
1	 Introduction

For the fifth generation mobile communication system 
(5G), system requirements include enhanced mobile broad-
band (eMBB), ultra-reliable and low latency communica-
tions (URLLC), and massive machine-type communications 
(mMTC), and R&D for realizing 5G has been promoted in 
countries all around the world. Especially, as a point of 
difference with conventional mobile communication sys-
tems, there are expectations that 5G will cover IoT ser-
vices, and in addition to massive numbers of IoT devices 
as user equipment (UE) being connected to base stations 
(BS), it is projected that a wide range of diverse services 
will be on offer [1].

Along with massive connections, there are also expecta-
tions over the provision of services that require low la-
tency, such as autonomous driving, and there will be a need 
for technology that can realize low latency while concur-
rently realizing an increase in the number of UE that can 
be connected to a BS on the same time and frequency 
resource. In the IoT environment, which has vast numbers 
of devices such as sensors connected to it, radio access 
technologies without iterative procedures such as radio 
resource scheduling requests (SR) and the corresponding 
grants will make multiple connections and low latency 
possible; but, because signal collision probability increases 
as the number of connected UE increases, the efficient 
detection of signal collision during times of multiple con-

nections becomes an issue.
In order to solve this issue, we are involved in R&D 

related to radio access technologies that are equipped with 
(1) technology that identifies transmitting terminals and 
establishes both multiple connections and low latency and 
(2) technology that suppresses or eliminates interference. 
With existing radio access technologies, only one terminal 
can be connected at the same time on the same frequency 
to each individual antenna of a BS or access point. In 
contrast to this, simultaneous connection with multiple 
terminals can be realized with this radio access technology.

2	 Development of the Radio Access 
Technology

Figure 1 shows an outline of radio access technology 
that realizes simultaneous connectivity and low latency. 
With this radio access technology, frequency usage effi-
ciency is improved by having multiple UEs share the same 
frequency at the same time, and latency is reduced by 
employing data transmission without grant, which mini-
mizes the scheduling requests before data transmission 
when UE has data to be sent to BS.

In order to realize this radio access technology, because 
multiple UEs will be sharing the same frequency at the 
same time, there will be a need for (1) technology that can 
identify the UEs that are connected at the same time and 
(2) technology that suppresses or eliminates interference 
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between UE signals. Those technologies will be explained 
below. Further, in the designing of this radio access tech-
nology, based on a scenario [2] premised on its use with 
IoT devices, the channel bandwidth will be set at 1.08 MHz.

2.1	 Structure of radio frame
Here we discuss the structure of the radio frame for 

uplink data transmission from UE to BS. Figure 2 shows 
the basic structure of the radio frame. The time slot has a 
total length of 500 µs and is composed of a 250 µs reference 
signal and a 250 µs data signal. The reference signal is used 
for the purposes of identifying the UE terminals and esti-
mating the channel impulse response between the UE and 
BS. The data signal is used to transfer data sent from UE. 
Transmission delay is minimized by sending a reference 
signal and a data signal without intermission.

Here we discuss the structure of the reference signal. 
By using orthogonal sequences for the reference signal, 
even when signals are being sent by multiple UE terminals 
on the same time and frequency resource—in addition to 
identifying the sending UE—estimation of the channel 
impulse response necessary for the data demodulation and 
decoding is conducted. In the current R&D at hand, we 
employ the Zadoff-Chu sequence for the orthogonal se-
quence, which is also used in LTE-A. When using this 
sequence, in order to estimate the channel impulse response 
without interference between signals from UE terminals, it 
is necessary to assign each UE terminal with a Zadoff-Chu 
sequence having a cyclic shift time equal to or longer than 

the maximum propagation delay time of valid multi-paths. 
Among the channel models [4] for developing the technical 
specifications of the 5G radio access, the TDL-A channel 
model includes the longest delayed path in a non-line of 
sight environment, and the maximum delay time is ap-
proximately 3.5 µs. Further, assuming the BS-UE distance 
of 1,153 m and urban macro cell environment, propagation 
delay time from UE to BS is 3.8 µs. Considering the above, 
it would be necessary for the orthogonal sequence cyclic 
shift time in the reference signal to be equal to or larger 
than 7.3 µs, and also considering the synchronization error 
between BS and UE, 18 samples equivalent to 16.7 µs are 
set as the cyclic shift of the orthogonal sequence. In order 
to accommodate simultaneous connection of 12 UEs, it 
would be necessary for the sequence length to be 216 or 
more, and in the current R&D the Zadoff-Chu sequence 
length is set at 223. As was shown in Fig. 2, a 20-length 
sample (equivalent to 18.5 µs) cyclic prefix (CP) is added 
to a sequence that has been cyclically expanded to a length 
of 225. Figure 3 shows an example of the structure of the 
reference signal when cyclic shift has been applied. By 
assigning different cyclic shift numbers for each UE termi-
nal, it becomes possible to identify the UE even when the 
BS simultaneously receives reference signals from multiple 
UEs. In the grant-free transmission scheme, a UE-specific 
cyclic shift number is assigned to each UE.

