ing.

(A)	Acquisition of the device descriptor using a
GetDescriptor request.

(B)	Screening of the VID and PID contained in the
device descriptor against the blacklist.

The examination fails (NG) if the VID and PID coincide
with those listed in the blacklist. Otherwise, the examina-
tion gives an OK.

Note that the same screening scheme can utilize other
identifiers other than VID and PID — e.g. an appropriate
string defined in the string descriptor, and combination of
them.

This is an effective method to judge if a USB device is
identical with those already acknowledged as bad.

Because of its relatively easy implementation, blacklist
screening provides an effective method for rough checking.
3.2.3	 Fraudulent descriptor examination

Figure 8 shows the flow of fraudulent descriptor ex-
amination.

Fig.F 6　Examination flow: whitelist screening

(A) Acquisition of each
descriptor and hash value

calculation

(C) Compare
(A) and (B)

(B) Acquisition of registered
descriptor hash value from

VID,PID

OK NG

All Identical

Not identical

Fig.F 7　Examination flow: blacklist screening

(A) Acquisition of Device
Descriptor

(B) VIP, PID
check

OK NG

Not Identical

identical

Title:J2016S-05-04.indd　p139　2017/03/15/ 水 09:15:07

139

﻿ ﻿5-4 Studies on Countermeasures for Malicious USB Devices

(A)	A GetDescriptor request is issued to acquire the
descriptors (device, configuration, string and inter-
face descriptor). On an as-needed basis, class infor-
mation can also be obtained [7] from bFunctionClass,
bFunctionSubClass and bFunctionProtocol defined
in the interface descriptor [8].

(B)	Each acquired descriptor is checked for any fraudu-
lent values. The items to be checked include such
entries as bNumEndpoints in the interface descrip-
tor (see Bouvat [1]), which, if set to zero, may cause
a BSOD (Blue Screen of Death) on a Windows
system.

3.2.4	 Examination for each operation mode
This section describes the contents of examination

performed by the proposed USB hub in each operation
mode.

Table 3 summarizes the contents of examination in each
operation mode.

As shown in Table 3, the proposed USB hub performs
blacklist screening and fraudulent descriptor examination
in the registration phase of a USB device. The procedures
enable the system to block known bad USB devices and
those with fraudulent descriptors from connecting with the
USB host.

In the authentication phase of a USB device, the pro-

posed USB hub performs blacklist screening and whitelist
screening. The blacklist screening enables the system to
disconnect one or more of the USB devices that were found
to be bad after they passed the checks in the registration
phase.

No additional examination is needed in the deletion
stage.

As described above, performing appropriate examina-
tions in each stage enables the proposed USB hub to detect
bad USB devices, and block them before being connected
to the USB host.

4	 Discussion

Even if an attempt with malicious intentions is being
made to rewrite the firmware on a USB device connected
to a host, the proposed USB hub by itself is not capable of
blocking the accesses (direction (A) shown in Fig. 9). This
deficiency arises basically from the fact that the method of
rewriting the firmware on a USB device depends on the
specifications of embedded ICs. Because of the wide variety
of such ICs in the marketplace, setting up a strategy on an
IC-by-IC basis becomes very difficult, and some of them
do not even disclose their specifications. However, placing
the proposed USB hub in between the host and the USB
device can change this situation. This enables the proposed
USB hub to check the descriptor on the USB device in
several ways (whitelist and blacklist screening, tampered
descriptor detection), leading to the detection and blocking
of malicious USB devices (direction (B) shown in Fig. 9).
In the following part of this section, further description is
provided for each type of malicious USB device classified
in Section 1.
z	 USB device with embedded malware

For the proposed USB hub, blacklist screening is the
main tool to detect and block this type of malicious
USB device. As in the case of anti-virus software,
blacklist information requires to be updated after
each identification of a malicious USB device.

z	 USB device with fraudulent descriptor
The proposed USB hub performs fraudulent descrip-
tor inspection to detect and block a malicious USB
device. This approach is effective against USB fuzzing
and other related attacks.

z	 USB device with added unauthenticated functions
The proposed USB hub performs whitelist screening
to detect and block this type of malicious USB device.
Whitelist screening is especially effective for detect-

TableT 3　Examinations performed for each operation mode
Operation mode Check item

Registration of a USB
device

Blacklist screening
Fraudulent descriptor examination

Authentication of a USB
device

Blacklist screening
Whitelist screening

Deletion of a USB device: None

Fig.F 8　Flow of examination: fraudulent descriptor

(A) Acquisition of each
descriptor

OK NG

All normal

Irregularity Found(B)
Verify the contents of
each descriptor from

(A)

140　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-05-04.indd　p140　2017/03/15/ 水 09:15:07

