II-3 変復調技術による周波数有効利用技術

三瓶政一
(1990年7月20日受理)

II-3 HIGH SPECTRAL EFFICIENT MODULATION/DEMODULATION TECHNIQUES FOR LAND MOBILE COMMUNICATIONS

By
Seiichi SAMPEI

1. はじめに

陸上移動通信は、無線でのみ同様に設定できる通信形態である。したがって、高度な周波数有効利用技術を駆使してシステムの加入者容量を確保するとともに、新たなサービスを導入し、ユーザの需要に最大限答えるという使命を持つ。

陸上移動通信において周波数有効利用の度合を表す総合周波数利用率（η_T）は、
(1) 周波数軸上の周波数利用率（η_F）

単位周波数当たり何チャネルの無線チャネルが収容できるか

(2) 空間的周波数利用率（η_S）

どれだけ近いところで同じ周波数を再利用することができるか

(3) 時間軸上の周波数利用率（η_T）

1チャネルでどれだけ多くのトラフィックを処理できるか

という3種類の周波数利用率の積で決まる。

ここで、η_Tを向上させる技術としては、音声信号が存在する時間だけチャネルを割り当ててDSI（Digital Signal Interpolation）[1]、実際の通話が開始される時点で無線チャネルの割り当てを実施するオフエア呼設定[2]、ゾーン間で共通に利用できるチャネルを用意し、無線ゾーン間で割り当てを融通し合うフレキシブルチャネル割り当て[3]等がある。しかし、これらは回線制御技術の問題であるとともに、技術的にはかなり成熟していよい、これらの適用を前提とし、更に即時式で呼損率B=0.01〜0.1、チャネル数50チャネル以上と仮定するとη_Fは75%以上となることが[4]、η_Sはη_Tまたはη_Sと独立に最適化できること等から、本稿では、η_F及びη_Sの向上技術に焦点を絞ることとする。

MCAシステムのような大ゾーン方式の場合には、基本的にサービスゾーンは1つであり、空間的周波数利用率の向上技術は適用できないので、総合周波数利用率はη_Tのみに比例する。一方、自動車電話のような小ゾーン方式の場合には総合周波数利用率はη_T×η_Sに比例する。また小ゾーン方式の場合、例えば、後述する高信頼度変調方式のように、多値化によってη_Tは向上するがη_Sは低下するものもある[4]

したがって、周波数有効利用技術を開発する場合には、各種技術によりη_Tがどの程度向上するか、またどの様な技術の組合せが効果的であるかを判断する必要がある。

そこで本論文では、各種周波数有効利用技術の中でも特に、変復調技術を中心とした技術を紹介すると共に、それらを適用した場合の周波数利用率の向上度について検討する。また、今後高度移動通信サービスを実現する上で、周波数有効利用技術をどの様な目標で開発するべきであるかについても述べる。

2. 陸上移動通信における周波数利用率の定義

陸上移動通信における総合周波数利用率η_Tは、単位周波数及び単位面積当たりどれだけの呼量を伝送できるかで定義でき、次式で表される[5]。

\[\eta_T = \frac{n_{rms} \cdot \eta_S}{SW} \] (erl/Hz-m²) \[\cdots (1) \]
\[n_{zone}(ch/zone) = \frac{W}{A_f \cdot L} \quad (ch/zone) \quad \cdots (2) \]
\[n_r = n_b \cdot n_a = \frac{1}{S} \left(\frac{1}{A_f} a_c \right) \quad \cdots (3) \]
\[n = \frac{1}{S} \left(\frac{1}{A_f} a_c \right) \quad \cdots (4) \]
\[n_f = \frac{1}{A_f} (ch/Hz) \quad \cdots (5) \]
\[n = \frac{1}{A_f} (ch/erl) \quad \cdots (6) \]

となる。また大ゾーン方式の場合は \(L = 1 \) に相当する。

さて、述べたように、\(n_r \) については既に 75 パーセント程度の値が得られており、これ以上の大きな向上は見込めないので、システムの周波数利用率を更に大きく向上させるには、\(n_f \) と \(n_r \) を向上させる必要がある。

