5 高速光通信技術

5 Optical Communication Technologies

5-1 宇宙ステーションにおける光通信実験装置 の検討

5-1 Study on Laser Communications Demonstration Equipment at the International Space Station

有本好徳 ARIMOTO Yoshinori

要旨

宇宙ステーションの船外プラットフォームにおける光通信実験装置(LCDE)の概要とミッション解析、 情報通信研究機構(NICT)における要素技術の試作評価結果について紹介する。LCDEは2.5Gbpsの高 速光通信を宇宙ステーションと地上局との間で実証する予定であったが、2002年度の末に、開発コスト の増大と打ち上げ計画の遅延のため、計画は中止された。

This paper summarizes the result of a mission analysis and a feasibility study on the Laser Communications Demonstration Equipment (LCDE) to be attached to the International Space Station. LCDE is to demonstrate the capability of high-speed optical link, whose bitrate is 2.5Gbps, with a ground station. The development program, however, was stopped in February, 2003 due to overrun of the development cost and delay of the launch date.

[キーワード] 光通信,宇宙ステーション,フォトンカウンティング追尾センサ,Er添加ファイバ増幅器 Laser communication, International space station, Photon counting tracking sensor, Er-doped fiber amplifier

1 まえがき

将来の有人宇宙活動においては、現在、地上 の光ファイバネットワークで導入が開始されよ うとしている数Gbpsの伝送速度を持った、高速 かつ双方向の超高速宇宙光通信システムが必要 になる。そこで、日本としては初の恒久的な有 人宇宙施設となる国際宇宙ステーション取付型 実験モジュール船外プラットフォーム (JEM 曝露 部)に、レーザ光を用いた通信実験装置 (LCDE、 Laser Communications Demonstration Equipment)を搭載し、有人宇宙環境において光 通信を実現するための要素技術を開発し、地上 局との間で超高速光通信の実証を行う実験が計 画された^[1]。この際、光通信実験に必要とされ る捕捉追尾機能とレーザの送受信機能を活用し て宇宙ステーション周辺の不要物体(スペースデ ブリ)の予備的な検出実験を行うことも検討され た。

超高速光通信技術を基盤とした将来の宇宙通 信システムの利用形態を図1に、1990年代から 21世紀に向けての宇宙光通信の開発計画を図2に 示す。LCDEは日本における最初のギガビットク ラスの通信速度を持った光通信の実証実験であ

特集 光COE特集

るとともに、超高速の衛星―地上リンク(フィー ダリンク)の可能性を検証する実験であった。宇 宙ステーションと地上局との通信実験において は、通信リンクの継続時間が短いこと、地上局 の天候(雲、霧等)の影響を受けやすいこと等の 大きな問題点があるものの、光通信の高速・大 容量の特性を生かすことができれば、1分程度の 短い通信時間でも衛星間通信システムの代替手 段として利用できる可能性がある。

2002年度末になって、実験装置の開発予算が 当初の予想を大幅に上回ることが明らかになっ たこと、宇宙ステーション計画全体の遅れによ り搭載機器の開発計画は中止されたが、NICTで は、この間、要素技術のBBM 試作評価を実施し た。本稿では、LCDEを用いた実験計画、実験装 置の概要とその概念設計結果、NICTにおける BBM 試作評価結果について述べる。

2 実験項目

宇宙ステーションにおいて当初予定していた 実験項目を以下に示す[2]。

2.1 光通信の実証実験

宇宙ステーションの船外実験プラットフォーム(JEM曝露部)に高感度の捕捉・追尾系、 2.5Gbps程度の光送信機、振動アイソレータ国を 備えた小型・軽量の光通信機を設置し、恒星を 用いて精密な捕捉・追尾機能を評価し、JEM曝 露部の振動環境下においても光通信が実現可能 であることを実証する。さらに、JEM曝露部の 光通信機と光通信地上局、あるいは利用可能な 光通信実験衛星があれば、その衛星との間で双 方向通信実験を行い、ビット誤り特性や受信レ ベル変動、追尾誤差等の基礎データを取得する。 この際、地上局での受信には大気ゆらぎの影響 を実時間で補償し、安定な光通信を実現するた めの補償光学技術国を用いる。

