

Water Surface Level Estimation Based on the Fast Segment Anything Model for Coastal Monitoring Systems

Presented by

Julathit Chetsawang, Kaweewat Sricharoenchit, Krittapak Jairak, Warit Yuvaniyama, Peeravich Teerapatanapan, Kittin Traisiwakul, Tawin Supmahaudom, Akkharawoot Takhom, Phutphalla Kong, Didin Agustian Permadi, Sharifah Hafizah Syed Ariffin, Kasorn Galajit, Surasak Boonkla, and <u>Jessada Karnjana</u>

Outline

- 1.Background
- 2. Proposed Method
- 3. Experiment, Result, and Evaluation
- 4. Discussion and Conclusion

Coastal Erosion

Source: Google Earth Satellite Image

Thailand

- 66 M population, 77 Provinces
- ~21 M population living in the coastal
 - area (23 coastal provinces)
- Critical Area: 16 Province with >5m

 - erosion per year especially around the Gulf of Thailand

IUKM 2025 : 17 - 19 March 2025, Ho Chi Minh City, Vietnam

• ~3150 km shore-line

Preventive Protection Measure

Artificial Mangrove Root

Break Water Barrier

How effective are these construction in costal erosion prevention?

G-Aoss

Bamboo fend

Transmission Coefficient (T)

$$T = \frac{H_t}{H_i}$$

 H_t = wave height after passing through or around the breakwater H_i = wave height before hitting the breakwater Hence, being able to estimate precise wave height is very crucial in measuring the effectiveness of the breakwater barrier

IUKM 2025 : 17 - 19 March 2025, Ho Chi Minh City, Vietnam

Previous Experiment Setup to Find the Wave Height

IUKM 2025 : 17 - 19 March 2025, Ho Chi Minh City, Vietnam

In the previous setup, to compare the sensor data and the ground truth data from the video camera we need to <u>manually</u> <u>labeled each frame by hand</u>

Currently, there is no research to estimate the wave height of flexible low-crested breakwaters in the shore area

Objective:Develop a method to <u>automatically calculate the wave</u>
height at the shore area using time-series data

IUKM 2025 : 17 - 19 March 2025, Ho Chi Minh City, Vietnam

Background

Our Impact

- 1. Site without sensor but have camera could implement our method
- 2. Site with existing sensor could use our method to verify/calibrate the sensor
- 3. Use our method to automate the process of obtaining ground truth

Sensor Node Development: A project of ASEAN IVO 2024

Global ICT R&D alliance in the ASEAN region and Japan.

Coastal Erosion Monitoring Platform Based on Wireless Sensor Networks and 3D Point Clouds from Airborne LiDAR Collaborate between 4 countries to study changes in coastal area.

IUKM 2025 : 17 - 19 March 2025, Ho Chi Minh City, Vietnam

IVO

Background

Location

Moonlight Beach (Seang Chan Beach) Rayong province, Thailand

IUKM 2025 : 17 - 19 March 2025, Ho Chi Minh City, Vietnam

Background

We need a segmentation model to segment the water gauge from the video frame

Requirements

- Resource efficient

Our target water gauge, is just a square fixed in place

IUKM 2025 : 17 - 19 March 2025, Ho Chi Minh City, Vietnam

• Near real-time speed for segmentation • High accuracy with less artifact

Candidate: SAM (Segment Anything Model)

Model	Size (MB)	Parameters (M)	Speed (CPU) (ms/im)
Meta SAM-b	358	94.7	51096
MobileSAM	40.7	10.1	46122
FastSAM-s with YOLOv8 backbone	23.7	11.8	115

Source: https://docs.ultralytics.com/models/sam/

Source: https://blog.roboflow.com/segment-anything-breakdown/

IUKM 2025 : 17 - 19 March 2025, Ho Chi Minh City, Vietnam

- Produce great result
- Take couple of seconds to process each frame using SAM on our RTX4060 laptop GPU

Background

Candidate: FastSAM

Source: CASIA-IVA-Lab. "FastSAM Overview." GitHub, 2023.

- Produce similar result as SAM (sometimes a little better in our case) • Process really fast (milliseconds) using RTX4060 laptop GPU

IUKM 2025 : 17 - 19 March 2025, Ho Chi Minh City, Vietnam

Performance Analysis: FastSAM-x vs FastSAM-s

Feature S	FastSAM-x (72.2M parameters)	
Artifact Produce*	More Artifact	
Computational Resource Used	More resource	

*When apply to our data FastSAM-x (larger model) sometimes overshooting the water gauge segmentation boundary while FastSAM-s doesn't have this issue

IUKM 2025 : 17 - 19 March 2025, Ho Chi Minh City, Vietnam

FastSAM-s

(11.8M parameters)

Less Artifact

Less resource

Framework

IUKM 2025 : 17 - 19 March 2025, Ho Chi Minh City, Vietnam

Framework

IUKM 2025 : 17 - 19 March 2025, Ho Chi Minh City, Vietnam

From what we observed in the real data the deviation observed is negligible enough to use linear equation.

$$f\left(x, heta
ight)=e_{0}\left(rac{x\sin\left(heta+rac{\pi}{2}
ight)}{fov+d+x\cos\left(heta+rac{\pi}{2}
ight)}
ight)d+bias$$

True Relation: Hyperbola Equation

$$\lim_{ heta
ightarrow 0} f\left(x, heta
ight) pprox f\left(x
ight) = e_1 x$$

Simplified Relation: Linear Equation

IUKM 2025 : 17 - 19 March 2025, Ho Chi Minh City, Vietnam

+ bias

Linear Equation

IUKM 2025 : 17 - 19 March 2025, Ho Chi Minh City, Vietnam

f(p) = mp + c

- f(p) = True Height
 - p = Pixel Height
 - C = Constant from linear regression

Experiment, Result, and Evaluation

Correlation between Our method and sensor ground truth

IUKM 2025 : 17 - 19 March 2025, Ho Chi Minh City, Vietnam

RMSE = 1.0 cm

Discussion and Conclusion

Comparison between data from haman manually labeling each data point frame-by-frame and our method prediction

IUKM 2025 : 17 - 19 March 2025, Ho Chi Minh City, Vietnam

prediction

Correlation 0.974

Discussion and Conclusion

Image with detected markers

https://github.com/okalachev/arucogen/issues/3

Automation of the Calibration Phase

The study demonstrates the effectiveness of a water surface level estimation method using the FastSAM model, achieving high accuracy, and suggests future improvements through automation with Aruco markers and nearinfrared imaging for enhanced reliability.

IUKM 2025 : 17 - 19 March 2025, Ho Chi Minh City, Vietnam