\(n_f \) は \(A_f \) に対反比例し、\(A_f \) は階段干渉特性から決まる。一方 \(n_r \) は \(L \) 及び \(S \) に反比例する。このうち \(L \) は同一干渉特性で決まり、\(S \) は伝搬特性、システムコスト、所要加入者数等で決まる。

3. 階段干渉干渉と周波数軸上の周波数利用率向上技術

3.1 階段乾燥干渉問題とその対策技術

\(\delta f \) を高くするには、第 1 図に示すように、階段するチャネルとスペクトルの重ならない程度に 1 チャネル当たりの帯域をできるだけ狭くする必要がある。また、送信機の搬送周波数の安定度は \(+1 \times 10^{-6} \) であり、搬送周波数が 1 万周程度の場合、\(+1 \times 10^{-6} \) 程度の不確定性を持っている。したがって階段干渉間隔の設定においては、この影響を避けるためのガードスペースも設定する必要がある。

【図 1】波上行動通信におけるチャネル割当

伝送する情報のビットレートを \(f_a \)、ロールオフフィルタのロールオフを \(a \)、変調方式の多値数 \(M \)、搬送周波数の安定度を \(\delta \)、搬送周波数を \(f_c \) とするとき、

ガードスペースまで考慮して階段チャネル干渉が発生しないための周波数間隔 \(A_f \) は,

\[A_f = \frac{(1 + a) f_c \delta f_c}{\log_2 M + \delta f_c} \quad \cdots (7) \]

となる。

また、適当な階段干渉除去方式を適用することによって

\[A_f = \Delta f \cdot \log_2 M \quad \cdots (8) \]

だけでも十分個隔が図れたとすると、\(A_f \) は次式のようになる。

\[A_f = \frac{(1 + a - \delta f_c) f_c}{\log_2 M} + \delta f_c \quad \cdots (9) \]

\[f_c = \frac{(1 + a - \delta f_c) f_c}{\log_2 M} \quad \cdots (10) \]

ここで \(f_c \) は、\(\delta = 0 \) の場合の階段干渉を示す。

したがって、階段チャネル干渉の影響を避けるための技術としては、以下の 5 つが考えられる。

1. 音声 codec の低ビットレート化
2. ロールオフフィルタのロールオフ音の低減
3. 階段干渉干渉除去方式の適用
4. 変調方式の多値化
5. 搬送周波数の安定化

この中で、\(\delta f_c \) は、\(f_c = 1 \text{GHz} \)、\(\delta = 1 \times 10^{-6} \) の場合 1 万周程度であり、\(A_f \) が 25 万周程度の場合は \(\delta f_c / A_f \) は十分小さいのでより問題とならない。しかし、(1)～(4) の技術の適用による \(A_f \) の縮小に伴い、\(\delta f_c / A_f \) は無視できなくなる。

一方、近年盛んに研究されている TDMA (Time Division Multiple Access) [10] によって \(K \) チャネル多重するとき、\(\delta \) の影響は等価的に \(\delta f_c / K \) となる。したがって、(1)～(4) の技術によって狭帯域化された信号を TDMA によって多重化すれば、搬送周波数を高安定化しなくても \(\delta \) の影響を小さくすることが可能である。実際、TDMA 技術は陸上移動通信においても実用可能なレベルに達しつつあるので、ここでは \(\delta \) の影響について考えないことにする。

また式(8)において、スペクトルが全く重ならないという条件で階段干渉間隔を計算したが、この実際にはフィルタの帯域外スペクトルを完全になくすることはできなかった。その場合、希望信号と階段チャネル干渉の電力比 \(C / I_a \) をどの程度許容するかが問題となる。特に陸上移動通信においては、希望移動局とサービスゾーンの間において階段干渉が無線基盤局近傍にいる場合、階段チャネル干渉は深刻な問題（適正距離）となる。そのため、通常、陸上移動通信システムでは、\(C / I_a \) が -40～
-45 dB 程度まで通信可能（誤り率が 10^{-2} 程度）となる
ように設定される。したがって、周波数軸の周波数利
用率向上に寄与するためには、許容 C/I_{N} を 40～45 dB
に設定した場合に、(1)～(4)の技術がチャネル間隔の縮小
にどの程度有効であるかを検討することが重要となる。
そこで、以下、(1)～(4)の各技術について説明する。

