3-4 水素メーザ原子周波数標準器

3-4 Hydrogen Maser

伊東宏之 細川瑞彦 梅津 純 森川容雄 津田正宏 高幣謙一郎 植原正朗 森謙二郎

ITO Hiroyuki, HOSOKAWA Mizuhiko, UMEZU Jun, MORIKAWA Takao, TSUDA Masahiro, TAKAHEI Ken-ichiro, UEHARA Masaro, and MORI Kenjiro

要旨

日本における水素メーザの開発に対して通信総合研究所が果たした役割は大きい。本稿では、通信総合研究所における水素メーザ開発の歴史と水素メーザの動作原理について述べるとともに、最近のトピックとして衛星搭載用水素メーザについて最新の実験データから開発状況を詳解する。

Communications Research Laboratory (CRL) plays an important role in development of hydrogen maser in Japan. In this paper we describe history of development of hydrogen maser in CRL, and a principle of the hydrogen maser. And also, as a recent topics, we are also describe about the development of space-borne hydrogen maser.

[キーワード]

原子時計,水素メーザ,衛星搭載用超小型水素メーザ,周波数安定度,サファイヤ共振器 Atomic frequency standard, Hydrogen maser, Space-borne hydrogen maser, Frequency stability, Sapphire loaded cavity

1 はじめに

1.1 CRLの研究開発の背景

通信総合研究所(CRL)における水素メーザの 開発は1965年に開始された。翌1966年にはアメ リカ、スイスに次いで世界で3番目の水素メーザ 発振に成功している。さらにその後の研究成果 をアンリツ株式会社に技術移転し、アンリツ株 式会社から商用水素メーザが発売され国内の 様々な研究施設で利用されている。

また、最近では衛星測位システム用の衛星搭 載用超小型水素メーザの開発をアンリツ株式会 社と共同で行っており、その研究成果を国内外 の学会で発表してきた。

1.2 水素メーザの特徴と他の原子周波数標準 器との比較

現在までに実用化されている主な原子周波数 標準器としては水素メーザ型周波数標準器のほ かに、

・ルビジウム原子周波数標準器

・セシウム原子周波数標準器

が挙げられる。図1に各原子周波数標準器の一般 的な周波数安定度を示す。

ルビジウム原子周波数標準器はルビジウム原 子を封じ込めたガスセルを利用するもので、小 型軽量化が可能であり、通信・放送分野の基準 信号源として広く利用されている。周波数安定 度は短期的にはセシウム原子周波数標準器と同 程度であるが、長期安定度はセシウム原子周波 数標準器と比較すると劣る。

セシウム原子周波数標準器はオーブンで加熱 させたセシウム原子を真空中に飛行させ、その 際にマイクロ波と相互作用させて基準周波数を 得るもので、長期安定度が優れていることが特 徴である。また、一秒の定義がセシウム原子の 遷移周波数から決められているため、ドイツ、 フランス、アメリカ、日本等の標準研究機関で はセシウム一次周波数標準器を運用し、その確 度評価結果を国際度量衡局(BIPM)に報告するこ とで、TAIの確度向上に貢献している。CRLに おいても光励起型セシウム原子一次周波数標準

器CRL-O1を運用しており、年に数回のペースで BIPMに確度評価結果を報告している。

また最近、より高い周波数確度を得ることの できるセシウム原子一次周波数標準器として原 子泉型周波数標準器の開発が進んでいる。これ はレーザー冷却技術を用いてトラップした原子 集団をマイクロ波と相互作用させる方法で、従 来の熱ビームタイプと比較して一桁近い確度の 向上が期待されている。

これらの原子周波数標準器と比較して、水素 メーザ型周波数標準器の最大の特徴は短期安定 度が非常に高いことである。その特徴を生かし て超長基線電波干渉計(VLBI)の信号源や、一次 原子周波数標準器のリファレンス信号源として 利用されている。