2.2 光通信デバイスの宇宙環境における評価実験

曝露部において実験に使用した装置を地上に 持ち帰り、超高速光通信デバイスや光学系表面 の宇宙環境における寿命・劣化等の測定評価を 行う。

2.3 デモンストレーション実験

宇宙ステーションで発生するデータ、例えば 圧縮された高精細動画データを、誤り訂正符号 を付加した後、間欠的に地上に伝送し、2.5Gbps の高速光リンクの有効性を実証する実験を行う。

2.4 スペースデブリ検出実験

光通信機の捕捉・追尾系による対象物体の精 密な角度(方向)検出の機能と、高出力パルスレ ーザ光の対象物体からの反射光を検出して距離 及び視線速度を求めることにより、宇宙ステー ション周辺を飛行している0.1~10cm程度の大 きさを持ったスペースデブリの位相空間(位置・ 速度)における分布を観測する。最初に、逆反射 鏡(コーナキューブ)を搭載した衛星を対象とし て捕捉追尾の検証実験を行い、実験装置の感度、 距離測定データ等の校正を行う。次に、光通信 装置を天頂から JEM の進行方向後方に向けて観 測を行う。光通信実験装置を利用するための制 約から、捕捉・追尾が行えるのは、対象となる 物体(デブリ)が太陽光に照らされている状態で 捕捉センサの視野(±0.3°程度)内にあり、追尾 速度が毎秒5°以下の場合である。また、1cm 程 度の大きさの物体では、最大検出距離が2km 程 度となるが、本実験により将来の実用的なデブ リ検出センサ開発のための基礎データが取得で きる。

3 実験装置の外観・構成

LCDEの構成を図3に、外形を図4に示す。 LCDEの構体の地球方向及び天頂方向のパネルに 窓を設け、構体内部の2軸ジンバル上に取り付け られた光アンテナから、この窓を通して地球局 及び天頂近くを通る恒星、衛星を追尾する。地 球方向の窓は約45cmの四角形で、±30°の視野 があり約1分間の光通信が可能である。実験装置 は宇宙ステーションの進行方向に対して後ろ側 に当たる JEM 曝露部装置交換機構#8(EFU#8) に取り付けることを想定している。

4 概念設計結果

LCDEは概念設計開始時点では、スペースデブ リ検出用のレーザレーダと光通信装置を独立に 持つ構成であったが、概念設計の過程で幾つか の項目について仕様の見直しを行った。見直し

後のLCDEの諸元を表1に示す。

(1) 受信波長及び通信速度

スペースデブリ検出ミッションと光通信ミッ ションとの共通化を進め、開発費を削減した。 光通信の受信波長を1.562 µm、スペースデブリ の距離・速度検出を光送信機と同じ波長(1.552 µ m)で行い、光通信用の送受信機を用いてスペー スデブリの検出実験を実施することにした。地 上局との光通信実験の際の回線設計例を表2に示 す。

(2) クーデ光学系

光アンテナ及び2軸ジンバル等の可動部重量を 削減し、光学系と機構部を分離するためにクー デ光学系を採用することにした。

(3) 熱設計

当初、光通信実験時の排熱(280W程度)が困難 と思われたが、実験装置の消費電力の削減及び 放熱面の拡大により定常運用の見通しが立った。 (4) 振動アイソレータの見直し

開発経費を削減するため、捕捉・追尾系の性 能向上(制御帯域の拡大等)により振動アイソレ ータを省略することにした。

(5) 実験時間及びデータレコーダ容量

LCDEの地球指向面にある窓の大きさに制約が あるため、地上局との光通信リンクが維持でき る時間は約1分程度になることが分かった。これ に対応してデータレコーダの容量を128Mバイト 程度まで削減することにした。

