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Abstract

Background/Objectives: Dry Eye Disease (DED) significantly impacts quality of life due to
the instability of the tear film and reduced tear production. The limited availability of eye
care professionals, combined with traditional diagnostic methods that are invasive, non-
portable, and time-consuming, results in delayed detection and hindered treatment. This
proof-of-concept study aims to explore the feasibility of using smartphone-based infrared
thermography (IRT) as a non-invasive, portable screening method for DED. Methods: This
study included infrared thermography (IRT) images of 40 subjects (22 normal and 58 DED).
Ocular surface temperature changes at three regions of interest (ROIs): nasal cornea, center
cornea, and temporal cornea, were compared with Tear Film Break-up Time (TBUT) and
Ocular Surface Disease Index (OSDI) scores. Statistical correlations and independent ¢-tests
were performed, while machine learning (ML) models classified normal vs. DED eyes.
Results: In these preliminary results, DED eyes exhibited a significantly faster cooling rate
(p <0.001). TBUT showed a negative correlation with OSDI (r = —0.802, p < 0.001) and posi-
tive correlations with cooling rates in the nasal cornea (r = 0.717, p < 0.001), center cornea
(r=0.764, p < 0.001), and temporal cornea (r = 0.669, p < 0.001) regions. Independent ¢-tests
confirmed significant differences between normal and DED eyes across all parameters
(p < 0.001). The Quadratic Support Vector Machine (SVM) achieved the highest accuracy
among SVM models (90.54%), while the k-Nearest Neighbours (k-NN) model using Eu-
clidean distance (k = 3) outperformed overall with 91.89% accuracy, demonstrating strong
potential for DED classification. Conclusions: This study provides initial evidence sup-
porting the use of smartphone-based infrared thermography (IRT) as a screening tool for
DED. The promising classification performance highlights the potential of this approach,
though further validation on larger and more diverse datasets is necessary to advance
toward clinical application.

Keywords: Dry Eye Disease; infrared thermography; machine learning; statistical analysis

1. Introduction

Dry Eye Disease (DED) is a condition in which the eyes fail to produce adequate tears
or maintain a stable tear film, both of which are essential for ocular health and comfort. DED
is primarily characterized by an imbalance in tear film homeostasis, accompanied by ocular
discomfort resulting from tear film instability, hyperosmolarity, inflammation, surface
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damage, and neurosensory dysfunction [1]. It is generally classified into two primary
types: tear-deficient dry eye and evaporative dry eye, with further subclassifications
based on various intrinsic and extrinsic etiological factors [2,3]. Notably, the National Eye
Institute/Industry Workshop on Clinical Trials in Dry Eyes defines dry eye as “a disorder
of the tear film due to tear deficiency or excessive tear evaporation,” highlighting these
two mechanisms as the primary causes of the condition. The severity of dry eye symptoms
varies among individuals and may include ocular discomfort, pain, fatigue, and visual
disturbances, including blurry vision [4]. These symptoms can significantly impact daily
life, as persistent discomfort and vision issues may interfere with activities like reading
and driving. Additionally, the pain and irritation associated with dry eye can negatively
affect mental well-being and overall quality of life. Beyond personal challenges, reduced
visual clarity and discomfort may also hinder work productivity, ultimately influencing
both individual success and broader economic outcomes.

Multiple clinical studies have highlighted the significant role of inflammation in the
ocular surface, meibomian glands, lacrimal glands, autoimmune diseases, and systemic
conditions, as well as age-related dysfunction, in the pathogenesis of DED [5-7]. Additional
factors, including female gender, certain medications, corneal nerve sensitivity loss, reduced
humidity, and increased exposure to wind, contribute to the dysfunction of the lacrimal
functional unit (LFU), which is essential for tear film production and stability [8]. Given
the multifactorial nature of DED and its impact on tear film stability, accurate diagnosis is
essential for effective management. The TFOS DEWS II guidelines recommend subjective
clinical tests such as the McMonnies Questionnaire or the Ocular Surface Disease Index
(OSDI), followed by objective clinical tests like the Schirmer test and tear film breakup time
(TBUT) [9]. However, these objective tests can be invasive, time-consuming, and often lack
consistency, particularly in mild to moderate cases [10]. Given these limitations, there is an
increasing need for a non-invasive, rapid, sensitive, and portable screening tool for more
effective DED detection.

Infrared Thermography (IRT) is a non-invasive and portable technology designed to
measure infrared radiation or surface temperature emitted by objects or body areas. In
medical applications, IRT has been widely utilized to assess temperature variations across
surfaces, organs, tissues, and cells, serving as an indicator of potential abnormalities [11].
Since its pioneering use in by [12] for measuring ocular surface temperature (OST) in
dry eye patients, IRT has gained significant attention in the screening and research of
DED due to its non-ionizing, safe, and contact-free nature. Numerous studies have since
reported distinct OST patterns between normal and DED-affected eyes, despite variations
in IRT device specifications [10,13-15]. The core objective across these studies remains
the identification of reliable thermal characteristics that can effectively differentiate DED
patients from healthy individuals.

The urgency to develop efficient DED screening methods is particularly pronounced
in Malaysia, where research and data on DED prevalence are still limited. A study by [16]
highlighted a concerning DED prevalence rate of 48.8% in Malaysia, which is well above
global estimates of 7% to 34%. This further emphasizes the need for greater awareness,
early detection, and effective management strategies to safeguard visual health and quality
of life. This high variability in prevalence is influenced by inconsistent diagnostic criteria,
differences in tear film assessments, demographic diversity, and lifestyle factors, with
findings particularly relevant to populations such as those in Kuantan.