3.2 低ビットレート音声 codec

現在アナログ方式を適用した陸上移動通信では、チャネ
ル間隔 12.5 kHz で運用されている。また、RZ-SSB (Real
Zero Single Side Band) 等を適用すると、チャネル間隔 5 kHz が可能となる。一方、音声伝送に
ディジタル方式を適用すると、アナログ方式では実現で
かないような伝送帯域の狭帯域化も可能となることから、
これまで多くの研究機関において低ビットレート音声
codec の研究が行われてきている。

音声 codec は、大きく分けると以下の 2 種類に分類
できる。1)

1) 波形符号化

音声信号の波形をサンプリングする方式である。ただ
し、波形のサンプル値間には強い相関があるので、
符号の相関のある情報を除去して低ビットレーテ
コード化後、9.6 kbit/s 以上のビットレートで良好な
音質が得られる。

ADM (Adaptive Delta Modulation), APC-AB (Adaptive
Predictive Coder Adaptive Bit Allocation) 等が波形符号化の代表的なものである。

2) 分析合成符号化

複数のパルス列または乱数列を音源として、これら
音源を音声の特性を近似したフィルタに入力すること
によって音声信号を合成する方式である。4.8 k～8
kbit/s でも良好な音質が得られる。

CELP (Code Excited LPC) や VSELP (Vector
Sum Excited LPC) 等が分析合成符号化の代表的な
ものである。

分析合成符号化は、波形符号化と比べて音声 codec
の低ビットレート化に向いているが、低ビットレート化
するほど情報の冗長性が失われanchor、伝送路の誤りに
弱くなる。しかし、最近では、各情報の誤りの影響の度
合に応じて誤り訂正符号による保護をかけることにより、
伝送路誤りに強いになってきている。現在のところ、CELP
や VSELP 等を用いた場合、誤り訂正符号まで含めて
11 k～13 kbit/s で音声伝送が可能となっている。また、
近い将来、5.5 k～6.5 kbit/s 程度の低ビットレート化
も可能になると考えられる。したがって、CELP や
VSELP を用いると ADM 等と比べて 2.5～3 倍の周
波数利用率の向上が期待できる。

3.3 フィルタによる帯域制限

フィルタによって伝送帯域を帯域制限する場合、帯域
制限を厳しくするとフィルタのインパルス応答長時間
が長くなり、接続するシンボルによる干渉（符号間干渉）
の影響が出る。

リアルオフフィルタは、シンボルのデータ判定点にお
いて符号間干渉が 0 になるタイミングを正確にフィルタ
であり、かつ帯域外スペクトルの抑圧度が高いフィルタ
である。

第 2 圖に、E_b/N_0=20 dB, C/I_{N}=-45 dB とした場
合の、\(\Delta f \) 対する信号電力対ノイズ電力の比 (S/N)
を示す。

理論的には \(\Delta f = (1+\alpha)T_s \) であれば接続チャネル
干渉の影響は排除できるが、実際には帯域外スペクトル
を完全に消することは不可能である。\(\Delta f = (1+\alpha)T_s \)
において特性が若干劣化している。さらに、\(\Delta f \) が
(1+\alpha)T_s より小さくなると、S/N が -29 dB (0.1/T_{s})
の割合で小さくなる。

また、第 2 図より、\(\alpha \) を小さくするとチャネル間隔を
狭くすることができるが、これは \(\alpha \) を小さい
と。

[1] インパルス応答が長くなるため、ハードウェア規模
が大きくなる。
[2] 遅延差の影響を受けやすくなる
などの問題が発生する。また、伝送速度が 16 ksymbol/s
の情報はチャネル間隔 25 kHz で伝送する場合、\(\alpha = 0.5 \)
とすると \(f_{0} = 24 kHz \) となり、従来のチャネル分配
方式と競合性が良い。以上のことから、陸上移動通信では
\(\alpha = 0.5 \) 多く検討されている。

一方、(1)/(2) の問題が解決すると仮定した場合には、\(\alpha = 0.2 \) 程度も現実的になっているが、その場合、周波数
利用率の向上度は約 25％程度である。したがって、ロー
ラテン率を小さくする効果は、周波数利用率を上げるとい
うよりむしろ接続チャネル干渉に対する劣化を抑える
のに有効と考えられる。

