

Visual IoT System for Smoke/Fire Detection in Chiang Mai (Thailand)

16 March 2024

Kanokvate Tungpimolrut

National Electronics and Computer Technology Center

Outline of presentation

- Basic information of the project
- Dataset construction
- Smoke/Fire detection
- O Hardware design and Installation

Basic Information of the project

Project Title:

Visual IoT Network for Environment Protection and Disaster Prevention

Project Members:

National Institute of Information and Communications Technology (NICT)

University of Computer Studies, Yangon (UCSY)

National Electronics and Computer Technology Center (NECTEC)

Mapua University

National University of Laos (NUOL)

Sirindhorn International Institute of Technology (SIIT)

King Mongkut's Institute of Technology Ladkrabang (KMITL)

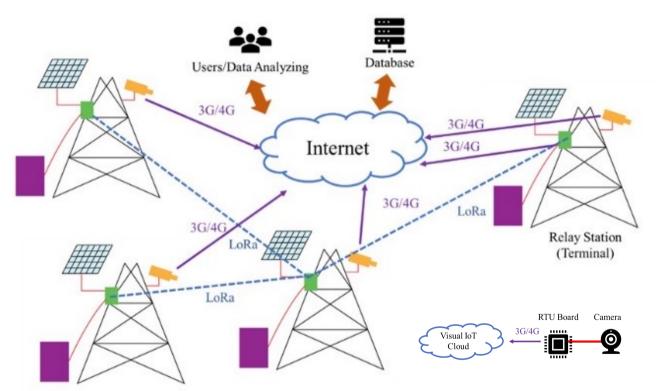
Acknowledgement:

This presentation is the output of the ASEAN IVO (http://www.nict.go.jp/en/asean_ivo/index.html) project, and financially supported by NICT (http://www.nict.go.jp/en/index.html).

Background:

One of the leading causes of air pollution problems (e.g., PM2.5) is a forest fire. It is found that about 92% of burned area in Chiang Mai are in the conservation forest and national park. Furthermore, with the problem of high steep mountainous terrain in conservation and national parks and insufficient patrol staff, it is very difficult to do the effective monitoring and firefighting task with a quick response. Using Visual IoT in the forest fire monitoring system will increase the ability to accurately assess and provide information about the situation of the scene quickly. In this project, Visual IoT will be used in conjunction with other sensors such as satellite image in

order to assess the situation of forest fire.

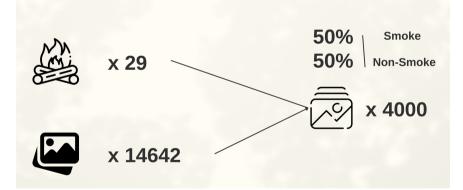

Targets:

- > System of visual IoT cameras with transmission modules
- Algorithms for forest fire detection
- Data visualization

System Overview

Dataset construction

Example Of Available Datasets



Dataset construction

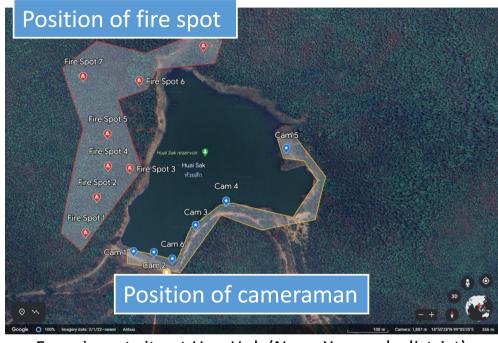
Field experiment for developing an imagebased dataset have been conducted in all 3 targeted sub-districts.

The dataset is open for project member to access.

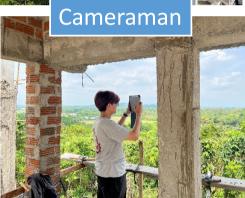
•	Area	Location	Total number of fire spots	#Photos taken
	1. Huai Huk	lat 18.9245582, long 99.094015	8	4,355
	2. Pa Maing	lat 18.9145094, long 99.2284893	7	3,977
	3. Doi Koo 1	lat 18.8854613, long 99.1708773	5	2,580
	4. Doi Koo 2	lat 18.885279, long 99.1706582	4	1,887
	5. Pang Sak	lat 18.9026969, long 99.203065	5	1,843
	Tota	14,642		

The procedural activities are summarized as follows.

