6.2.2 研究助成

制	度	-m	EZ.	<i>7</i> 2	NICTの参加研究者	TITE HERE
実施主体	制度名	課	題	名	(*: 研究代表者又は主担当者)	研究期間
文部科学省	科学 技 類 整 費	日中・中日開発研究/「ベース翻訳術の研究開ムに関する	日中・中 くのため 引発/解	日の用例 の要素技 析システ	*内元 清貴 1) 井佐原 均 2) 内山 将夫 3) 河原 大輔 4) 風間 淳一 5) 陳 文亮 5) 曹 海龍 3) 王 軼謳 5) 鳥澤 健太郎 5) 1) 総合企画部企画戦略室 2) 知識創成コミュニケーション研究センター推進 室 3) 知識創成コミュニケーション研究センター言語 翻訳グループ 4) 知識創成コミュニケーション研究センター知識 処理グループ 5) 知識創成コミュニケーション研究センター知識 処理グループ 5) 知識創成コミュニケーション研究センター言語 基盤グループ	H18~H22
		日中・中日開発研究/1ベーの研究制での研究制では関するの対応付け	日中・中 くのため 引発/翻 ら研究	日の用例 の要素技 訳エンジ 開発/対訳	呉 鍾勲 4) 隅田 英一郎 1) 1) 知識創成コミュニケーション研究センター言語 翻訳グループ	H18~H22
		日中・中日開発研究/ 訳プロトタ 開発および	日中・中 イプシ	日機械翻 ステムの	*内元 清貴 1) 井佐原 均 2) 内山 将夫 3) 河原 大輔 4) 風間 淳一 5) 張 玉潔 5) 呉 鍾勲 5) 陳 文亮 5) 曹 海龍 3) 王 軼謳 5) 隅田 英一郎 3) 鳥澤 健太郎 5) 1) 総合企画部企画戦略室 2) 知識創成コミュニケーション研究センター推進 室 3) 知識創成コミュニケーション研究センター言語 翻訳グループ 4) 知識創成コミュニケーション研究センター言語 型型グループ 5) 知識創成コミュニケーション研究センター知識 処理グループ 5) 知識創成コミュニケーション研究センター言語 基盤グループ	H19~H22

制					NICTの参加研究者	
実施主体	制度名	課	題	名	(*: 研究代表者又は主担当者)	研究期間
文部科学省	科学技術振興調整費	日中・中日 開発研究//		処理技術の 運営委員会	*井佐原 均 1) 内元 清貴 2) 隅田 英一郎 3) 鳥澤 健太郎 4) 1) 知識創成コミュニケーション研究センター推進室 2) 総合企画部企画戦略室 3) 知識創成コミュニケーション研究センター言語翻訳グループ 4) 知識創成コミュニケーション研究センター言語基盤グループ	H18~H22
		雨・降雪に 究/リモー 術を用いた に関する石 ンシング打 内部構造観 /W-bandレ レインレー	関ト人衆術別ーダすせ工/をにダを		大野 裕一 2) 高橋 暢宏 2) 堀江 宏昭 2) 中川 勝広 2)	H18~H22
		インドネシの推進と体		宙天気研究 築	*長妻 努 1) 津川 卓也 1) 石橋 弘光 1) 陣 英克 1) 坂口 歌織 1) 久保田 実 2) 1) 電磁波計測研究センター宇宙環境計測グループ 2) 総合企画部企画戦略室	H22~H23
	科学研究費補助金		対す	トワークコ る管理・統 研究	*下條 真司 (上席研究員)	H18~H22
				たユビキタ 活用技術の	*木俵 豊 1) 是津 耕司 1) 柏岡 秀紀 2) 1) 知識創成コミュニケーション研究センター知識 処理グループ 2) 総合企画部企画戦略室	H21~H22
		言語検索を	組み	グ付き自然 合わせた意 報の発見支	黒田 航	H21∼H22
		大面積ナノ造の形成と		ル超周期構 応用	*中尾 正史 未来ICT研究センターナノICTグループ	H20~H22
		による超高	層大	統合モデル 気の変動機 予測システ	*陣 英克 品川 裕之 電磁波計測研究センター宇宙環境計測グループ	H20~H22
			による	機ナノフォト るアクティブ の創製	*井上 振一郎 未来ICT研究センターナノICTグループ	H22~H25