3.4 隣接チャネル干渉波除去技術

隣接チャネル干渉波除去技術を適用すると、フィルタ
によって除去されない隣接チャネル干渉波を除去する
ことが可能となる。陸上移動通信においてこれで検討
された隣接チャネル干渉除去方式とは、以下の 2
つがある。

(1) 受信側が隣接チャネル干渉波を推定する機能を持ち、
推定値を用いて受信信号から隣接チャネル干渉波を除
去する方式
(2) 適応等化器によってフィルタ出力の信号対干渉電力
比が最大となるように等化器のタップ係数を制御する
ことによって、接続チャネル干渉を効率よく除去する方式を用いることができ、これらを用いることができる。これらの詳細については、本稿の詳細を参照すること。1例を示す。第33図に、適応系を用いる干渉を除去する方法を示す。

3.5 高能率変調方式

これまで、陸上移動通信において最も多くの研究がなされてきた変調方式は、GMSK（Gaussian-filtered Minimum Shift Keying）であり、ヨーロッパのGSM（Group Special Mobile）システムにおいて採用されている。しかしながら、GMSKは1シンボル当たり1ビットしか伝送できない。それにに対し、1シンボル当たり2ビットも伝送できる高能率変調方式を採用すると、GMSKに対して1/2倍以下になることが可能である。そこで、高能率変調方式の適用の可能性を考える。高能率変調方式としては、相位PSK（Phase Shift Keying）と多値QAM（Quadrature Amplitude Modulation）が考えられる。4番線に、レイラインマージリング下で同一チャネル干渉を受ける場合における誤り率（BER：Bit Error Rate）10^{-3}を得るためのC/I_0の理論値を示す。ここで、各変調方式の検波方式はグレイ符号化、及び絶対値相同期検波を採用しているものとする。

QAMとPSKを同じ多値数のものと比較すると、QAMの方が信号点間距離を大きくとることができるため、同一のBERを得るための所要C/I_0が小さくなる。したがって、高能率変調方式としてはQAMの方が適していると考えられる。多値変調を適用した場合のGMSKを基準としたη_Tの向上度は、QPSKの場合2倍、16QAMの場合4倍となり、η_Tは大きく向上する。ただし、これらの場合は、フェージング下で正常に動作することが必要条件となる。これについては、最近、いくつかの研究が行われており、本稿の詳細を参照すること。1例を示す。
4. 同一チャネル干渉と空間的周波数利用率向上技術

4.1 同一チャネル干渉問題とその対策技術

第7図に、繰り返しゾーン数Lが7の場合の小ゾーンシステムのセル構成を示す。主セルに対して同一チャネル干渉を与えるセルは、主セルを同心円に囲む6つとなる。また、Lが小さいほど移動局と干渉局の間隔が短くなるため、同一チャネル干渉が増えることが示される。

Lは、所要平均$C/I_{c}(=X(dB))$を設定し、主セル内でC/I_{c}が$X(dB)$を下回る確率（劣化率：$P(C/I_{c} \leq X)$）が規定値P_{0}%以下となる値に設定する。ここで$P(C/I_{c} \leq X)$は、次式で与えられる。

$$P(C/I_{c} \leq X) = \frac{1}{\sqrt{2\pi}(\alpha_{0}^{2} + \alpha_{1}^{2})} \int_{-\infty}^{x} \exp \left[-\frac{x^{2} - 10 \log \left(\frac{r_{0}^{-10} 10^{(C/I_{c})/10}}{2(\alpha_{0}^{2} + \alpha_{1}^{2})} \right)^{2}}{2(\alpha_{0}^{2} + \alpha_{1}^{2})} \right] dx \cdots(5)$$

r_{0}：基地局から移動局までの距離
r_{i}：i番目の干渉局から移動局までの距離
k：伝搬損失係数
α_{0}：主波の短区間平均値の偏差
α_{1}：干渉波の短区間平均値の偏差
$G(\theta)$：主波の基地局アンテナの指向性
$G(\theta)$：i番目の干渉局のアンテナの指向性

