5.2 テレメトリ・コマンド装置

5.2.1 テレメトリ装置
(1) テレメトリ信号復調装置
ETS-V のテレメトリ信号は 5 GHz 帯ビーコン信号を兼ねており、PCM/PSK/PM の三波変調信号である。本装置は、自動遅延受信装置から出力される 10.7 MHz のテレメトリ IF 信号及び基準信号で検相復調を行い、PCM/PSK 信号をテレメトリ信号復調装置へ送出する。
CS と ETS-V の差異点は、PCM 信号のビットレートが CS は 256 bps であるのに対し、ETS-V は 512 bps である。本装置は、CS の管制に用いた装置のパラフィルタを改良して用いている。

(2) テレメトリ信号復調装置
本装置は、テレメトリ信号復調装置から出力される PCM/PSK 信号を入力し、PSK 復調、ビット同期、フレーム同期を行ってテレメトリデータを解読する。テレメトリの諦元を第 5.2.1-1 表に示す。

b. PCM ビット同期部
PCM 信号のビット同期を行い、また、PCM 符号形式を Bi-f-L から NRZ-L に変換して PCM データヘ出力する。

c. PCM デモニテータ
PCM 直列テレメトリ信号のフレーム同期信号を検出し出力する。データの動作分離を行い並列テレメトリ信号を出力する。さらに、1 ビットに分離した出力、D/A 変換出力、出力、本装置のバイストライアンスには 16 ワード分の表示器があり、各ワードとも独立に 2 進、8 進、10 進あるいは 16 進形式で表示することができる。並列テレメトリ信号は計算機の I/O 装置へ出力する。ビット出力は数制制御装置へ出力し、衛星のデータ表示に使用する。D/A 変換出力はチャートレコーダの記録使用する。

第 5.2-1 表 テレメトリ・コマンド信号系統図

西脇、草井、三木（電気通信研究所 衛星制御部）
村田一夫（通信 放送衛星機関，電気通信研究所）
第5.2.2表 テレメトリ信号変換装置主要諸元

<table>
<thead>
<tr>
<th>项目</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSK</td>
<td>256 kHz</td>
</tr>
<tr>
<td>入力信号周波数</td>
<td>0 dBm</td>
</tr>
<tr>
<td>入力信号レベル</td>
<td>50 Ω</td>
</tr>
<tr>
<td>出力信号インピーダンス</td>
<td>50 Ω</td>
</tr>
<tr>
<td>PCM</td>
<td>8 Vpp-L</td>
</tr>
<tr>
<td>ビットシングナルライン</td>
<td>8 Vpp-L</td>
</tr>
<tr>
<td>入力信号形式</td>
<td>512 bps</td>
</tr>
<tr>
<td>入出信号ビットレート</td>
<td>512 bps</td>
</tr>
<tr>
<td>出力信号レベル</td>
<td>12 Vpp</td>
</tr>
<tr>
<td>出力レベル</td>
<td>50 Ω</td>
</tr>
<tr>
<td>PCM デジタルデータ</td>
<td>8 Vpp-L</td>
</tr>
<tr>
<td>出力信号</td>
<td>512 bps</td>
</tr>
<tr>
<td>表示器</td>
<td>12 Vpp</td>
</tr>
<tr>
<td>出力信号(電子計算機へ)</td>
<td>512 bps</td>
</tr>
<tr>
<td>D/A 変換出力数</td>
<td>0〜5 V</td>
</tr>
<tr>
<td>D/A 変換出力レベル</td>
<td>512 bps</td>
</tr>
<tr>
<td>ビット出力数</td>
<td>12 Vpp</td>
</tr>
<tr>
<td>ビット出力レベル</td>
<td>50 Ω</td>
</tr>
</tbody>
</table>

第5.2.3表 コマンド装置主要諸元

<table>
<thead>
<tr>
<th>项目</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>コマンド符号化装置</td>
<td>GPIB</td>
</tr>
<tr>
<td>計算機インターフェイス</td>
<td>プラズマディスプレイ</td>
</tr>
<tr>
<td>表示器</td>
<td>PCM/PSK</td>
</tr>
<tr>
<td>出力信号</td>
<td>0.5〜2 Vpp</td>
</tr>
<tr>
<td>出力レベル</td>
<td>75 Ω</td>
</tr>
<tr>
<td>出力インピーダンス</td>
<td>1.7kHz</td>
</tr>
<tr>
<td>コマンド信号変調装置</td>
<td>0.3〜1 rad.</td>
</tr>
<tr>
<td>出力周波数</td>
<td>0 dBm</td>
</tr>
<tr>
<td>出力レベル</td>
<td>0 dBm</td>
</tr>
<tr>
<td>出力インピーダンス</td>
<td>50 Ω</td>
</tr>
<tr>
<td>スプール数</td>
<td>50°</td>
</tr>
<tr>
<td>位相雑音</td>
<td>2.5°rms</td>
</tr>
<tr>
<td>電压0.1パルス</td>
<td>50°以下</td>
</tr>
<tr>
<td>電圧0.2パルス</td>
<td>50°以下</td>
</tr>
</tbody>
</table>