水素メーザは、メーザ発振のための空洞共振 器や、真空排気系、水素源などのために一般的 にはサイズ、重量とも大きな物になる。

1.3 衛星搭載水素メーザの開発経緯

GPSに代表される衛星測位システムは、元々 軍事目的のために開発されたが、今日では当初 の目的を大きく越えて、カーナビゲーション、 土木・建設測量、石油探査、タクシー・トラッ クの運用合理化、航空管制、地震予知、GPS気 象学等に非常に広く応用されている。このよう に、GPSは既に現代社会にとって不可欠の社会 基盤の一つになっており、その利用分野は巨大 なマーケットに成長しているにもかかわらず、 日本では衛星測位システムそのものは米国の GPSに完全に依存し、技術開発は全くなされて

こなかった。このような重要なシステムを特定 の国に完全に依存するのは問題であるという議 論は以前からなされていたが、最近、日本とし て衛星測位システムの技術開発を行うべきであ るという動きが活発になってきている。宇宙開 発委員会の衛星測位技術分科会は平成9年3月に 「我が国における衛星測位技術開発への取り組み 方針について | を答申し、当面我が国は衛星測 位システムの要素技術を確立し、最小限の数の 衛星により実証すべきであると報告している。 この要素技術には(1)衛星搭載用原子時計、(2) 衛星群時刻管理技術、(3)高精度衛星軌道決定技 術の三つを挙げている。この答申に基づき、通 信総合研究所 (CRL) や宇宙開発事業団において 関連研究が開始された。特に、(1)の衛星搭載用 原子時計ではCRLはこれまでの研究開発成果[1] [2]に基づき、衛星搭載用水素メーザ(SHM)の技 術開発を平成9年度からアンリツ株式会社と共同 で行っている。

衛星搭載仕様では温度環境や打ち上げ時の激 しい機械的振動等、技術課題が多い。このため、 1970年代に行われた重力シフトの検出を目的と したロケットによる弾道飛行実験[5]を除き、水 素メーザの宇宙空間での使用実績はない。しか し、近年欧米では次世代衛星測位システムや宇 宙ステーションへの応用のほか、スペース VLBI、 一般相対論の検証等の scientific な応用も視野に 入れた SHM の開発が行われている[6]。

2 原理と構造

2.1 原理と構造

図2に水素メーザの基本構造を示す。水素源からの水素分子ガスは、まず水素流量制御装置で流量を一定に制御された後、高周波放電により分子から原子に解離される。水素原子はコリメータにより指向性を持たされ原子ビームとして、真空中に放出され、準位選別磁石によりメーザ発振に必要な上準位の原子のみが選別され、マイクロ波共振器に向かって飛行する。水素原子は共振器内のストレージ空間内に約1秒前後滞在し、この間に下準位に遷移するときに1.42GHzの電磁波エネルギーを放出し、メーザ発振が起きる。この信号に外部のVCXOを位相同期させ、

標準周波数を作る。以上が水素メーザの基本的 な動作原理である。

2.2 周波数変動要因

水素メーザの発振周波数 fm は様々な物理的要 因によって変動するため、十分な周波数安定度 を得るためには変動要因を考慮した設計が必要 になる。 ƒ の変動要因には雑音によるランダムな ものと系統的なものがあるが、ここでは後者に ついて考察する。

f.,は次式により表される。

$$f_m - f_H = \frac{Q_c}{Q_l} (f_c - f_H) \tag{1}$$

ただし、f_Hは水素原子の遷移周波数、f_eはマイ クロ波共振器周波数、Q。は共振器負荷Q、Q」は 原子発振スペクトルQである。したがって、fmの 変動要因として、 $f_{a}, f_{H}, Q_{a}, Q_{a}$ 変動が考えられる が、Q,Q変動は充分小さくここでは考慮しない。

式(1)から分かるようにf。の変動はfmの変動を 引き起こすため、feには高い安定度が要求される。 通常、Q₄~40.000, Q₄~1×10⁹程度であり、1× 10⁻¹⁵の周波数安定度を得るためには*df*/*f*_e < 2.5 × 10^{-11} (*df_e* < 0.04*Hz*) が必要になる。*f_e*の最大の変 動要因は共振器温度T。の変化による共振器の変 形やストレージバルブの誘電率の変化であり、 df_e/dT_eは共振器の構造、材質の熱膨張係数やバ

