IV-1 多値 QAM におけるフェージングひずみ補償方式

三瓶 政一*
(1990年7月20日受理)

IV-1 RAYLEIGH FADING COMPENSATION METHOD FOR MULTI-LEVEL QAM FOR LAND MOBILE COMMUNICATIONS

By

Seiichi SAMPEI

1. はじめに

陸上移動通信においては、近年の精力的な研究開発により、GMSK(1)(Gaussian-filtered Minimum Shift Keying) に代表される帯域制限無線周波数制限方式を用いると、25kHzのチャネル間隔で、アナログ FM とほぼ同様の音声伝送が実現できるようになった。また、伝送特性の解明(2), ダイバーシティ(3)や誤り制御技術(4)等の伝送品質改善技術も進められて、ファクシミリ、データ等の伝送品質がかなり向上した。その結果、ディジタル陸上移動通信は、自動車両帯の広域移動性と各種端末のコードレス化の融合により、いつでも、どこからでも通信システムへのアクセスを可能にする、利便性の高い手段と変わりつつある。

その中でも、特に、電話、ファクシミリ、パーソナルコンピュータ等を含むオフィス空間の一部を移動体に移す「移動体オフィス」の実現、及び、その際に、移動体からISDN通話へアクセスする「移動体ISDN」の実現に大きな期待が集まっている。

このような利便性の高いシステムを構成する場合、ファクシミリ、パーソナルコンピュータなどの伝送速度が、ISDNイントフェースを考慮して64kbit/sへ統合されるつつあること、ISDN網において、2B+D(2つの情報チャネルと1つのデータチャネルを複合伝送する機能)のユーザインタフェースであるIインタフェースの伝送速度が192kbit/sであること等を考慮すると、将来の陸上移動通信においては、1ユーザ当たり、64k~200kbit/s程度の高速伝送機能が必要となる。ただし、チャネル数の確保も重要な課題である陸上移動通信においては、利便性の向上と共に、周波数利用率の向上をはかりつつ、上記のような高速伝送を実現する必要がある。

従来、地上マイクロ波通信で多く検討されてきた、多値QAM(直交振幅変調：Quadrature Amplitude Modulation)(6)(7)に代表される高能率変調方式は、帯域を拡大せず、多値化によって伝送速度の高速化を図る方式であるので、そのような要求に十分に合致した技術である。しかし多値QAMは、フェージング変動に弱く、その補償が困難と考えられてきたため、これまでほとんど検討されてなかった。

そこで、本論文においては、陸上移動通信に多値QAMを導入する際の最大の課題である、フェージングひずみ補償方式として、バイロットシンボル挿入型フェージングひずみ補償方式を提案する。また、提案方式を用いた場合の誤り率(BER：Bit Error Rate)特性、同一チャネル干渉特性、及び、大ノイズ方式又は小ノイズ方式に提案方式を用いた多値QAMを適用した場合の周波数利用率について述べる。

更に、多値QAMを用いる場合、伝送帯域が50kHz以下の帯域内伝送で64k~200kbit/sの高速伝送が実現できるので、GMSK等を用いた場合と比べて周波数選択性フェージングの影響を軽減することができる。そこで、本検討においては、周波数選択性フェージングの影響はないものとし、イザフェージング（レイリーフェージング）対策の有無を考えることとする。
2. 多値 QAM を陸上移動通信へ適用する場合の問題点

多値 QAM を陸上移動通信へ適用する場合、解決すべきいくつかの問題点がある。

まず、移動局では送信電力が限られているため、電力効率の高い送信増幅器を用いる必要がある。この対策としては、最近、非原線増幅器とリニアライザの組み合わせられ、解きの目途がかかったつつある。

そこで、今回検討では、この問題は除外する。

一方、受信局においては、
① 再生搬送波の位相ジッタの抑圧
② フェーリングによる振幅・位相ずれの抑制
という課題がある。

従来、GMSK や QPSK においては、搬送波の位相ジッタの抑圧およびフェーリングによる位相ずれの抑制は、搬送波再生回路によって、また、フェーリングによる振幅ずれの抑制は AGC（Automatic Gain Controller）によって行ってきた⑤。

この方法を、そのまま多値 QAM に適用する場合、まず搬送波再生回路においては、再生搬送波の位相ジッタを 2 ~ 3 (Deg) に抑えつつ、フェーリングによる位相変動を精度よく推定する必要がある⑤。ここで伝送速度が 16 ksymbol/s の場合を想定すると、まず前後の要求を満たすためには、搬送波再生回路の等価帯域帯域幅 (B_a) を数 10 Hz 程度に設定する必要がある。それに対して、後者の要求を満たすためには、B_a > 1 kHz が必要条件となる⑤。したがって、この両者の要求を同時に満たすことはできない。

また、AGC によりフェーリングの振幅ずれを補償する場合、補償を十分に行うためには、AGC の定時数 (τ) を 1 msec 以下で設定する必要がある。しかし、伝送速度が 16 ksymbol/s の場合、τ 10 msec すると、変調による振幅変動まで補償してしまう⑤。