第5.2.4表 コマンド諸元

<table>
<thead>
<tr>
<th>项目</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>変調方式</td>
<td>PCM/PSK/PM</td>
</tr>
<tr>
<td>PM 変調指数</td>
<td>0.4 rad.</td>
</tr>
<tr>
<td>切除送信周波数</td>
<td>16 kHz</td>
</tr>
<tr>
<td>ビットレート</td>
<td>125 bps</td>
</tr>
<tr>
<td>PCM 符号形式</td>
<td>NRZ-M</td>
</tr>
</tbody>
</table>

部及びビット同期部のパラメータ設定を行うことが出来
る。

d. チャートレコード

PCM デジタルデータから出力される 8 ビットのテレ
メトリ信号の D/A 変換出力を記録する。記録チャネ
ル数は 8ch であり、出力データの選択はデジタルデ
ータで行う。

5.2.2 コマンド装置

本装置は、EMSS 実験に必要な衛星帯域機器の制御
に使用するので、コマンド符号化装置、コマンド信号
変調装置及びアップリケーション、アクイジョン機構より構
成される。コマンド装置の主要諸元を第 5.2.3 表に、信
号システムを第 5.2.1 図に示す。

ETS-V のコマンドは 1 度に最大 86 個のコマンドをま
とめて送信することができる。CS 等のコマンドは送信
コマンドを 1 個ずつテレメトリにより確認しながら実行
していながら、86 個のコマンドを確認しながら実行して
いたのでは手数がかかる。このため、各コマンドに誤り
検出符号を付加して送信し、誤りが検出されなければその
まま実行する方式を採用している。テレメトリにより衛
星で実行したコマンド数がわかるので、送信コマンド数と
照合してコマンドの確認を行う。コマンドに誤りが検
出された場合、検出された時点でコマンド実行を停止
し、実行コマンド数をテレメトリで下ろす。誤り検出符
号として巡回符号を用いている。

(1) コマンド符号化装置

第3.2.2回 テレメトリ変換系符号換算特性

本装置は、マイクロプロセッサを使用し、衛星名の指
定だけで必要なパラメータの設定ができる。パラメータ
は ROM に記録されており、ROM を変換することによ
り他の衛星に対応することができる。また、PSK 後調
(1) コマンドフォーマット

<table>
<thead>
<tr>
<th>ブリアンプル</th>
<th>バーカ符号</th>
<th>コマンドコード1</th>
<th>コマンドコード2</th>
<th>コマンドコードN</th>
<th>ポストアンプル</th>
</tr>
</thead>
</table>

コマンドコード × N (N = 1, 2, 3, …, 80)

(2) コマンドコード

<table>
<thead>
<tr>
<th>衛星アドレス</th>
<th>RIUアドレス</th>
<th>チャネル</th>
<th>コマンド番号</th>
<th>スペア</th>
<th>録り検出符号</th>
</tr>
</thead>
</table>

第5.2-3図 コマンドフォーマット

本装置は、マイクロプロセッサを内蔵しており、計算機と GP-IB インタフェースで接続される。計算機からはコマンド番号、コマンドユニット番号等を出力するが、装置内で衛星アドレス、誤り検出符号等を付加して所定のコマンド番号を発信し、変調装置へ送出する。また、本装置のパネル面においてもコマンドの設定、送信を行うことができる。送信コマンド番号の確認のため、PSK 変調信号を低周波して複数行う。また、テレメトリにより送信コマンド番号と衛星で実行したコマンド数の比較を行い、コマンドの確認をしている。

(2) コマンド信号変調装置

本装置は、コマンド信号変調装置から出力される PSK 信号を入力し、搬送波を PM 変調して 1.7 GHz の IF 信号を TT & C 送信機へ送出する。

(3) アップリンクアクション機

衛星にコマンドを送信する場合、あらかじめ送信周波数を指定して衛星受信機の PLL 回路をロックさせる必要がある。CS では手動でロックさせてきたが、この機能をマイクロプロセッサを使用して自動化した。この装置のブロック図を第 5.2-4図に示す。アクション間のパラメータは daughters によって、プロセッサの持っているカウンタクのカウンタアップあるいはカウンタダウンを行い、このカウンタ値を D/A 変換して出力する。この出力によりシンセサイザの VCO（電圧制御発振器）を制御する。1 周期間隔を指定した時点に衛星受信機がロックしているはずを中止し、ロックしていなければ掃引を再開する。掃引パターンを第 5.2-5図に示す。
参考文献

(1) 「実験用中容量静止通信衛星（CS）・実験用中型 放