ルブ材質の誘電率の温度係数等に依存する。通 常の TE₀₁モードのフルサイズの共振器では-1 $\sim -0.3 kHz/K$ であり、 $df_{c} < 0.04 Hz$ とするために は*dT*_c < 4×10⁻⁵ ~ 1.3×10⁻⁴Kが必要になり、厳し い温度制御が要求される。

f₄の主なシフト要因は、2次ゼーマン・シフト、 スピン交換シフト、2次ドップラ・シフト、Wall シフト等であり、これらが変動すれば、f.,も変動 することになり、高い周波数安定度を得るため にはこれらのシフト要因の安定化が不可欠であ る。

水素原子のエネルギー進位の縮退を解くため に一定の静磁場を加えるが、f_Hは次式で表される ように静磁場に応じてシフトする(2次ゼーマン シフト)。

$$f_H = f_{H0}(1 + 195B_c^2) \tag{2}$$

ただし、 f_{H0} は $B_c=0$ のときの遷移周波数、 B_c は 静磁場の磁束密度で単位はTである。B_eがdB_eだ け変化したときの遷移周波数の変化df_Hは次式で 表される。

$$\frac{df_H}{f_{H0}} = 390B_c dB_c \tag{3}$$

 B_c は0.1 μ Tで運用されるが、この条件で df_H/f_{H0} を1×10⁻¹⁵に抑えるためには式(3)から、下記条 件を満たす必要がある。

$$\frac{dB_c}{B_c} < 2.6 \times 10^{-11}T$$
(4)
$$\frac{dB_c}{B_c} < 260ppm (@B_c = 10^{-7}T)$$
(5)

B。の変動要因には静磁場コイルの電流源の温度 変動と外部磁場変動の二つがある。前者は最近 のDA変換器の温度安定度は±10ppm程度以下で あり十分小さくすることができる。

ストレージバルブ内の水素原子同士の衝突に よりたは次式のようにシフトする。

$$\Delta f_{H} = \frac{\lambda' h v_{r}}{16\pi\mu_{0}\mu_{B}^{2}h'Q_{c}} \frac{1}{T_{20}} + \frac{q}{T_{t}} \frac{1}{I_{th}}$$
(6)

ただし、λ'はスピン交換周波数シフト断面積 (4.1×10⁻²⁰*m*²)、*h*はプランク定数、*v*_rは水素原子 の平均相対速度、μ₀は真空透磁率、μ₀はボーア 磁子、T20は水素ビーム量が0の時の横緩和時定

特集 時間・周波数標準特集

数、qは水素メーザの発振 quality 係数、I は水素 原子ビーム量、Laはスレッショルドビーム量であ る。 Δf_{μ} は10⁻¹³のオーダであり、10⁻¹⁵の周波数 安定度を得るためには Iの変動を1%以下に抑え る必要がある。

二次ドップラ・シフトと wall シフトはストレ ージバルブ温度に依存し、1×10⁻¹⁵の周波数安定 度を得るためには、いずれもストレージバルブ 温度を0.01K程度に安定化すればよい。一般に共 振器温度は10-4℃以下に安定化するので、これら の影響は問題にならない。

このように、水素メーザの周波数の変動要因 は多様であり、変動要因に応じた安定化対策が 必要である。

2.3 各部の目的と機能

原子時計の動作には、主に以下に挙げる三つ の段階が必要である。

- (1) 粒子の準備
- (2) 粒子の閉じ込め
- (3) 粒子の観察

まず、粒子の準備は、遷移の正味の効果を観 察するために、はじめに十分な原子数の差を得 るための過程である。水素メーザでは水素原子 の基底状態磁気的超微細遷移を利用しているた め、水素分子を解離して水素原子を生成し、そ の後超微細遷移の上準位にある原子のみを空洞 共振器内に供給する必要がある。このための機 能を提供しているのが、分子から原子に解離さ せるための高周波放電と、指向性を持つ原子ビ ームにするためのコリメータ及び上準位の原子 のみを選別するための準位選別磁石である。

次の粒子の閉じ込めは、粒子を相互作用領域 に十分長い時間保っておくことにより、遷移を 起こさせ、狭い線幅の信号を得るための過程で ある。放射場と相互作用する粒子の集合の線幅 は近似的に次式で与えられる。

$$W \sim \frac{1}{T_r} \tag{7}$$

ここでT_rは平均相互作用時間である。上式か ら分かるように線幅の細い信号を得るためには T,をできるだけ長くする必要があり、粒子の閉 じ込めはそのための手段である。水素メーザで はストレージバルブが粒子の閉じ込めを担って いる。