したがって、多値 QAM を陸上移動通信へ適用する場合、従来用いられてきた受信値基準をそのまま適用することは不可能であると言える。

そこで、次章において説明する、新しい原理のフェーリング補償方式及び送受信装置基準を提案する。

3. フェーリングずれ補償方式の原理と構成

3.1 フェーリングずれ補償の原理

陸上移動通信においては、移動局のアンテナ高が 1~3 m と非常に低いため、通常は、移動局から基地局が見えない、見通し外通信となる。したがって、移動局では、第 1 図に示すように、あらゆる経路を通過した電波が受信される。この時、各波の到達角を θ_l とすると、各到達波は、f = f_d cosθ_l (f_d は、最大フェーリング周波数であり、移動体の前方から到来する波のフェーリング周波数に相当する) のドップラーシフトを受ける。

移動体における受信信号は、このようにフェーリング周波数の違う波の合成波となる。したがって、受信信号 s_p(t) は、通常、161312 のパワースペクトル S(f) の単純インラインラム信号 c(t) が、送信信号 s_p(t) に乗積されたものでモデル化される⑤。

\[
S(f) = \begin{cases} b_0 & \text{for } f = f_d \sqrt{1 - (f/f_d)^2} \\ -f_d \leq f \leq f_d & \text{for } f \neq f_d \\ 0 & \text{otherwise} \end{cases}
\]

ただし、b_0 は平均受信電力である。

したがって、受信信号 s_p(t) は、

\[
s_p(t) = c(t) s_p(t)
\]

とできる。

一方、c(t) は複素数なので、c(t) を

\[
c(t) = c_1(t) + j \cdot c_2(t)
\]

\[
= r(t) \exp(j \phi(t))
\]

と極座標系に変換して考えると、フェーリングは「受信波の振幅 r(t) 及び位相 θ(t) が時間と共に変動する現象である」と考えることができる。この場合、r(t) の確率密度関数が、多くの場合レイリー分布に従うため、このようなフェーリングをレイリーフェーリングと呼ぶ。

レイリーフェーリング下で QAM 波を伝送すると、第 2 図(a)～(c)に示されるように、フェーリングの振幅及ぶ位相変動によって、信号空間ダイアグラムの、大きさ及び傾きが変化する。ただし全体の形は保存される。したがって、受信時に、信号空間ダイアグラムのある 1 点（例えば第 2 図の A 点）が常にどこにあるか推定できれば、各点の相対位置関係から、信号シンボルが推定でき、データを復号することが可能となる。

そこで、送信時に、第 3 図のフレーム構成に従って、周期的にバイロットシンボル（第 2 図の A 点）を送信する。これにより、受信に、バイロットシンボル受信タイミングにおける A 点の位置を検出することができる。
第2図 レイリーフェージング下におけるQAMの信号空間ダイヤグラムの変化

きる。例えば、第2図(d)〜(e)の場合、A点の位置は、
第2図(d)の a~c となる。

一方、フェージング変動は、(1)式に示されるように、
帯域制限されたガウス過程なので、A点の軌跡は滑ら
かに変動すると考えられる。したがって、第3図(d)の様
に、A点の軌跡を滑らかに内挿すれば、パイロットシン
ボル以外のシンボル（情報シンボル）におけるA点
の位置の推定が可能となり、データが復号できる。

3.2 送受信機構成

第4図に、QAM送信機構成を、また、第5図に、
16QAM、64QAM、256QAMの信号空間ダイヤグラム
を示す。

まず、S/P（Serial to Parallel）変換器によって、
送信データを$log_2 M$ビット（Mは選択できる信号点
の数であり、例えば16QAMの場合16である）のパラ

レルデータに変換する。このビット数は、1つのシンボ
ルで送信できるビット数に相当する。またその情報を基
に、ベースバンド信号発生器において、第5図(a)〜(c)に
示される信号点から該当シンボルを選択し、ベースバンド
信号とする。

パイロットシンボル挿入部では、第4図のフレーム構
成に従い、情報シンボルN-1個ごとに1個（Nはフレ
ーム長）、フェージングひずみ測定用に、既知のパイ
ロットシンボルa_Pを挿入する。ここでは、a_Pとして
は、第5図(a)〜(c)のA点を用いることにする。したがっ
て、a_Pの値としては、

$$a_P = \begin{cases} 3+7j & (16QAM) \\ 7+7j & (64QAM) \\ 15+7j & (256QAM) \end{cases} \tag{4}$$

第5図 多値QAMの信号空間ダイヤグラム
となる。
その後、LPF（Low Pass Filter）で帯域制限されたベースバンド信号を用いて直交変調し、増幅した後、送信する。
一方、受信機構成を、第6図に示す。

受信機では、希望の信号がひずまない程度に BPF（Band Pass Filter）で帯域制限をした後、AGCで受信レベルを適正化し、AFC（Automatic Frequency Controller）で、準同期検波用部発振器の発振周波数と搬送周波数との差（f_{0f}：オフセット周波数）を補償した後、準同期検波を行う。AFCにおいてf_{0f}をどの程度まで追随する必要があるかについては、5.4において述べる。