表 JEM 曝露部搭載用光通信装置(LCDE)の主要諸元(見直し後)				
光アンテナ方式		カセグレン(リッチ・クレチアン)方式+クーデ光学系		
光アンテナロ径		15cm(主鏡 F/D:1.0、TBD)		
光アンテナ	粗追尾	2軸(Az、El)ジンバル及び高感度CCDセンサ、視野:±0.3°以上		
追尾方式	.方式 ジンバル駆動角 Az:-30~210° El:-30~120° 追尾速度:5° /秒以上			
	精追尾	4分割型電子管及び2軸一体型精追尾ミラー、視野:0.02°以上		
追尾誤差		1μラジアン以下(rms、光通信)、5μラジアン以下(rms、デブリ検出、衛星		
		追尾)		
捕捉追尾系感度		-62~-92dBm(TBD、アンテナ開口)		
捕捉追尾系光フィルタ帯域		レーザ追尾:0.801/0.68 µ m±0.002 µ m、デブリ·衛星追尾:0.65 µ m±0.15		
		μ m		
光送受信方式及び速度		送信:強度変調(RZ パルス)2.48832Gbps、受信:EDFA による直接検波		
		1.24416Gbps		
送受信レーザ波長		送信 1.552 ミクロン、受信 1.562 ミクロン		
レーザ送信出力		400mW(EDFA 出力)、255mW(アンテナ開口、クラス3A 相当)		
デブリ検出感度		2km先の直径1cmのスペースデブリを S/N=10で検出可能		
消費電力		115W 以下(共通バス機器を除く光通信実験装置固有部の値)		
ミッション機器全重量		90kg 以下(構体及び共通バス機器を除く光通信実験装置固有部の値)		

表2 地上局とJEMとの回線設計			
	JEM から地上	地上から JEM	
レ−ザ波長	1.552 μm	1.562 μm	
送信出力	0.4 W	1 W	
送信アンテナ	15 cm	10 cm	
アンテナ利得 ^(a)	106.64 dB	103.06 dB	
伝搬距離	1,000 km	1,000 km	
伝搬損失	-258.17 dB	-258.11 dB	
受信アンテナ	50 cm	15 cm	
アンテナ利得 (a)	117.09 dB	106.58 dB	
大気損失	-10.1 dB ^(b)	-19.6 dB	
受信電力	–18.51 dBm	–38.07 dBm	
受信感度	90 photons/bit	90 photons/bit	
伝送速度	2.5 Gbps	1.2 Gbps	
所要電力	–45.41 dBm	-48.62 dBm	
マージン	26.9 dB	10.6 dB	

(a) アンテナ開口能率を 50%と仮定.

(b) 大気吸収損失= 3.0 dB, 大気ゆらぎによる残留ストレール比 = 0.27, 波面検出のための分岐損失= 0.5 dB.

5 要素技術試作評価結果

5.1 フォトンカウンティング追尾センサ

距離が1,000km以上離れた相手からのレーザ光 を捕捉・追尾するためには、高速・高感度の光 センサが必要である。LCDE計画では、相手衛星 からの太陽光の反射を基に捕捉・追尾を実施す ることを検討した。このためには、量子限界に 迫る感度を持ち、数kHz程度の応答速度を持っ た追尾センサを実現することが望ましい。今ま でこのような用途には、Si-APDが用いられるこ とが多かったが、LCDEにはⅢ-V族の半導体光 電面を持った光電子増倍管の一種である HPD (Hybrid Photo Detector) 55 を採用することにし、 4象限検出器の性能評価を実施した。

図5に今回評価した電子管(HPD)の動作原理 を示した。Ⅲ-V族(GaAsP)光電面に入射した1 個のフォトンは、最大40%程度の確率で光電子 に変換され、その後、8kVの電場により加速さ れてSi-APDに打ち込まれる。この時、約1,200 個の電子、ホール対を発生し、このうちの電子 がAPDのアバランシェ効果により更に50倍程度 増幅される[5]。この結果、光電面に入射したフ ォトン1個に対して約60,000個の電子電荷出力が 得られ、この電荷を高速、高感度プリアンプ(ト ランスインピーダンスアンプ) で増幅することに よりフォトンパルス(電圧)を検出する。今回評 価した電子管は、APDを4分割型に変更して光 電面に入射したレーザビームの位置誤差を検出 できるようにしたものである。したがって、光 電面に入射した単一フォトンによるパルス出力 は4分割 APD の四つの出力ピン (アノード) のど れかに現れる。