5 Cybersecurity Technologies: Countermeasures Against Emerging Threats

ing USB devices with augmented functionalities (e.g.
USB memory with an added USB keyboard).

z	 USB device with modified functions
A USB device, if its functions have been modified,
poses a detection problem for the proposed USB hub,
because the descriptor of the USB device may remain
the same even if its functions have been intention-
ally modified to work maliciously. For example, a
very shrewd modification of firmware enables a
malicious USB keyboard — designed to send
fraudulent keystrokes at given intervals (while the
user is away from the PC), or while no key is pressed
for a certain period of time — behave perfectly in-
nocently under normal conditions using the same,
intact descriptor. The proposed USB hub cannot
detect such malicious USB devices. Functional en-
hancement of the proposed USB hub, however, may
overcome the problem. For example, a display device,
such as an LCD, additionally configured into the
proposed USB hub enables the system to display a
one-time password immediately after a USB keyboard
is connected to the hub, and demand the user to
enter the same password within a specified time.
Non-compliance to this demand can lead to an NG
judgement. This scheme is especially effective if the
malicious USB keyboard is designed to perform
unintended behavior immediately after being con-
nected to a USB connector.

In addition to the examination of descriptor used in
the proposed USB hub, other methods are also conceived
such as Deep Inspection used in IDS/IPS devices to
monitor the USB transmission signal. However, the very
high rate of data transmissions on USB 3.1 devices (typi-
cally 10 Gbps. See Table 2) makes the Deep Inspection
highly resource and technology dependent. Such an ap-
plication can be costly if it is ever placed on the market.

5	 Summary

In this report, the authors proposed a new type of USB
hub that features provisions against malicious USB devices.
It provides inspection functions to detect and block any
connection attempts from malicious USB devices to a USB
host (e.g. PC).

To cope with the future proliferation of attacks by
means of malicious USB devices, the proposed USB hub
can provide an effective measure to defeat their activities.

Our challenges for the future include: circuit design and
fabrication of an operational USB hub that actually features
our proposals, and development of the inspection method
capable of blocking such malicious USB devices that even
pass through the gates of whitelist screening and fraudulent
descriptor screening.

Acknowledgments

The authors wish to express their deep appreciation to
Mr. Nobuyuki Kanaya (Cyber Tactics Laboratory) for the
invaluable advice he gave us during the course of writing
this report.

ReferenceR
	 1	 J. Bouyat, “USB Fuzzing Basics: From fuzzing to bug reporting,” Quarkslab’s

blog, http://blog.quarkslab.com/usb-fuzzing-basics-from-fuzzing-to-bug-reporting.
html

	 2	 K. Nohl, J. Lell, “BadUSB -- On accessories that turn evil,” https://srlabs.de/
blog/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf, 2014.

	 3	 BadAndroid-v0.1, https://srlabs.de/blog/wp-content/uploads/2014/07/BadAndroid-
v0.1.zip

	 4	 BadUSB Exposure, SRLabs Open Source Projects, https://opensource.srlabs.de/
projects/badusb

	 5	 “Now e-cigarettes can give you malware,” Guardian News and Media Limited,
http://www.theguardian.com/technology/2014/nov/21/e-cigarettes-malware-
computers

	 6	 V. Tonder, Rijnard, and Herman Engelbrecht “Lowering the USB fuzzing bar-
rier by transparent two-way emulation,” Proceedings of the 8th USENIX confer-
ence on Offensive Technologies. USENIX Association, 2014.

	 7	 Usb.org, USB Class Codes, August 11, 2014, http://www.usb.org/developers/
defined_class

Host PC

USB Root Hub

USB Hub

Device Driver

USB Device

(A)

(B)

Fig.F 9	 Directions of inspection flow available to the proposed USB
hub

Title:J2016S-05-04.indd　p141　2017/03/15/ 水 09:15:07

141

﻿ ﻿5-4 Studies on Countermeasures for Malicious USB Devices

	 8	 Universal Serial Bus 3.1 Specification, Revision 1.0, July 26, 2013, http://www.
usb.org

Tatsuya TAKEHISA
Invited Advisor, Cybersecurity Laboratory,
Cybersecurity Research Institute
Cyber Security, Embedded Device Security

Makoto IWAMURA, Dr. Eng.
Former: Cooperative Visiting Researcher,
Cyber Tactics Laboratory, Cybersecurity
Research Center
Malware Analysis

Hayato USHIMARU
Technical Research Expert, Cyber Tactics
Laboratory, Cybersecurity Research Center
Malware Analysis

142　　　Journal of the National Institute of Information and Communications Technology Vol. 63 No. 2 (2016)

Title:J2016S-05-04.indd　p142　2017/03/15/ 水 09:15:07

5 Cybersecurity Technologies: Countermeasures Against Emerging Threats