最後の粒子の観察では、この段階で実際の信 号を得ることになるが、セシウム周波数標準器 やルビジウム周波数標準器と異なり、水素メー ザでは空洞共振器内の誘導放出により発生する メーザ発振を信号源としている。なお、水素メ ーザでも受動式の動作を行う物も存在するが、 本稿で議論しているのはすべて能動式の水素メ ーザである。

3 衛星搭載化

3.1 衛星搭載水素メーザに必要な性能

衛星搭載用水素メーザに必要な性能は、搭載 する衛星の軌道や提供する環境及び構築される 測位システムの仕様によって大きく変わってく る。現状では上記仕様について決定された値が あるわけではないので、暫定的に下記の仕様値 を想定して、搭載メーザ開発に必要な技術の確 立を目標に研究を進めている。今後、計画が具 体化した段階で、本研究の成果に基づき仕様が 具体化される。

衣」 現住想定されているSHIVI任様				
重量	< 100kg			
消費電力	< 100W			
使用温度	15∼35℃			
周波数安定度	$< 3 \times 10^{-15} (@10^3 < \tau < 10^4 s)$			
磁場感受率	$< 1 \times 10^{-14}/G$			
温度感受率	$< 3 \times 10^{-15}$ /°C			

3.2 衛星搭載のための技術開発課題

CRLでは、平成9年からアンリツ株式会社と共 同で衛星搭載用水素メーザ (SHM)の技術開発を 行っている。現在までに衛星搭載用水素メーザ の地上モデル (BBM) を試作し、各種の動作試験 などを行っている。

先に述べたとおり水素メーザは、ルビジウム やセシウム等の他の原子時計に比べ周波数安定 度が格段に優れているという特徴があるが、そ の一方で重量、大きさ、消費電力等で劣ってい る。水素メーザの技術自体は既に成熟しており、

日本ではCRLの研究成果を基にアンリツ株式会 社が製品化し[3][4]、国内の主要研究機関で使用 されている。しかし、地上での使用を想定して おり重量は数百kgもあり、そのままでは衛星に 搭載できない。したがって、衛星搭載を考えた 場合まず小型・軽量化が必須である。さらに、 打ち上げ時に加わる機械的振動に耐えるための 構造を考える必要もある。また、使用可能な電 力も厳しく制限されるため、低消費電力化も必 須の課題である。

3.3 小型軽量化

水素メーザのサイズを決める最も大きな要因 は空洞共振器であり、この共振器を小さくする ことができれば、その外側にあるベルジャー、 磁気シールドがすべて小さくなるため、全体の 小型・軽量化が可能になる。衛星搭載用超小型 水素メーザではサファイア誘電体共振器を使用 することにより、共振器の小型軽量化を実現し ている。

これまでの解析で、メーザの周波数安定度は 共振器の内径2aがサファイア円筒の外径2bの2 倍の時に最良になること、また、共振器高さ1と aの比はメーザの軽量化という観点から決めるこ とができ、その最適値は2であることが分かった。 さらに、要求される周波数安定度から最小の共 振器体積が決まる。

これらの条件から10⁻¹⁵台の周波数安定度を確 保できる共振器として、図4に示すサファイア誘 電体共振器を作成した。従来の共振器サイズは φ300×300mm 程度であったが、作成したサファ イア共振器のサイズはφ161.9×161.9mmと体積比

1/8程度の小型化を実現した。

共振器の小型化により、磁気シールドも小型 化され、設計の最適化と合わせて64kgから17.4 kgと重量比で1/4近い軽量化を実現できた。

その他の小型軽量化として、アルミ製真空容 器の採用、真空排気系にゲッターポンプを採用、 水素源として水素貯蔵合金を利用することで試 作された地上モデルでは重量72kgと大幅な軽量 化を実現できた。さらに、現在アルミハニカム 材の使用など更なる軽量化を検討中である。