図6に評価した4分割型光センサユニットの外 観を示す。左端に電子管(HPD)があり、受光部 の有効直径が約5mmである。HPDの直後に初段 のプリアンプに使用しているトランスインピー

ダンスアンプが見える。中央から右側に見える のは、APDのバイアス電圧を発生するD-Dコン バータでこの裏側に、電子打ち込み用の加速電 圧 (8kV)を発生するD-Dコンバータがある。

図7に評価したHPDに用いられているGaAsP 光電面の分光感度特性を示す。量子効率の低下 する波長は0.7 µmであり、可視光(太陽スペク トル)に対して高い感度を持っており、最大の量 子効率は0.4以上である。図8に、フィードバッ ク抵抗を3種類(82kΩ、150kΩ、330kΩ)変化 させた時の、トランスインピーダンスアンプの 出力波形を示す。この評価に用いた組合せでは 150k Ωが最適であることが分かった。この時の パルス波高分析結果を図9に示す。 HPD 打ち込 みバイアス電圧は8.5kV、APDのバイアス電圧は 153.0Vである。図の縦軸は10秒間の計測時間内 のパルス波高分布、横軸は、パルス波高(電圧) である。図のパルス波高が100~200mV 程度の 所にシングルフォトンピークが現れている。 100mV以下は雑音である。また、毎秒数十個の 頻度で数Vの波高を持ったパルスが発生してい る。この結果からフォトンカウントのダイナミ ックレンジは少なくとも 30dB 程度は期待できる ことが分かった。波長650nmのLEDをパルス駆 動した光源を用いて、シングル APD を組み込ん だ HPD の計数特性を測定した結果を図 10 に示 す。フォトカソード (GaAsP) の分光感度に近い 20%程度の量子効率が得られている。

5.2 Er-添加ファイバアンプを用いた光送受信機

地上の光ファイバ通信の技術を活用して短期 間に高性能な光送受信機を開発するため、Er-添 加ファイバアンプ(EDFA)を送受信機に採用し た[6]。図11に光送受信機の基本構成を示す。光 送信機においては、LN外部変調器によって変調 された微弱な光信号を、高出力EDFAにより数 百mW近くまで増幅する。このため、EDFAに は30dB以上の電力利得が必要になる。

一方、受信機においては、光アンテナで集光 した-50dBm 程度の微弱な光信号を0dBm 以上ま で増幅するため、低雑音 EDFA には50dB 以上の

利得が必要になり、少なくとも2段構成の増幅器 が用いられる。この場合、初段の増幅器には低 雑音特性が要求されるので、励起用のレーザ波 長を雑音指数 (NF)の良好な 0.98 µm帯として

NF最良の設計を行う。一般に、EDFAでは自然 放出光の存在により原理的にNFを3dB以下にす ることができない。また、入力部のファイバコ ネクタ、アイソレータ、励起光の合波回路等の 損失が、直接、受信機のNFを劣化させる。この ため、評価実験で使用した低雑音EDFAのNF は3.8dB程度であった。また、受信機の受信感度 を改善するためにパルス幅60psの短パルスRZ方 式を用いている[7]。

図12に変調器直後及び受信機フォトディテク タの直前の光信号波形を示す。低雑音EDFA直 後の信号には、自然放出光による雑音とアンテ ナで信号と一緒に受信した背景光雑音が含まれ ている。これらの雑音成分を効率的に除去する ため、光フィルタには信号スペクトルの広がり に整合した特性が要求される。2.5Gbpsの伝送速 度の場合、この光フィルタの通過波長帯域は 0.1nm以下になり、評価実験ではファブリペロー 型の狭帯域光フィルタを用いている。送信機レ ーザ光源の波長安定度及び狭帯域光フィルタの 安定度を考慮すると、最良の受信感度を達成す るためには、光フィルタは信号スペクトルに合 わせて自動的に調整する必要がある。