次に、LPFにおいて帯域制限し、帯域外雑音及び時刻チョッカルノイズが低減されたベースバンド信号 $u(t)$を得た後、フェージングひずみ推定・補償部で、フェージングひずみを補償する。ここで、シンボルタイム（周期 T_s）及びフレームタイム（周期 T_F）は、$u(t)$をもとに、クロック同期回路及びフレーム同期回路において再生される。ただし、Nをフレーム長とするとき、

$$T_F = NT_s$$

の関係がある。

その後、判定部において、フェージングひずみが補償された信号を判定し、データを再生する。

3.3 フェージングひずみ推定・補償部の構成

フェージングひずみ推定・補償部の構成を、第7図に示す。

第6図 QAM 受信機構成

第7図 フェージングひずみ推定・補償部の構成

$$t = kT_F + \left(\frac{m}{N} \right) T_F$$

$(k = 0, 1, 2, \ldots, m = 0, 1, 2, \ldots, N-1)$
とする。またフレームタイミングを、$m=0$の場合、

$$t = kT_F$$

とすると、$(0/0)$式より、

$$u(k) = c(k) + n(k)$$

とすると、$(0/0)$式より、

$$\hat{c}(k) = \frac{1}{a_F}u(k)$$

となる。すなわち、$\hat{c}(k)$は、ちょうど$c(t)$をフレーム周期T_Fでサンプリングしたサンプル値に相当するとともに、サンプル値には、雑音成分$n(k)/a_F$が含まれていることを意味する。例えば、$c(t)$が、第8図(a)の様に変動する場合、$\hat{c}(k)$は、第8図(b)の様になる。また第8図(b)を内挿すると第8図(c)の様になる。ここでは内挿方式として、以下に示す2次ガウスの公式を用いる。

$$t = (k-1)T_F, kT_F, (k+1)T_F$$において得られたフェージング変動を、(a)様焔、(b)様すみ、(c)様すみで示す。

第8図 フェージング変動例と推定値

(a) 補正フェージング変動
(b) フレームシグナルから計算される$c(t)$のサンプル値
(c) 内挿法により推定した補正フェージング変動
ージングひずみの推定値を、それぞれ \(\hat{c}(k-1) \), \(\hat{c}(k) \), \(\hat{c}(k+1) \) とする時、ある時刻、\(t = kT_f + (m/N)T_f \)におけるフィージング変換 \(\hat{c}(k+m/N) \) は、

\[
\hat{c}(k+m/N) = \begin{pmatrix} \frac{m^2}{N} \end{pmatrix} \hat{c}(k-1) \\
+ \begin{pmatrix} 1 - \frac{m^2}{N} \end{pmatrix} \hat{c}(k) \\
+ \begin{pmatrix} \frac{m^2}{N} \end{pmatrix} \hat{c}(k+1)
\]

\[
= Q^{-1}(\frac{m}{N}) \hat{c}(k-1) + Q(\frac{m}{N}) \hat{c}(k) + Q\left(\frac{m}{N}\right) \hat{c}(k+1)
\]

……(12a)

と、推定できる。ただし、

\[
Q^{-1}(\frac{m}{N}) = \frac{1}{2} \left(\frac{m^2}{N} - \frac{m}{N} \right)
\]

……(12b)

\[
Q(\frac{m}{N}) = 1 - \left(\frac{m}{N} \right)
\]

……(12c)

\[
Q\left(\frac{m}{N}\right) = \frac{1}{2} \left(\frac{m^2}{N} + \frac{m}{N} \right)
\]

……(12d)

である。以上の処理は、第7図のフィージングひずみ推定部で行う。

一方、第7図のフィージングひずみ補償部において、

\[
\hat{z}(k+m/N) = \left[\begin{pmatrix} a(k+m/N) \end{pmatrix} / \hat{c}(k+m/N) \right]
\]

\[
= \left\{ \begin{pmatrix} c(k+m/N) / \hat{c}(k+m/N) \end{pmatrix} c(k+m/N) \\
+ n(k+m/N) / \hat{c}(k+m/N) \right\}
\]

……(13)

を計算することにより、フィージングひずみが補償された複素ベースバンド信号 \(\hat{z}(k+m/N) \) を得ることができる。

また、\(\hat{z}(k+m/N) \) を判定することにより、データが再生できる。なお (12a) 式で、

\[
Q^{-1}(\frac{m}{N}) = 0
\]

……(14a)

\[
Q(\frac{m}{N}) = 1 - \frac{m}{N}
\]

……(14b)

\[
Q\left(\frac{m}{N}\right) = \frac{1}{2} \left(\frac{m^2}{N} + \frac{m}{N} \right)
\]

……(14c)

とすると、1次の内挿となり、フレームシンボル間を直線で推定したことになる。また、

\[
Q^{-1}(\frac{m}{N}) = Q(\frac{m}{N}) = 0
\]

……(15a)

\[
Q(\frac{m}{N}) = 1
\]

……(15b)

とすると0次の内挿となり、フレームシンボルの値を1フレームの間保持し、各シンボルにおけるフィージングひずみの推定値とすることに相当する。

本方法を適用すると、既知のパリオットシンボルを用いてフィージングひずみを推定しているので、絶対位相検波が可能となり、従来位相の不確定性を除去するために行われていた差動符号化が必要となる。そこで、多価QAMの符号構成法として、最短距離で隣接するシンボル間はすべて1ビットしか異ならないように各シンボルにビットを割り当てる。グレイ符号化(12b)、検波方式として絶対位相検波を採用することとすると。