3.4 耐宇宙環境特性の改善

衛星搭載を考えた場合、地上とは異なる厳し い環境下での動作が予想される。考慮すべき耐 宇宙環境様の対策としては、温度特性の改善、 磁場特性の改善、打ち上げ時の機械的振動特性 の改善、真空中での動作特性の改善などが挙げ られる。

まず温度特性については、サファイア誘電体 共振器ではサファイアの誘電率温度変動が大 df_e $/dT_e$ は約 – 70.9kHz/Kにも達するため、温度制御 だけで f_e を安定化することはほぼ不可能であり、 f_e の自動制御による安定化が不可欠になる。

外部磁場の変動要因としては、地球磁場の変 化と衛星姿勢制御用磁気ジャイロの漏洩磁場が 考えられる。地球磁場の変化は衛星の軌道が決 まらないと正確に評価できないが、例えば軌道 高度20,000kmの場合± $8.0 \times 10^{-7}T$ 程度、軌道高度 3,100km の場合± $1.8 \times 10^{-5}T$ 程度である。このと き、 dB_c を2.6× $10^{-11}T$ 以下におさえるためには磁 気シールドの遮蔽率はそれぞれ 62,000, 1,400,000 以上が必要になる。

このように衛星搭載用水素メーザでは環境条 件が地上より格段に厳しくなるため、安定化対 策の要求も厳しくなる。

3.5 特性評価結果

3.5.1 周波数安定度

図5にBBMの周波数安定度測定結果を示す。 目標とする安定度よりも2~3倍程度悪い値が得 られているが、これは後述する温度変化による 周波数変動が影響しているものと考えられ、共 振器温度安定化の改良で周波数安定度も改善さ れるものと思われる。

3.5.2 温度特性

温度特性の評価は、BBM を恒温槽中に設置し、 恒温槽の温度を22℃から23℃まで変化させ、そ の際の周波数変動などを測定した。先に記した とおりサファイア共振器においてはf.の自動制御 による安定化が不可欠であり、carrier free type の共振器自動同調によってf。の安定化を行ってい る。表2に測定結果を示す。

得られた周波数変動の温度依存性は3×10⁻¹⁴で あり、目標値3×10-15と比較して 10 倍程度大き な値になっている。表2から分かるとおり、共振

表 2 温度特性測定結果				
周波数変化 $(\Delta f/f)$	3×10^{-14} /°C			
水素流量変化 (ΔI/I)	1.4×10^{-2} /°C			
共振器温度変化	0.02°C/°C			

器温度の環境温度依存性が0.02℃/℃となってい るが、これは目標値の10倍以上の大きな値であ り、これが周波数変動の大きな原因の一つにな っていると考えられる。大きな共振器温度の環 境温度依存性の原因については、

(1) 温度制御回路のゲイン不足

(2) SHMの断熱性能

(3) コネクタ部での熱起電力の変動

などが考えられるが、現在原因の究明と性能改 善を行っている。

3.5.3 磁場特性

表3 磁場印加時の周波数変動			
印加方向		周波数変化 $(\Delta f/f)$	
x 方F	句	$< 1 \times 10^{-14}/G$	
y 方F	句	$< 1 \times 10^{-14}/G$	
z方	句	$2.0 \times 10^{-14}/G$	

磁場変動特性の測定は、ヘルムホルツコイル 中にSHMを設置して行った。ヘルムホルツコイ ルはx, y, z軸それぞれ独立に磁場を印加できるよ うにしてある。測定時間は10分、印加磁場は ±1Gの2通り、測定周波数は1.4GHzである。ま た、SHMの自動同調は OFF の状態にしてある。 測定結果を表3に示す。

この結果から SHM の磁気遮蔽率を計算すると 200,000となる。2.2 に示したように、軌道高度 20,000km で運用するには十分な値である。具体 的には、軌道高度12,000km以上での運用には問 題がない。しかし、実際に運用される軌道によ っては更に磁気遮蔽率を高める必要がでてくる 可能性もある。

3.5.4 振動試験

振動試験は、BBMと同等の構造の振動試験用 実験機に対して行った。実験機はその重量配分 なども含めて BBM と同じ条件で振動実験を行う ことができるように設計されている。実験の様 子を図6に示す。