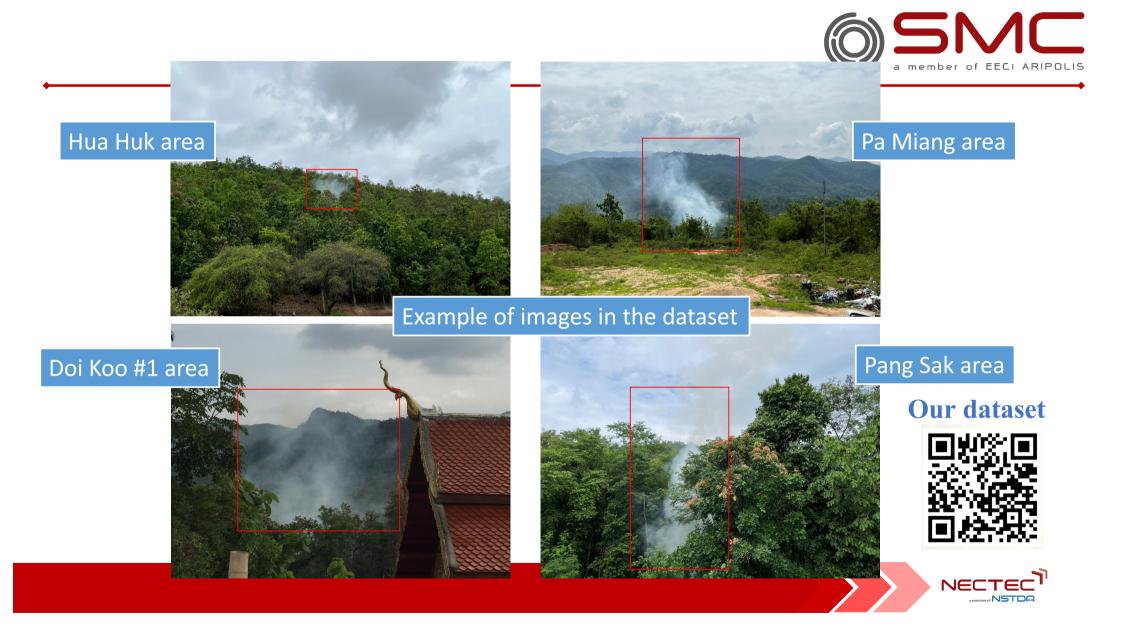
- Local government officers responsible for setting fire were ready at a planned and designated position (fire spot)
- They made smoke for half an hour for one fire spot.
- Four cameramen, including one at the top of tower, were ready to take photos Meeting with local government officer (snapshot and video) from before the appearance of smoke until it died out.
- Once the fire was set, the camerapersons took photos from different viewpoints simultaneously.
- Then, the local government staff moved to the following designated spot and repeated the procedure.


Example of taken image

Setting fire



Experiment site at Hua Huk (Nong Yang sub-district)



Smoke/Fire detection

$$F_1 = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}} = rac{ ext{TP}}{ ext{TP} + rac{1}{2}(ext{FP} + ext{FN})}$$