4. 静特性条件下の伝送特性

4.1 適用性条件の理論値

静特性条件下における、グレイ符号化16QAMの絶
対位相検波時のBER（\(P_{b\text{err}}(\gamma_0) \)）は、既報のようになる(14)。ただし \(\gamma_0 \) は \(E_b / N_0 \)（1ビット当たりの信号電力対雑音電力密度比）である。

\[
P_{b\text{err}}(\gamma_0) = \frac{3}{4} \text{erf}(\sqrt{0.4\gamma_0}) \]

……(15)

ここで、本方式を採用する場合の劣化要因としては、

1) パリオットシンボル補間により、情報シンボルに割り当てられるエネルギーが減少するための劣化（D1）。
2) 内挿方式の推定精度が十分でないための劣化（D2）。
3) \(\hat{z}(k+m/N) \) に雑音が含まれることによる劣化（D3）。

がある。この中で、1)及び3)は、静特性条件下とフィージング条件下で同じ劣化値となる。また2)は、フィージング変換速度（最大ドップラー周波数）とフレーム周期の関係で決まり、フレーム周期を最適化すれば十分小さくできる。そこで、ここでは、1)及び3)について、静特性条件（\(\alpha(\gamma) = 1 \)）において検討する。

まず、1)の劣化は、1フレーム内に1個の長シンボルが含まれることより発生するので、以下のようになる。

\[
D_1 = 100 \log (N/(N-1)) \text{dB}
\]

……(16)

一方、3)の劣化は以下のよう計算できる。

\[
\alpha(\gamma) = 1 \text{, (11)}, \text{ (12b) - (12d) 式を (12a) 式に代入すると,}
\]

\[
\hat{z}(k+m/N) = Q^{-1}(\frac{m}{N}) \hat{c}(k-1) + Q(\frac{m}{N}) \hat{c}(k) + Q\left(\frac{m}{N}\right) \hat{c}(k+1)
\]

\[
+ n(k+m/N) / \hat{c}(k+m/N)
\]

……(14)

\[
= 1 + \frac{1}{a_F} Q^{-1}(\frac{m}{N}) n(k-1)
\]

\[
+ \frac{1}{a_F} Q(\frac{m}{N}) n(k) + \frac{1}{a_F} Q\left(\frac{m}{N}\right) n(k+1)
\]

……(15)

\[
= 1 + n(k+m/N)
\]

……(16)

ただし、

\[
n(k+m/N) = \frac{1}{a_F} Q^{-1}(\frac{m}{N}) n(k-1)
\]

\[
+ \frac{1}{a_F} Q(\frac{m}{N}) n(k) + \frac{1}{a_F} Q\left(\frac{m}{N}\right) n(k+1)
\]

……(17)

となる。\(n(k-1) \), \(n(k) \), \(n(k+1) \) は、平均0，分散\(\sigma^2 \)で、互いに無相関なガウス雑音であるので、\(n(t) \) は、
平均0，分散が

\[\sigma^2 = \frac{\sum_{m=1}^{M} \left[1 + \frac{3}{2} \left(\frac{m}{N} \right)^2 \right]}{N(N-1)} \]

のガウス雑音と見なせる。
一方，1\(\geq n(k+m/n) \)を考慮し，かつ，式及び

\[c(k+m/N) = 1 \]を式に代入すると，

\[z(k+m/N) = z(k+m/N) / c(k+m/N) \]

\[= z(k+m/N) / \{ 1 + n(k+m/N) \} \]

\[= z(k+m/N) + n(k+m/N) \]

\[= z(k+m/N) + n(k+m/N) \]

\[= z(k+m/N) - n(k+m/N) \]

\[= z(k+m/N) - n(k+m/N) \]

となる。ここで\(n(k+m/N) \)は，平均0，分散

\[\sigma^2 = \sum_{m=1}^{M} \left[1 + \frac{3}{2} \left(\frac{m}{N} \right)^2 \right] \]

のガウス雑音である。また\(\sigma^2 \)は\(z(t) \)の平均電力である。

以上より，3)による劣化は

\[D_z = 10 \log (1 + \sigma^2 / \sigma^2_0) \text{dB} \]

となる。

4.2 計算機シミュレーションの結果

本方式の特性を確認するため，計算機シミュレーションを行った。信号は高周波信号化を考慮し，シノプルコードを16 ksymbols/sとする。受信機はLPFをローバー型から50 Hzまで，フレーム長N及び内挿個数は，後述するフェーディング条件下における最適値である，\(N = 16 \)，及び内挿個数を2次とした。なお受信BFは，希望の信号が除きまない程度に十分広いと仮定し，計算機シミュレーションではBFはないものとした。

第9図に，静特性条件下におけるBER特性のシミュレーション結果を示す。また理論値を，06式を用いて計算したものをある。

第9図より，10^{-3}＜BER＜10^{-2}の範囲において，理論値から2~5dB劣化している。

一方，本方式帯域の劣化は，4.1で述べた3種類がある。

\[D_m = D_1 + D_2 = 1.86 \text{dB} \]

5.0フレーム長における16 QAMの伝送特性

フェーディング下における，提案方式の内挿個数に依存する劣化（\(D_m \)）は，フレーム周期N及び内挿個数に依存する。また，Nの最適値は，\(f_d \)に依存する。そこでここでは，900MHz帯の伝送を考え，\(f_d \)を60 Hzと仮定する。