第6図 同一チャネル干渉モデル

第7図 小ゾーンシステムの同一チャネル干渉モデル
となる。ここで \(G(\theta) \) 及び \(G'(\theta) \) が \(\theta \) 依存性を持たない場合はオムニゾーン構成。\(\theta \) 依存性を持つ場合はセクタゾーン構成となる。また、同一チャネル干渉は、お互いに独立にリーフェリングを受けるとともに、希望波及び干渉波の短区間中央値変動は対数正規分布するものとする。

第8図に、\(k=3.5 \)、\(\sigma_t=6 \) dB でオムニゾーン構成の場合の平均 \(C/I_c(X=X) \) に対する \(P(C/I_c \leq X) \) 特性を示す。劣化率10％を得るために所要 \(C/I_c \) は、7、9、12ゾーン繰り返しの場合、それぞれ9dB、10.5dB、14dBとなることがわかる。（32）

また、多値変調方式のように信号間距離を狭くすることによって \(\eta_t \) を向上させる方式の場合、多値化に伴って \(C/I_c \) に対する BER 特性が劣化する。したがって、\(\eta_t \) は、\(\eta_t \) の向上と \(\eta_t \) の劣化のトレードオフで決まるところに注意することの必要がある。

\(\eta_t \) を大きくするには繰り返しゾーン数を小さくする必要がある。その対策としては、以下の2つの考えられる。

1. 同一チャネル干渉に対する BER 特性を向上させる。
2. 規定誤り確率を与える \(C/I_c \) を小さくする。

4.2 同一チャネル干渉に対する BER 特性の向上技術

同一チャネル干渉に対する BER 特性を向上させる技術はいくつかあるが、3.5で述べた高能率変調方式を前提としても、ダイバーシチやトラシス符号化多値変調の適用が有効である。

ダイバーシチは、2 ラニッシュ選択型ダイバーシチを適用した場合、\(BER=10^{-2} \) において6.0dB、\(BER=10^{-3} \) において10.5dB。所要 \(C/I_c \) を低減することができる（30）、また、ダイバーシチはアナログ大容量自動車電話方式にも適用されており、すでに商用レベルにある有効な技術である。

トレスィ符号化変調方式とは、\(2^{m}\) QAM と符号化率 \(n/(n+1) \) の組み込み符号を組合せ、ビタビシゴリズムによって復号するものである（31）。また、多値化に伴って信号間距離が減少し、伝送品質が低下することを避けるため、信号点間の最大自由ルート・レッド距離が等値的に大きくなるように、信号点配置及びデータ判定方式を工夫した変調方式である。トレスィ符号化変調方式の最大の利点は、帯域の拡大をせずに符号化利用が得られる点である。トレスィ符号化変調を適用した場合を詳細に示すことができるが、インタープ、ソノスの併用により1～3dBの利用が得られる（38）。

4.3 同一チャネル干渉の発生を低減する技術

同一チャネル干渉の発生を抑圧する技術として、第9図に示すように、基準波のアンテナに指向性をもたせ、セル内をセクタ化するセクタゾーンが有効である（32）。また、セクタ化の周波数利用率は、アンテナの指向性パターン、ゾーン配置方式等により異なる（31）（32）。

第10図に、1セルを3セクタに分割した場合の、平均 \(C/I_c(X=X) \) に対する \(P(C/I_c \leq X) \) 特性を示す（33）。

劣化率10％を得るための所要 \(C/I_c \) は、3、4、7、9ゾーン繰り返しの場合、それぞれ9dB、12dB、14.5dB、17dBとなっている。また、第8図のオムニゾーンの場合と比較すると、例えば \(C/I_c=9 \) dB の点では繰り返しゾーン数が7ゾーンから5ゾーン、\(C/I_c=14 \) dB の点で12ゾーンから7ゾーンへと大幅で低減でき、\(\eta_t \) の向上度は2.3～3倍であることがわかる。

その他、同一チャネル干渉を軽減する技術として、同一ゾーン内の空きチャネルから、所要 \(C/I_c \) を満たすチャネルを選び出して、選択する tomatoes・çois切り替え方式（39）や送信断電を制御する送信電力制御方式（39）がある。これらの技術は既にアナログ大容量自動車電話方式で採用されており、場所率90％において、送信断電・チョイス切り替え方式の場合に3dB、送信電力制御方式の場合1～2dB、同一チャネル干渉量の平均値を低減できることが知られている（39）。また、これらの方式は、システム全体の平均的な特性的向上に他に、高層ビル群や高速道路など、経的で伝搬環境が劣化する地域における特性劣化の補償に適している。
4.4 マイクロセル方式