振動の加速度は5.0G、周波数範囲は5~300Hz

で測定を行った。周波数は5~300Hzまで、その 後300~5Hzまでそれぞれ2分間掃引した。測定 結果を図7に、測定の結果得られた主な共振周波 数とその時実験機上で観測された加速度を表4に 示す。

表4振動試験の結果						
Acceleration Direction		Resonances frequency(Hz)	Measured Acceleration(G)			
		90	13.0			
	х	110	17.0			
5.0G		290	18.0			
	Y	50	8.0			
	Z	30	9.0			
		90	12.0			

真空漏れの検査、水素ビーム軸の検査も同時 に行ったが大きな真空漏れは観測されず、水素 ビーム軸のずれも0.1mm以下だった。

また、振動試験後に空洞共振器の共振周波数 に100kHz程度のずれが観測されたが、これは共 振器の温度変化に起因する物と考えられる。

3.6 今後の課題

現在、衛星搭載水素メーザの寿命を制限して いるのは真空排気系の寿命であるため、より効 率よく水素原子をストレージバルブ内に供給で きれば長寿命化が可能になる。現在そのための ビームコリメータのマルチコリメータへの変更、 準位選別磁石の設計変更を行っているところで ある。

また、温度変動に関しては初期データとして は十分良いものが得られたが、実用化に向けて 今後更に詳細な試験を行い、動作を改善してい く必要がある。

振動試験については、一部の部品の設計変更 などを行い、最終的には20Gでの振動試験に耐 える構造にする必要があり、さらに、その後実 際に発振動作する実験機での動作試験も行う必 要がある。

4 まとめ

水素メーザ原子周波数標準器について、その 原理及び構造並びにCRLにおける研究の経緯と 最近のトピックとして衛星搭載用水素メーザに ついて最新の成果を概説した。

水素メーザはその高い周波数安定度から現在 でも様々な分野での利用が期待されている。衛 星搭載用水素メーザは、水素メーザの新しい利 用分野を切り開くことになる。

これまで日本における水素メーザ開発に関し てCRLが大きな役割を果たしてきたが、衛星搭 載用水素メーザの開発により、今後も水素メー ザの研究開発においてCRLが主導的な役割を果 たすことになるであろう。

参考文献

- Takao Morikawa, Yasusada Ohta, and Hitoshi Kiuchi, "Development of Hydrogen Maser for K-3 VLBI System", Proc. of 16th Annual Precise Time and Time Interval Applications and Planning Meeting, pp.295-311, Nov. 1984.
- 2 太田安貞, 斉藤春夫, 梅津準, "ループギャップ共振器を用いた超小型水素メーザの開発", 電子情報通信学会論文誌 C-1, Vol. J74-C-I, No.6, pp.222-230, 1991.
- 3 津田正宏, 菅弘彦, 植原正朗, 森謙二郎, 小林正紀, "高性能水 素メーザ原子周波数標準器", アンリツテクニカル, No.60, pp.31-41, Sep. 1990.
- 4 森謙二郎, 菅弘彦, 植原正朗, "高性能化水素メーザ原子周波数標準器", アンリツテクニカル, No.63,pp.29-37,May,1992.
- **5** R.F.C. Vessot, M.W.Levine, E.M. Mattison, E.L. Blomberg, T.E. Hoffman, G.U. Nystrom, and B.F. Farrel, "Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser", Phys. Rev. Letters, Vol.45, No.26 pp.2081-2084, Dec. 1980.
- **6** L.G. Brenier, G. Busca, A. Jornod, and H. Schweda, "The SHM Space Borne Hydrogen Maser First Evaluation of the PEM Physics Package", Proc. of 11th European Frequency and Time Forum, pp.664-667, 1997.

は **伊東宏芝** 電磁波計測部門原子周波数標準グルー プ研究員 博士(理学) 原子周波数標準

電磁波計測部門原子周波数標準グルー プリーダー 理学博士 原子周波数標準、時空計測

森川容雄 電磁波計測部門研究主管 周波数標準、時空計測

業謙二郎 元アンリツ株式会社研究所 原子周波数標準器

植原正朗

津田正宏

原子周波数標準器

梅津 純

マイクロ波工学

基礎先端部門主任研究員

アンリツ株式会社研究所原子時計開発 プロジェクトチーム 原子周波数標準器

アンリツ株式会社研究所担当部長