以上の条件の基に，まず，最適な内挿個数及びNを検討する。また，得られた最適値において，\(f_d \)をパラメータとした場合の16 QAMのBER特性を検討する。

第9図に，静特性条件下におけるBER特性のシミュレーション結果を示す。また理論値を，06式を用いて計算したものをある。

第9図より，10^{-3}＜BER＜10^{-2}の範囲において，理論値から2~5dB劣化している。

一方，本方式帯域の劣化は，4.1で述べた3種類がある。

\[D_m = D_1 + D_2 = 1.86 \text{dB} \]
第1表 内挿次数に対する誤り率特性

<table>
<thead>
<tr>
<th>次数</th>
<th>E_b/N_0</th>
<th>20 dB</th>
<th>30 dB</th>
<th>40 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.3.10^{-5}</td>
<td>4.9.10^{-5}</td>
<td>4.8.10^{-5}</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.0.10^{-5}</td>
<td>5.2.10^{-5}</td>
<td>1.5.10^{-5}</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.2.10^{-5}</td>
<td>5.4.10^{-5}</td>
<td>4.9.10^{-5}</td>
<td></td>
</tr>
</tbody>
</table>

いって、内挿次数と E_b/N_0 をパラメータとしている場合の BER を示す。

第1表より、まず、$E_b/N_0=20$、30 dB の場合は、0 次の場合に比べて、1 次と 2 次の特性が大きく向上していることがわかる。これは、フェージング変動が非常に滑らかであり、その変動を直接あるいは 2 次関数で内挿すると非常に高精度に推定できるためである。また、E_b/N_0 が小さい場合は、包絡線レベルが雑音レベル以下となるため、1 次と 2 次の差はほとんどない。

一方、$E_b/N_0=40$ dB の場合は、2 次の特性が最も良くなる。E_b/N_0 が大きくなると、$\gamma(t)$ の変動を直接、または積分によって滑らかに推定できるようになる。2 次関数の特性が滑らかなラランダム変動を精度良く近似できるため、2 次の特性の方がよくなると考えられる。

以下同様に、内挿次数としては 2 次がよいと考えられるので、以下では、内挿次数は 2 次とする。

5.2 フレーム周期

第10図に、$f_d=80$ Hz 及び $f_{ef}=0$ Hz において E_b/N_0 をパラメータとした場合の BER 特性を示す。第10図より、以下のことがわかる。

どの E_b/N_0 においても、N<16の範囲内では、N が短くなるにつれて BER が大きくなっている。これは、N が短くなるにつれてパワットシンボルの割合が増し、情報をシンボルに割り当てられる電力が減少するためである。

一方、N>16の範囲では、N が大きくなるにつれて BER が増加している。これは、N が大きくなるにつれて $\gamma(t)$ のサンプリング間隔が短くなり、$\gamma(t)$ の推定精度が悪くなるためである。以上より、伝送速度が 16 ksymbol/s の場合、N=16 が最適と考えられる。これは、$f_d=80$ Hz においては、$\gamma(t)$ を 1 kHz でサンプリングし、2 次関数で内挿すれば $\gamma(t)$ を高精度に推定できることを意味する。また、伝送速度を変える場合には、フレーム周期が 1 msec となるように設定すると良い。

5.3 最大ドップラー周波数の影響

N=16、内挿次数を 2 次と $f_{ef}=0$ Hz とした場合の BER 特性のシミュレーション結果を第11図に示す。

また、レイリーフェージング下の GMSK の同期検波及び $\gamma(t)$ における BER 特性の理论值を、図に示す。ただし、$P_{bit}=\gamma_0$ は、具体的に次のようになる。

$$P_{bit}(\gamma_0) = \int_0^\infty (1/\gamma_0) \exp(-\gamma/\gamma_0) P_{bit}(\gamma) d\gamma$$

GMSK 同期検波とグレイ符号化 16 QAM 絶対値相検波の理論値の差は、約 1 dB であり、ほとんど同じ特性となっていることがわかる。これは、本方式においてグレイ符号化絶対値相検波を適用した結果、BER 特性が大きく改善されているためである。

一方、シミュレーション結果から以下のことがわかる。
通信総合研究所季報

94

\[f_d = 80 \text{Hz} \] の範囲では、\(f_d \) に限らず、理論値からの劣化は、約 2 dB である。この劣化量は、静特性条件下の劣化とほぼ等しい。一方、\(f_d = 100 \text{Hz} \) では、\(f_d \leq 80 \text{Hz} \) と比べて、1~2 dB 劣化している。以上から、\(f_{\text{off}} = 0 \text{Hz} \)、\(f_d \leq 80 \text{Hz} \)においては、内補方式の推定精度は十分であるが、\(f_d = 100 \text{Hz} \) となると、内補方式の推定精度に依存する劣化 \(D_2 \) が増加するため、BER が大きくなることが分かれる。

現在陸上移動通信が実装されている周波数帯を考慮すると、\(f_d < 100 \text{Hz} \) を考慮すれば十分であり、また、その範囲では緩衝困難な誤りは発生していないことから、本方式を適用した 16 QAM は陸上移動通信で非常に有効であることが分かれる。