マイクロセル方式は、セル半径を1/2にするとηeが\(r^2 \)倍になることから、加入者密度を大きく向上できる技術として、近年精力的に研究されている技術である。マイクロセル方式の利点は以下のことが考えられる。

1. システムの大容量化が可能である
2. セル半径の縮小により送信電力が低減できるので、ハートウェアの小型化が容易になる
3. アンテナ高を、周囲のビルより低くできるため、遅延時間の長い遅延波の発生を抑えることができる

一方、欠点として、以下のことが考えられる。

1. 基地局数が非常に多くなる
2. 高速のハンドオフが必要になる

(3) セル半径が数100 m以下になると、電波が道路沿いに伝播し、伝播モデルは円形ではなく複雑な形となるため、回線設計が複雑になる。

特に、上記(1)/(2)の欠点は、加入者容量の増大のために、加入者当たりのシステムコストを抑える上昇の可能性をはらんでおり、今後、コストと提供サービスの質を総合的に検討する必要がある。

5. 高度移動通信サービスを実現するための
周波数有効利用技術開発目標

以上の議論を基に、各種技術による周波数利用効果をまとめると、第1表のようなになる。

第1表より、周波数利用率の向上には、以下の技術が有望であることがわかる。

(1) \(\eta_1 \) 向上技術
5 kbit/s程度の低ビットレート音声 codec
高能率変調方式（多値 QAM）
(2) \(\eta_2 \) 向上させる技術
セクタ化、マイクロセル

そこで、これらの技術を複合すると周波数利用率がどの程度向上するかを検討する。また検討の前提条件は、CCIRのIWP8/13の結果を用いる。

第2表に、IWP8/13における検討の前提条件を示す。移動局として、車載局及びパーソナル局を考え、パーソナル局については、車載及び屋内（ビル内）について検討している。また、伝送メディアとして、音声及びテキストを対象とする音声信号である。

その結果、21世紀始めに、音声サービスにおいて111 MHz、非音声サービスにおいて65 MHz、合計約176 MHzの帯域が必要であると報告されている。この帯域は、現在の公衆移動通信に使用されている帯域よりもはるかに広い帯域であると共に、新たなサービスの需要が考えられる。将来の通信電波需要がこの予測をはるかに超えることを考えると、さらに周波数有効利用を進めることになる。

ここで、音声 codec、セクタ化、マイクロセル化については第1表とは異なる値が使用されている。このことと、マイクロセル化は、システムコストの上昇を招き、公衆移動通信の普及を阻害する恐れもあることを考えると、さらに大きく周波数利用率を向上させ、高度なサービスを導入するためには、高能率変調の適用が残された選択となる。