制			NICTの参加研究者	
実施主体	制度名	課題名	(*: 研究代表者又は主担当者)	研究期間
	科学研究費	光多重信号解析のための超 高速多次元コヒーレント光 オシロスコープ		H22~H24
		決定ルールと構造オントロ ジーによる意思決定知識 ベースシステム		H20~H23
		議論スキームに基づくトレードオフに着目した設計 意図の表現と獲得		H20~H22
		空間マスキングに基づく音 響透かしの開発	*西村 竜一 ユニバーサルメディア研究センター超臨場感シス テムグループ	H20~H22
		大容量メモリを高度に活用 しシステム性能のディペン ダビリティを向上する技術 の研究		H21~H22
		音声対話システムにおける 対話コーパスの検索・適応 に基づく応答生成		H21~H23
		脳波波形変化メカニズムの 解明―モデルパラメータ推 定を用いたアプローチ―	*成瀬 康 未来ICT研究センターバイオICTグループ	H21~H23
文部科学省		合議プロセスにおける同意 と不和の多層的記述・評価 法の開発		H21~H23
		ネットワーク配信を目的と した地球表層流体の荷重変 動データベースの構築		H21~H22
		SUMO化依存的なクロマ チン構造変換の1分子解析		H21~H22
		繊毛虫の核分化過程におけ るヌクレオポリンNup98の 役割	*岩本 政明 未来ICT研究センターバイオICTグループ	H21~H22
		Hilbert再生核空間の正規 法による頑健音声処理	*Lu Xugang 知識創成コミュニケーション研究センター音声コ ミュニケーショングループ	H22~H23
		短期的な意識レベルの揺ら ぎにより向上/低下する脳 機能の解明	*小池 耕彦 未来ICT研究センター	H22~H24
		感情的文脈を利用した言語 理解の脳内機構	*井原 綾 未来ICT研究センターバイオICTグループ	H22~H23
		光子計数と干渉を用いた量 子受信機とその量子通信へ の応用		H22~H23
		GPS受信機網を利用した電 離圏擾乱のスケール間結合 と衛星測位への影響に関す る研究	*津川 卓也 電磁波計測研究センター宇宙環境計測グループ	H22~H23
		蛋白質分子の折り畳み過程 解明へ向けた単一分子光子 統計・実時間測定法の開発	*梶 貴博 未来ICT研究センターナノICTグループ	H22~H24