5.4 オフセット周波数の影響

以上の検討では、\(f_{\text{off}} = 0 \text{Hz} \) を仮定してきた。本方式では AFC により、受信波の中心周波数を調整することにより、\(f_{\text{off}} \) を 0 Hz に近付けている。しかし、\(f_{\text{off}} \) を完全に 0 Hz にすることはできないので、\(f_{\text{off}} \) をどこまで許容できるかを見極める必要がある。

第12図に、\(N = 16, f_d = 100 \text{Hz} \) および \(E_b/\gamma = 40 \text{dB} \) の場合の、\(f_{\text{off}} \) に対する BER 特性を示す。第12図より、\(f_{\text{off}} \) が 20 Hz 以上になると \(f_{\text{off}} \) が大きくなるに従って、BER が増加することが分かる。これは、フェージングひずみ補償部で \(v(t) \) と \(f_{\text{off}} \) によるひずみを同時に補償する場合、フェージングひずみ補償部では、\(v(t) \) が \(f_{\text{off}} \) で変調された \(c(t) \) より大きい帯域の信号を補償する必要があるためである。

ここで、音声伝送の場合、BER = 10^{-3} で十分良好な品質が得られる codec が開発されていることや、データ伝送の場合、1 パスチャの BER が 10^{-3} であれば、ダイバーサーシャイニング制御などの、他の技術との併用により高品質伝送が可能となることなどを考慮し、\(f_{\text{off}} \) の許容値を、\(f_d = 100 \text{Hz} \) において BER = 10^{-3} を与える \(f_{\text{off}} \) とした。

第12図より、BER = 10^{-3} を与える \(f_{\text{off}} \) は約 90 Hz であることから、\(f_{\text{off}} \) の許容値は 90 Hz であり、AFC で、\(f_{\text{off}} \) を 90 Hz 以下に制御すれば良いことがわかる。

5.5 本方式を適用した復調器の初期引込み特性

以上では、連続信号受信時において、本方式の特性を調査してきた。しかし、パケット伝送などのパーストを伴うデータ伝送においては、復調器の初期引込み特性が問題となる。

本方式を適用した場合の復調器の初期引込み特性は、以下の特性で決定される。

1) タイミングmseの初期引込み特性
2) フレーム同期の初期引込み特性
3) フェージングひずみ推定・補償部の初期引込み特性

この中で、1) 2) に関しては、フレーム構成を適当に設定し、パケット伝送や TDMA（Time Division Multiple Access）などにおいて従来から採用されている技術を用いると、効率の良い初期引込み特性が得られると考えられる。そこでここでは、3) についてのみ検討する。なお本方式では、1) 2) の初期引込みが完了した後、3) の初期引込みが開始されることが前提である。

本方式は、2.2 で述べたように、\(t = (k+m/N)\tau \) において \(\gamma(k-1), \gamma(k), \gamma(k+1) \) から \(\gamma(k+m/N) \) を推定し、フェージングひずみが補償された受信ベースバンド信号 \(\gamma(k+m/N) \) を出力する方式である。

まず k = 0 においては、\(\gamma(k-1) \) は、受信データが入力されていないので、定値となっている。したがって k = 0 においては、本方式は動作状態としている。
一方、k = 1 においては、\(\gamma(k-1), \gamma(k), \gamma(k+1) \) すべてに受信信号が入力され、フェージングひずみの推定が可能となる。従って本方式は正常動作となり、前節まで述べた性能が得られる状態となる。またこの瞬間に、初期引込みが完了することになる。すなわち、3) の初期引込みを要する時間は、\(T_p \) となる。これは、\(N = 16, \) 伝送速度 16 kbps/symbol/ssec の場合、1 msec に相当する。この時間は、同期検波後の位相同期同調の初期引込み時間と同程度で、十分短い時間と考えられる。したがって、本方式の初期引込み特性は、十分良好と考えられる。

6. 64 QAM, 256 QAM の伝送特性

ここでは、本フェージングひずみ補償方式を 64 QAM 及び 256 QAM に適用した場合の伝送特性を、現在実験にある GMSK 及び QPSK と比較検討する。ここでは、16 QAM の検討においては \(f_d = 80 \text{Hz} \) を中心に行っ
できた。しかし、これまでGMSKやQPSKの特性として論文などで報告されている特性は$\nu_0=40$Hzのものが多いため、ここでも、$\nu_0=40$Hzにおいて各変調方式の伝送特性を比較検討する。

第13図によると、フェージングひずみ補償方式を64QAM、256QAM、256QAMへ適用した場合のレイリーフェージング下におけるBER特性を示す。ただし、特性は計算機シミュレーション結果である。また、比較のため、GMSK同期検波の室内実験結果、及びQPSK同期検波のシミュレーション結果を同時に示している。ここで、GMSKの受信フィルタは3dB帯域幅が16kHzのオフセットフィルタである。また、QPSK、16QAM、64QAM、及び256QAMの受信フィルタはロールオフフィルタ（ロールオフ率50％）である。

第13図 フェージング下における各変調方式の誤り率特性

GMSK同期検波の室内実験結果は、他の論文などでは報告されている特性とはほぼ同じであり、妥当な特性であると考えられる。QPSK同期検波は、文献[1]の方式を用いており、従来のQPSK同期検波方式より特性が改善されている。