そこで、変調方式として16 QAMを適用した場合の所要周波数帯域を計算する。16 QAMを適用する場合、伝送帯域を1/4にすることが可能となるので、第2表で
<table>
<thead>
<tr>
<th>対策技術</th>
<th>基準条件</th>
<th>対策後</th>
<th>向上後</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>コード</td>
<td>16 kbit/s</td>
<td>5 kbit/s</td>
<td>～3倍</td>
<td>ロールオフ率: 0.5</td>
</tr>
<tr>
<td>干渉波除去</td>
<td>なし</td>
<td>あり</td>
<td>～1.15倍</td>
<td>干渉マージンを確保し有効</td>
</tr>
<tr>
<td>極値方式</td>
<td>GMSK</td>
<td>QAM</td>
<td>＞4倍</td>
<td>多重化に伴いMsが劣化する</td>
</tr>
<tr>
<td>インターリプ配置</td>
<td>なし</td>
<td>あり</td>
<td>1.5～2倍</td>
<td></td>
</tr>
<tr>
<td>ダイバシティ</td>
<td>なし</td>
<td>あり</td>
<td>1.5～2倍</td>
<td></td>
</tr>
<tr>
<td>チャネル伝送方式</td>
<td>なし</td>
<td>あり</td>
<td>～1.3倍</td>
<td></td>
</tr>
<tr>
<td>セクタ設定</td>
<td>なし</td>
<td>あり</td>
<td>＞2.5倍</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>対策技術</th>
<th>基準条件</th>
<th>対策後</th>
<th>向上後</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>電波導入・チャネル切り替え方式</td>
<td>なし</td>
<td>あり</td>
<td>1～1.3倍</td>
<td>局部的な伝播特性の劣化対策として有効</td>
</tr>
<tr>
<td>信号強度制御方式</td>
<td>なし</td>
<td>あり</td>
<td>1～1.3倍</td>
<td></td>
</tr>
<tr>
<td>マイクロセレクタ化</td>
<td>半径3 km</td>
<td>半径700 m</td>
<td>＞20倍</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>特 徴</th>
<th>車載局</th>
<th>パーソナル局</th>
</tr>
</thead>
<tbody>
<tr>
<td>セルプラン</td>
<td>MS</td>
<td>P S</td>
</tr>
<tr>
<td>セル面積</td>
<td>0.47 km²</td>
<td>0.014 km²</td>
</tr>
<tr>
<td>基地局アンテナ高</td>
<td>50 m</td>
<td>＜10 m</td>
</tr>
<tr>
<td>サービスエリアの伝播特性（場所率）</td>
<td>90%</td>
<td>＞90%</td>
</tr>
<tr>
<td>基地局配置</td>
<td>なし</td>
<td>あり</td>
</tr>
<tr>
<td>電波導入</td>
<td>なし</td>
<td>あり</td>
</tr>
<tr>
<td>電波導入</td>
<td>なし</td>
<td>あり</td>
</tr>
<tr>
<td>電波導入</td>
<td>なし</td>
<td>あり</td>
</tr>
<tr>
<td>双方向帯域</td>
<td>音声</td>
<td>10 kHz</td>
</tr>
<tr>
<td>非音声</td>
<td>50kHz</td>
<td>50kHz</td>
</tr>
<tr>
<td>繰り返しゾーン数</td>
<td>4 (4セクタ)</td>
<td>4 (4セクタ)</td>
</tr>
<tr>
<td>面積当りの音声</td>
<td>非音声</td>
<td>0.10 E</td>
</tr>
<tr>
<td>0.05 E</td>
<td>0.004 E</td>
<td>0.11 E</td>
</tr>
<tr>
<td>面積当りの音声</td>
<td>500 E</td>
<td>1500 E</td>
</tr>
<tr>
<td>82 E</td>
<td>150 E</td>
<td></td>
</tr>
<tr>
<td>呼台同期</td>
<td>2 %</td>
<td>1 %</td>
</tr>
<tr>
<td>移動局の重量</td>
<td>小さな程度</td>
<td>＜200 cm²</td>
</tr>
<tr>
<td>5 W</td>
<td>50 mW</td>
<td>10 mW</td>
</tr>
</tbody>
</table>

*1: または循環同軸ケーブル
*2: ビルのフロア当たり

検討されたサービスを実現するための所要帯域幅は、約44 MHzとされる。この帯域幅は、現行のアナログ自動車電話方式と同程度で現実的な値である。また、これにより1.5 G～3 GHz帯まで含めて考えれば、画像伝送やISDN対応の高速データ伝送をサービスするための帯域をも確保できるので、公衆移動通信をさらに魅力あるシステムにすることが可能となる。

したがって、今後、各種周波数有効利用技術を総合的に開発していく必要があるが、その中でも、特に高帯域変調技術の開発が重要と言える。
6. ま と め
陸上移動通信において、変調調制法を中心とした各種
周波数制御技術の有効利用技術、及びその効果について調査実験を
した。また、将来の公衆陸上移動通信の周波数制御の解消
新たなサービスの実現による公衆移動通信サービスの高
度化のためには、従来多く検討されてきた低ビットレー
ト音声 codec、セクタール化、マイクロゾーン化に加え
て、高能率変調方式の開発が特に重要であることを示し
た。

謝 辞
本検討に際し、ご支援頂いた中村氏、総研、周波
数制御利用技術においての要指導頂いた村上氏総研
通信部長、筆頭関係者、久保田主任研究官、大原技
術、管内局長を始めとする通信方式研究室各位に感謝致
します。