また、光受信機はショット雑音限界での動作 となるので、光信号のない(スペース受信)時に は雑音の分散が小さい。光信号が存在する(マー ク受信の)場合には、雑音の分散が信号強度によ って変化するため、符号判定の際のしきい値を 信号強度に合わせて動的に変化させることも必 要になる。

図13に、以上のような最適化を行う過程にお ける光受信機の感度評価結果の推移を示す。 NF=3dBのEDFAを用いた光受信機のショット

雑音限界は、10°の誤り率に必要なフォトン数に 換算すると36 photons/bitとなるが、この値に近 い54 photons/bitの感度が達成できたことが分か る。この劣化の主な要因は、評価に用いた EDFAのNF(=3.8dB)が理論値を達成できないこ と、光フィルタの通過帯域幅が整合フィルタよ りも広くなっているためである。

送信機に用いる高出力EDFAには、良好な電 力効率が求められる。このため、励起用の波長 1.48 µmのレーザに、ファイバブラッグリフレク タを用いた波長安定化により、温度制御用のペ ルチェ素子を用いない方式を採用した。図14に 高出力EDFAの内部構成を示す。1台当たり8波 の波長多重化した励起光ユニット(HPU)を2台 用いて双方向の励起を行っている。図15に高出 力EDFAの光出力特性と電力効率特性の測定結 果を示す。EDFAは800mW以上の飽和出力を持 っているが、電力効率を最良にするため、 400mWの光出力で動作させたときに8%の電力 効率が達成できた。ただし、この効率はEDFA は最適な動作を図るための温度設計が重要になる。

6 むすび

宇宙ステーションの船外実験プラットフォー ムにおける光通信実験について搭載実験装置の 主要な要素技術の試作結果について報告した。 LCDEの開発は2002年度を持って中止されたが、 本稿で紹介した要素技術は、宇宙ステーション だけでなく静止衛星や一般の周回衛星における 光宇宙通信システムに共通に用いられるもので ある。この成果を将来の超高速空間光通信のた めに活用していきたいと考えている。

本実験計画はNICTを中心とする研究グループ からの提案により開始されたものであり、宇宙 開発事業団:NASDA(現宇宙航空研究開発機 構: JAXA)とNICT等の密接な協力の下に搭載 機器の設計検討が進められた。最後に、これら の作業に協力頂いたNICT及びNASDAの関係 者、概念設計に協力頂いた衛星関連メーカの技 術者の皆様に謝意を表します。

参考文献

- 1 清水順一郎, "JEM 曝露部のミッション", 信学技報, SANE97-32, 77-81, 1997-6.
- 2 有本好徳, "JEM 曝露部初期利用ミッション装置の開発(2):光通信実験装置", 宇宙ステーション講演会, 1998-4.
- 3 小出来一秀, 柏瀬俊夫, 有本好徳, 荒木賢一, "衛星間光通信用振動アイソレータの設計・評価", 日本航空宇宙 学会誌, 47, 542, 122-129, 1999.
- 4 有本好徳, ウェルナー・クラウス, 早野裕, "能動光学を用いた超高速光衛星通信システム", 信学技報, SANE96-8, 1996-04.
- 5 M. Suyama, K. Hirano, Y. Kawai, T. Nagai, A. Kibune, T. Saito, Y. Negi, N. Asakura, S. Muramatsu, T. Morita, "A Hybrid Photodetector (HPD) with a III-V Photocathode", IEEE Transaction on Nuclear Science, Vol. 45, No. 3, 572-575, June 1998.
- 6 J. Livas, E. Swanson, S, Chinn, E. Kintzer, "High Data Rate Systems for Space Applications", SPIE, Vol. 2381, Feb. 1995.
- 7 S. Tanikoshi, K. Ide, T. Onodera, Y. Arimoto and K. Araki, "High Sensitivity 10Gb/s Optical Receiver for Space Communications", 17th AIAA International Communications Satellite Systems Conference, AIAA-98-1244, 1998.

着茶 好徳 無線通信部門 光宇宙通信グループ グループリーダー 衛星通信、空間光通信