64QAM、256QAMの場合、フェージング下のBERの理論値は、(27a)式において、$P_{\text{ber}}(\gamma_0)$を次式に変更すれば求められる。

$$P_{\text{ber}}(\gamma_0) = \frac{7}{24} \text{erfc}(\sqrt{(1/\gamma_0)} - \frac{49}{384} \text{erfc}(\sqrt{(1/\gamma_0)}$$

(64QAMの場合) (27a)

$$P_{\text{ber}}(\gamma_0) = \frac{1567}{2048} \text{erfc}(\sqrt{(4/85)}\gamma_0) - \frac{225}{2048} \text{erfc}(\sqrt{(4/85)}\gamma_0)$$

(256QAMの場合) (27b)

第13図には、図面が複雑になることを避けるため、論文の記載を省略する。各QAM変調方式とも、論文からの劣化は約2dBである。これは、4.1で述べた本方式固有の劣化である。

第13図より、256QAM以外の変調方式でBER特性は、GMSKよりも良いことがわかる。

これは、
1）QPSK及びQAM用フェージングひずみ補償方式の補償能力が高い。
2）QAMでは、グレーリコード化を超えて二値化が可能となり、BER特性が大きく改善された。

等が原因である。

以上より、レイリーフェージング下で同一情報量を伝送する場合、QPSK、16QAM、64QAMを用いると、GMSKより少ない伝送電力で、かからにくい帯域で同等以上の品質の伝送が可能であることがわかる。

7. 干渉特性と周波数利用率

7.1 周波数利用率の定義

陸上移動通信における総合周波数利用率(η_T)は、
1) 空間的周波数利用率(η_s)
2) 周波数軸上の周波数利用率(η_f)
3) 時間軸上の利用率(η_t)

の積で決定される。ここでη_sは、干渉特性により依存しない。したがって、高密度制御方式の導入によって、η_f及びη_tを検討すれば良い。

陸上移動通信システムにおいては、大きく分けると、MCA(Multi Channel access)や沿岸無線電話に代表される大ゾーン方式と、自動車電話に代表される小ゾーン方式がある。

大ゾーン方式の場合は、空間の周波数利用率は一定なので、η_Tはη_sに比例する。その場合、η_fは、隣接チャネル干渉をどこまで許容するかで決定される。

一方、小ゾーン方式の場合、η_Tはη_fとη_sの積に比例する。その場合、η_fは、隣接チャネル干渉特性、η_sは、同チャネル干渉特性をどこまで許容するかで決定される。

そこで、ここでは、計算機シミュレーションによって各変調方式における隣接及び同一チャネル干渉特性を検討し、カーン及び小ゾーン方式における周波数利用率を比較する。ただし、比較する伝搬路条件としては、レイリーフェージング、及び、減衰定数$\alpha=3.5$の距離特性を考慮することとする。

7.2 隣接チャネル干渉特性

第14図において、チャネル間隔$\Delta f=1.56T_s$、E_s/N_0=
通信総合研究所季報

第14図 C/I_A に対する各変調方式の誤差率特性

第15図 C/I_c に対する各変調方式の誤差率特性

第16図 GMSK 同期検波を基準とした場合の各変調方式の η_f の波形線

第17図 GMSK 同期検波を基準とした場合の各変調方式の空間的周波数利用率

60 dB, $f_d=40$ Hz の場合の C/I_A (信号電力対雑音干渉力電力比) に対する BER 特性を示す。

チャネル間隔は, C/I_A をどこまで許容するかで決定される。陸上移動通信では, $C/I_A = -40$ dB 程度で通信可能であることが重要である。そこで, $C/I_A = -40$ dB における各変調方式の BER 特性を比較すると, QPSK, 16 QAM, 64 QAM, 256 QAM の特性は GMSK より良く, かつ BER<10^{-3} であることがわかる。したがって, これらの変調方式を用いた場合, どちらの場合もチャネル間隔は, $df = 1.56/T_c$ で充分, 多値化するほど η_f は高くなることがわかる。

7.3 同一チャネル干渉特性

第15図に, $f_d=40$ Hz, $E_b/N_0=60$ dB の場合の C/I_c に対する各変調方式の BER 特性を示す。QPSK は, GMSK より特性が良好である。これは, QPSK の同期検波特性が大きさ改善されているためである。一方, 16 QAM, 64 QAM, 256 QAM は, GMSK より特性が劣っている。かつ, これらの特性が劣化している。これは, 多値数が増えるにつれて, 信号間距離が減少し, 同一チャネル干渉を弱めるからである。

7.4 各変調方式の周波数利用率

第16図は, 第14図を基に, GMSK 同期検波を基準とした場合の各変調方式の η_f を計算したものである。QAM の場合, パリットシンボルが 1/16 の割合で振動されているため, その分だけ η_f が小さくなっているが, η_f は, ほぼ多値数に比例していることがわかる。

一方, 第17図は, 第15図を基に, GMSK 同期検波を
基準とした場合の各変調方式の \(\eta_r \) を計算したものである。第17図より、16 QAM 以上に多値化すると同一チャネル干渉に寄与するため、\(\eta_r \) が劣化するのがわかる。