参考文献
(1) 後藤信雄、"小容量用ディジタル聲音情報投入方式 (DSI)
及びその特性"、電気機、31, 161, pp.159-165, 1985
年12月。
(2) 坂本, 泽, 藤井、"大容量移動通信方式における周
波数制御利用技術" 通研深発、35, 10, pp.989-996,
1989年10月。
(3) 桑原守二、監修、"自動車電話"、pp.93-95、電子
情報通信学会、1985年。
(4) 古谷, 金井, 並木、"大容量移動通信方式システム
へのアプローチ"、昭63電気学会春季大会、SB6-98,
1988年3月。
(5) 三瓶政一、"陸上移動通信用高能率変調方式の必要
通信電力と周波数利用率の検討"、1989年電気学会春
(6) Y. Nagata and Y. Akaiwa, "Analysis for
Spectrum Efficiency in Single Cell Trunked
System and Cellular Mobile Radio", IEEE
August 1987.
(7) J. Uddenfeldt and B. Persson, "A Narrow-
band TDMA system for a new generation
of cellular radio", 37th IEEE Vehicular Tech-
(8) 大黒一弘、"移動通信用 SSB、フェージング干渉に
強い RZ SSB"、信学誌、73, 5, pp.508-514、1990
年5月。
(9) 小沢一範他 (河野隆二監修)、"移動通信のディジ
タル化技術、7章 音声符号化技術"、トリケッブス
出版、1990年4月。
(10) I. Gerson, "Vector Sum Excited Linear
Prediction (VSELP)"、IEEE Workshop on
Speech Coding for Telecommunication, pp.66-
68, 1989。
(11) 木下, 三瓶、"SP-NRZ 多重符号において適応効
果を用いた接続チャネル干渉除去方式"、信学技
報、CS87-137, 1988年1月。
(12) S. Sampei and M. Yokoyama "Rejection
Method of Adjacent Channel Interference for
Digital Land Mobile Communications", Trans.
IECE Japan (Letter), E69, 5, pp.578-
580, May 1986。
(13) 木下, 三瓶、"適応等化器を用いた接続チャネル干
渉除去方式"、信学論 B, 71-B, 10, pp.1119-1126,
1988年10月。
(14) 三瓶政一, "III-1 BPSK における接続チャネル干
渉除去方式"、通信総研、37, 1, pp.67-74,
1991年2月。
(15) 木下、木下、"III-5 適応等化器を用いた接続チャ
ネル干渉除去方式" 通信総研、37, 1, pp.75-84,
1991年2月。
(16) K. Murata and K. Hirade, "GMSK modula-
tion for mobile radio telephony", IEEE Trans.
Commun. COM-29, 7, pp.1044-1050, July 1981。
(17) P. Martin, A. Bateman, J.P. McGeehan and
J.D. Marvill, "The Implementation of 16 QAM
Mobile Data System using TTIB-Based fading
Correction Techniques", 38th IEEE Vehicular
technology Conference, Philadelphia, pp.71-76,
June 1988。
(18) 三瓶政一、"陸上移動通信用 16 QAM のフェージ
ングひずみ補償方式"、信学論 B-II, J72-B-II, 1,
pp.7-15, 1989年1月。
(19) 三瓶政一、"IV-1 多値 QAM におけるフェージン
グひずみ補償方式"、通信総研、37, 1, pp.87-98,
1991年2月。
(20) 木下、三瓶、"IV-2 16 QAM の装置化とその特性"、
通信総研、37, 1, pp.99-107, 1991年2月。
(21) 木下、三瓶、"IV-3 16 QAM ボイスシャンプ受信特
性" 通信総研、37, 1, pp.109-112, 1991年2月。
(22) 奥村、進士、監修 "陸上移動通信の基礎 8-9 章,
電子情報通信学会、1986年10月。
(23) 中嶋、中野、"セクタールの周波数利用率"、信学
t技報、RCS89-18, 1988年7月。

神尾秀夫, "IV-4 陸上移動通信におけるトレリス符号化変調の誤り率特性", 通信総研季, 37, 1, pp.117-121, 1981年2月.

古谷之整他 (河野隆二監修), "移動通信のディジタル化技術, 1章 移動通信の概要", トリケップス出版, 1990年4月.