Next, we discuss the structure of the data signal. 
Figure 4 shows the processing of information bits for the 
data signal in each UE terminal. After the information bits 
are scrambled, 8 bit cyclic redundancy check (CRC) encod-
ing is performed. Following this, turbo encoding (coding 
rate: 1/2 or 1/3; constraint length: 4) is performed. After 
QPSK or 16-QAM modulation, CP is inserted and the 
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Fig.F 2 Basic structure of the radio frame [3]
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transmission signal is generated. As was shown in Fig. 2, 
in the structure of the radio frame under this radio access 
method, guard time is set in order to avoid interference 
from the following time slots. Through a combination of 
the coding rate and modulation scheme, transmittable in-
formation bit numbers (message size) in the unit data 
signal section can be changed to between 17–54 bytes. 
Because a 20 byte message size is assumed in the usage 
scenario for mMTC [2], the design is made in accordance 
with this scenario.

2.2	 Interference suppression/cancellation 
technology

Here we discuss technology that suppresses or cancels 
interference in data signals. In transmission without grant, 
because a UE-specific cyclic shift number is given in or-
thogonal sequence for reference signals, signal separation 
is possible. However, because data signals are not in or-
thogonal sequence there needs to be suppression or cancel-
lation of interference between UE terminals. All UEs 
sharing the same frequency at the same time are assumed 
as using the same coding rate and modulation scheme, and, 
using the channel impulse response estimated from the 
reference signal, interference among UE data signals is 
suppressed or cancelled. Regarding the method, we evalu-

ate the two shown in Fig. 5 ( successive interference cancel-
lation (SIC) and parallel interference cancellation (PIC)).

With SIC, demodulation and decoding is carried out in 
order of the highest strength incoming signal, and when it 
is determined from the result of the CRC decision there is 
no bit error, a signal replica is created and interference is 
removed by subtracting this from the received signal wave 
form. However, in order for the demodulation and decod-
ing to succeed, as a condition, some signal-to-interference 
ratio (SIR) must be required. On the other hand, because 
the computational cost will increase in a linear fashion in 
accordance with an increase in the number of connected 
UEs, processing can be completed with less latency com-
pared with the PIC method, which is discussed below.

With PIC, from the received wave form and the esti-
mated channel impulse response of each UE, the likelihoods 
are calculated for all possible combinations of transmission 
signals from each UE terminal, and from that result, log 
likelihood ratio (LLR) of the codeword bit sent from the 
UE is calculated. After that, decoding is carried out in a 
turbo decoder, and the obtained external information is fed 
back and used to update the LLR and the transmitted data 
from each UE is estimated. Although there are no restric-
tions on the SIR condition among UE signals in the PIC 
method, because all combinations of transmission signals 
need to be taken into account, the computational cost in-
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Fig.F 5	 Outline of interference suppression/cancellation techniques
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creases exponentially with the increase in number of 
connected terminals.

The performance evaluation results for the two methods 
are shown in Fig. 6. A histogram shows the number of 
terminals with successfully separated signals when the in-
terference power ratio of the signal is changed. With the 
simultaneously connected number of UE terminals at five, 
the horizontal axis shows the number of terminals for 
which separation was successful. We conducted 10,000 
trials with the modulation method as QPSK and the coding 
rate of the turbo encoder at 1/3. In regard to the reference 
signal, a different cyclic shift number was given to each UE 
terminal, and in interference suppression/cancellation 
processing we used the channel impulse response esti-
mated from the received reference signal. From the perfor-
mance evaluation results, it is shown that in order to obtain 
a successful separation rate of 90% or more, SIR needs to 
be set at 3 dB or higher in SIC. On the other hand, in PIC, 
even if SIR is 0 dB, it can be seen that a successful signal 
separation rate of 90% or more is possible.

In regard to these interference suppression/cancellation, 
hardware demonstration using FPGA has been reported in 
terms of achievable latency [11] [12]. Further, in regard to 
the number of accommodated UE terminals, we are also 
carrying out evaluations when using transmission without 
grant, which minimizes scheduling requests before data 
transmission [13]. In order to fulfill the objective of this 
R&D, which is to realize a 5 ms or less latency even in a 
field environment, we are working to improve algorithms 
for interference suppression/cancellation.

3	 Future prospects

In this paper, we showed our R&D directed toward 
realizing radio access technologies that accommodate 
small-size data derived from massive numbers of IoT de-
vices within the network with high efficiency and low la-
tency. In order to improve frequency usage efficiency, we 
are pursuing R&D on radio access technologies that use 
transmission without grant, which does not require trans-
mission scheduling requests, to decrease the latency by 
making it possible for multiple UE terminals to share the 
same frequency at the same time. In the future, we plan to 
conduct performance evaluations in the field considering 
mMTC usage scenarios.
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