第18図に、以上を総合し、大ツーン方式及び小ツーン方式における総合周波数利用率 \(\eta_r \) を計算したものを示す。

大ツーン方式においては、\(\eta_r \) は、多値数が増すに従って向上することがわかる。ただし、多値化に伴ってハードウェアの精度も高いものが要求されること、256 QAM の誤り率特性は、第13図からわかるように、他の変調方式と比較して非常に悪いこと等を考慮すると、大ツーン方式においては 16 QAM あるいは 64 QAM が有効であると考えられる。このことにより、MCA など高速のデータ伝送サービスが実現できる、あるいは、構内無線で、チャネル間隔 50 kHz で 64 QAM を利用することにより ISDN の 1 インタフェースが実現できるなど、幅広い応用が期待できる。

一方、小ツーン方式においては、多値化に伴う \(\eta_r \) の向上と \(\eta_r \) の低下のトレードオフにより、16 QAM の \(\eta_r \) が最大 (2.8) となる。16 QAM の \(\eta_r \) の最大値は、4.0 であるので、若干劣化しているが、QPSK と比較しても周波数利用率は 1.4 倍であり、周波数利用率が大きく向上していることがわかる。

また、以上より、ディジタル自動車電話などの小ツーン方式においては、16 QAM が、最も適した変調方式であると言える。

8. む す び

ディジタル陸上移動通信において、64 k～200 kbit/s の高速伝送を 25 k～50 kHz の帯域で実現するため、多値 QAM の陸上移動通信への適用を検討した。

多値 QAM を、陸上移動通信に適用するための最大の鍵はフェージングひずみ補償方式であることから、定期的に挿入された既知のパワーロットシンボルからフェージングひずみを測定し、その時系列を内挿することによっ

て、フェージングひずみを推定・補償する、フェージングひずみ補償方式を提案した。また、提案方式を用いた場合の特異特性、伝送特性の向上方法、更に、提案方式の装置化を検討した。

これらの検討から、提案方式を適用した多値 QAM は、陸上移動通信に適用可能であると共に、周波数利用率を大きく向上させることができ、陸上移動通信における伝送速度の高速化に非常に有効であることが分かった。

謝辞

本検討にあたり、御支援頂いた中津井総合研究官、石岡通信方式研究室長、神尾技官、大澤技官、及び研究生として 16 QAM を共同で開発して頂いた同氏に感謝致します。

参考文献

(2) 大橋、三鷹、神尾、竹岡、水野、"市街地および郊外における陸上移動多重伝搬路の特性性"、信学論 (BII), J72-B-II, 2, pp.63-71, 1989年2月。
(3) 宮垣、森永、滑川、"陸上移動通信における多値 DSK 誤り率特性"、信学論 (BII), J62-B, 6, pp.581-588, 1980年1月。
(4) 神尾、久保田、"ディジタル陸上移動通信におけるインピーダンス整合型の誤り訂正符号の能力比較"、信学論 (BII), J68-B, 6, pp.761-762, 1985年6月。
(5) 崎川、斎藤、選択制御型 16 QAM 無変調波再生回路、信学論 (BII), J63-B, 7, pp.692-699, 1980年7月。
(7) 三橋政一、"陸上移動通信用 16 QAM のフェージングひずみ補償方式"、信学論 (BII), J72-B-II, 1,
(8) 永田、古谷，“移動通信用アダプティブプレディスターにおける遅延制御”，1989年信学春季大会，B-811，1989年3月。
(9) 花沢、平出，“移動通信におけるPSK波伝送実験”，信学技報，CS74-98，1974年10月。
10 須永、三舘，“陸上移動通信用16QAM変調装置の開発とその特性”，信学技報，RCS88-62，1989年1月。
(10) W.C. Jakas, “Microwave Mobile Communications”, John Wiley & Sons, chapter 1, 1974。
(11) 篠崎義一，“ディジタル信号処理用マイクロプロセッサによるディジタルフィルタの製作”，電磁気学，33，168，pp.163–168, 1987年9月。
(12) 桑原守二監修，“ディジタルマイクロ波通信”，企画センター，pp.122–132, 1984年。
(14) 室田、平出，“ディジタル移動通信用GMSK変調方式”，通研実報，32，6，pp.1281–1293, 1983年6月。
(15) 齋藤、松江、中村、根河，“4.5.6G-400M方式用256QAM変調装置”，通研実報，37，9，pp.483-488, 1988年9月。
(16) 三瓶政一，“遅延形自乗推定法を用いた陸上移動通信用QPSK同期検波方式”，信学論（BII），J72-BII，4，pp.125–132, 1989年4月。
(18) 奥村、進士、監修, “移動通信の基礎”, 電子情報通信学会, pp.24–59, 1984年。
(20) 田中、山尾、長津，“船舶通信における無線チャネル配置”, 昭63信学春季大会, B-729, 1988年3月。
(21) 古谷、金井、並木，“大容量移動通信システムへのアプローチ”, 昭63信学春季大会, SB-6-9, 1988年3月。
(22) 奥村、進士、監修, “移動通信の基礎”, 電子情報通信学会, PP.218–233, 1984年。
(23) 三瓶政一, “陸上移動通信用変調率変調方式の所要送信電力と周波数利用率の検討”, 1989年信学春季大会, B-843, 1989年3月。