Precision =
$$\frac{TP}{TP + FP}$$

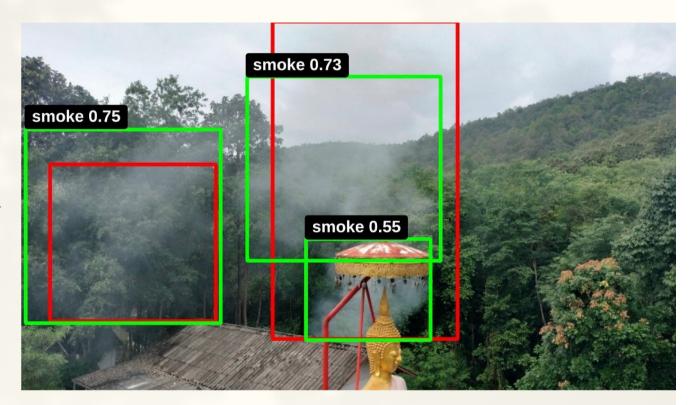
Recall = $\frac{TP}{TP + FN}$

 \mathbf{TP} = number of true positives

FP = number of false positives

FN = number of false negatives

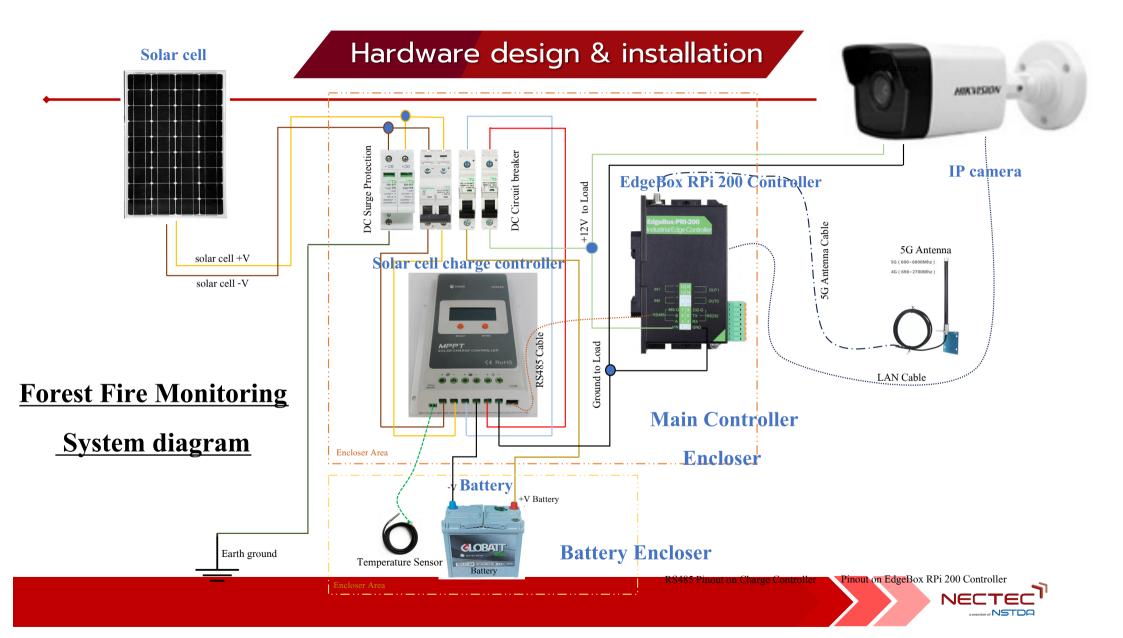
The evaluation metrics


Metrics of 4-fold cross validation

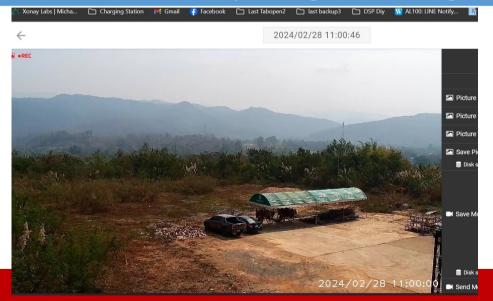
Round	Precision	Recall	mAP_0.5	mAP_0.5:0.95	F1-score
1	0.8171	0.7198	0.7809	0.3547	0.9688
2	0.7749	0.7228	0.7693	0.3435	0.9605
3	0.8055	0.7207	0.7772	0.3332	0.97
4	0.7631	0.6948	0.7364	0.3359	0.9616

Custom Evaluation

- image with smoke is counted as a TP if the model detects at least one smoke area with an IoU value larger than a predefined threshold; otherwise, it is considered a FN.
- image without smoke is counted as a TN if the model detects no smoke objects; otherwise, it is considered a FP.



Performance evaluation of our YOLOv5 – based smoke detection


IoU Threshold	Accuracy	Precision	Recall	F1-score	Balanced Accuracy
0.3	0.9388	0.974	0.9375	0.9554	0.9396
0.4	0.9375	0.974	0.9357	0.9545	0.9387
0.5	0.9375	0.974	0.9357	0.9545	0.9387
0.6	0.9363	0.9739	0.9339	0.9535	0.9378
0.7	0.9338	0.9738	0.9304	0.9516	0.936

System installation and sample image at Pa Miang area

System installation and sample image at Huay Hug are

Conclusion

- O Visual IoT system has been used for detecting smoke or early stage of forest fire in Chiang Mai (Thailand) and Myanmar
- 4,000 images of the dataset have been constructed
- Prediction of smoke/fire using YOLOv5 return accuracy of 93.88 %
- 5 sets of Visual IoT system have been installed in 3 targeted subdistrict in Chiang Mai since Mar 1, 2024

Contact us

Kanokvate Tungpimolrut,

Advanced Control and Electronics Research Group (ACERG)
National Electronics and Computer Technology Center (NECTEC)
National Science and Technology Development Agency (NSTDA)
kanokvate.tungpimolrut@nectec.or.th

website: https://www.nectec.or.th