制	度	課題名	NICTの参加研究者	研究期間
実施主体	制度名		(*: 研究代表者又は主担当者)	1川九州间
文部科学省	科学研究費補助金	ユーザビリティを有する暗 号プロトコルと安全性モデ ルに関する研究		H22~H23
		単純な酵素から分子モーターを創ることによる分子 機械の設計原理の探究	* II WIN	H22~H25
		生細胞導入DNAビーズを 使った小胞体・核膜様の膜 のアセンブリー機構の解明	*小林 昇半 キェICT研究センターバイオICTグループ	H22~H23
	科学研究費補助金	マイクロミラーアレイによる受動結像光学素子の開発 およびその応用に関する研究	*前川 聡 ユニバーサルメディア研究センター紹臨場感シス	H20~H22
		VLBI相関処理技術を利用 した時空情報正当性検証に 関する基礎研究		H21~H23
		第二言語習得支援のための 韻律近くモデルの研究	*加藤 宏明 ユニバーサルメディア研究センター超臨場感シス テムグループ	H20~H23
		単一磁束量子ディジタル信 号処理による超伝導ナノワ イア光子検出器高性能化の 研究	王鎮	H20~H22
		ライブクレムを基盤とする 分子特異的ナノイメージン グ法の開発	*	H21~H23
		減数分裂前期の相同染色体 対合機構に寄与する分子メ カニズムの解析	*丁 大橋 未来ICT研究センターバイオICTグループ	H22~H23
		減数分裂期染色体ブーケ形成とその生物学的機能の解析	↑ ↑/厂 目 《台///	H22~H25
		安全な共同作業に向けたミ スコミュニケーション検出 指針	鈴木 紀子	H20~H23
		生活支援ロボットの対話と 行動のユーザー適応化技術 の研究	*岩橋 直人 杉浦 孔明 知識創成コミュニケーション研究センター音声コ ミュニケーショングループ	H20~H22
		共同作業型の多人数インタ ラクションを対象とした役 割構造抽出の研究		H20∼H22
		単一蛍光分子制御技術及び 計測システムの開発	*山田 俊樹 未来ICT研究センターナノICTグループ	H20~H22
		分子間エネルギー移動を用いた分子フォトニックゲートの構築とその動的解析	* 	H20~H22

制			NICTの参加研究者	
実施主体	制度名	課題名	(*: 研究代表者又は主担当者)	研究期間
		高光検出効率アバランシェ フォトダイオードの開発	*秋葉 誠 新世代ネットワーク研究センター量子ICTグループ	H20~H22
		導波管型準平面ホットエレクトロンボロメータの研究 開発	*川上 彰 未来ICT研究センターナノICTグループ	H20~H22
		声道と音源の相互作用が音 声の個人性に与える影響に 関する研究		H21~H23
		単一分子セル構造によるナ ノスケール電位情報の運用 技術開発	*田中 秀吉 総合企画部企画戦略室	H21~H23
		敬語の誤用に関する認識の 調査及びシステム開発	*白土 保 知識創成コミュニケーション研究センター推進室	H21~H23
	科学研究費補助金	情報理論における基本的未 解決問題の探求	*小林 欣吾 (上席客員研究員)	H21~H23
		分裂酵母における染色体セントロメア領域のSPBとの相互作用の分子機構の解析	*前川 裕美 未来ICT研究センターバイオICTグループ	H21~H23
		太陽圏終端衝撃波の巨視的 変動要因の探求	*坪内 健 電磁波計測研究センター宇宙環境計測グループ	H22~H24
		光伝導素子を用いたテラヘ ルツ波キャリアの光学的抽 出技術の研究		H22∼H24
(独)日本学 術振興会		Twitchingによるアクトミ オシン分子間相互作用制御 に関する研究	*山田 章 未来ICT研究センターバイオICTグループ	H22~H24
		神経細胞軸索活動を可視化 するための新規磁気共鳴磁 気共鳴イメージング法の開 発		H22~H24
		サービススーパビジョンに よる水平型Webサービス 連携		H21~H22
		超高分解能蛍光顕微鏡技術 を用いた間期細胞核のクロ マチン高次構造の解析	*松田 厚志 未来ICT研究センターバイオICTグループ	H22~H23
		異種ネットワークを統合す るユニバーサルネットワー ク技術	*張 兵 KUCERA Stepan 新世代ワイヤレス研究センター医療支援ICTグ ループ	H20~H22
		地球大気中における結合型 水蒸気錯体の検出	*笠井 康子 Dupuy,Eric 電磁波計測研究センター環境情報センシング・ネットワークグループ	H20~H22
		電子ホログラフィによる立 体テレビを実現するための 専用計算機システムの開発	ユニバーサルメディア研究センター超臨場感基盤	H22
	最先端・次 世代研究開 発支援プロ グラム	衛星アイソトポマー観測に よる地球環境診断	*笠井 康子 電磁波計測研究センター環境情報センシング・ネットワークグループ	H22∼H25