The availability of optometry professionals remains limited in Malaysia, which can
impact efforts to improve ocular health services. According to the 2024 health indicators
report, the country’s optometrist-to-population ratio stands at 1:12,729 [17], significantly
below the internationally recommended ratio of 1:10,000 [18]. Traditional DED diagnostic
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methods, while accurate and clinically reliable, are often expensive and not widely available,
particularly in rural or underserved areas. This lack of accessibility contributes to delayed
diagnosis and treatment, increasing the risk of chronic ocular complications, including
potential vision loss.

To address these growing challenges, especially in regions with limited access to spe-
cialized care, there is a clear demand for non-invasive, cost-effective, and portable screening
solutions. Conventional diagnostic tools, despite their precision, are often impractical due
to financial and logistical constraints. In this context, IRT, particularly when integrated
with smartphone-based thermal cameras, presents a promising alternative for rapid and
accessible DED detection. Furthermore, advancements in machine learning (ML) and deep
learning (DL) have enhanced the ability to automatically extract and classify key thermal
features that differentiate DED from normal eyes.

Therefore, this study introduces an innovative, non-invasive approach for the early
screening of DED by integrating IRT with ML techniques. This preliminary study serves
as proof-of-concept, aiming to explore the potential of this combined methodology for
enabling early, efficient, and scalable screening. It provides a practical solution for en-
hancing DED management, particularly in settings with limited healthcare resources. The
remainder of this paper is structured as follows: Section 2 describes the materials and
methods, focusing on the use of IRT images for DED screening; Sections 3 and 4 present the
results and subsequent discussion; and Section 5 concludes the study with key findings and
future perspectives. This work is part of the ASEAN IVO project focused on developing an
integrated system for ocular disease detection using artificial intelligence. It is currently in
the phase of machine intelligence and cloud-based development.

2. Materials and Methods

The proposed methodology for screening DED is based on Digital Infrared Thermal
Imaging (DITI). It involves several key steps: DITI data collection, database development,
data preprocessing, feature extraction, feature selection, and classification. Each step is
designed to ensure accurate identification of relevant thermal patterns associated with
DED. Figure 1 illustrates the overall workflow of the proposed DED screening system using
DITI data.

2.1. Study Design and Data Acquisition

This study was conducted in collaboration with the Optometry and Vision Science
Programme at Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur campus. Data
collection was carried out at the Optometry Clinic through a structured effort involving
optometrists and optometry students. The dataset comprises DITI focused on the ocular
regions of both the right and left eyes. Prior to participation, informed consent was obtained,
and participant anonymity was strictly maintained. A total of 40 subjects were randomly
selected, comprising a diverse group of individuals regardless of age, gender, or ethnicity,
resulting in 80 eyes (58 diagnosed with DED and 22 classified as normal). Participants were
included based on their availability and willingness to participate, with clinical diagnosis
(based on TBUT and clinical evaluation) used to determine group allocation. No age or
gender matching was performed between the DED and control groups. To ensure data
reliability and reduce potential confounding factors, the following exclusion criteria were
applied: recent ocular surgery, current use of medications affecting tear film stability,
ongoing DED treatments, pregnancy or breastfeeding, use of eye drops within 6 h prior to
imaging, and contact lens wear within the past two weeks.
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Figure 1. Overall workflow of the proposed DED screening system using DITI data.

Clinical DED detection was performed using a dual-assessment approach that in-
tegrated both objective and subjective diagnostic tools, each validated by experienced
optometrists. The TBUT test was employed to assess the stability of the tear film. A fluores-
cein dye was applied to the ocular surface using a moistened strip, and the time interval
between the final blink and the appearance of the first dry spot on the pre-corneal tear
film was measured under a cobalt blue filter using a slit lamp. A TBUT value of less than
5 s was considered indicative of tear film instability and thus, DED, in line with clinical
standards. In addition to this objective measure, participants were asked to complete the
OSDI questionnaire. This self-administered, 12-item tool is designed to assess the frequency
and severity of DED symptoms such as burning, irritation, blurred vision, and visual
discomfort over the preceding two to four weeks. The OSDI score was calculated using the
standard formula [19], and scores exceeding 13 were interpreted as suggestive of DED. The
formula is as follows,

(sum of scores for all questions answered) x 100
(total number of questions answered) x 4

OSDI Score = (1)

The combination of both clinical signs and self-reported symptoms provided a com-
prehensive basis for participant diagnosis.
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Before conducting thermal imaging, participants were instructed to rest in the ex-
amination room for 10 min to allow their ocular surface temperature to stabilize. The
room was maintained at a temperature of approximately 20-24 °C with humidity levels
between 60-68%. Participants were asked to blink normally for a few seconds and then
open their eyes as widely as possible. Inmediately afterward, DITI images were captured
over a continuous 5-s interval, with frames recorded every 0.3 s, during the time window of
8:00 AM to 4:30 PM. To ensure consistency in positioning and imaging distance, the IRT
camera, specifically the InfiRay P2 Pro (iPhone version) by InfiSense Technology Co., Ltd.
(Wuxi, China) that was mounted on a selfie stick while participants were stabilized using
a slit lamp chin rest, as illustrated in Figure 2. The camera offered a thermal resolution
of 256 x 192 pixels at 25 Hz, and images were captured using an iPhone 6s Plus running
iOS 14.4.2. Capturing high-quality thermal images proved particularly challenging among
subjects with more severe DED symptoms, as they often had difficulty keeping their eyes
wide open and maintaining position for the entire duration. Consequently, repeated image
captures were occasionally necessary to meet the predefined quality standards.

Figure 2. DITI data captured using InfiRay P2 Pro that was mounted on a selfie stick using a slit lamp
chin rest.

Temperature data were extracted using the “Thermal P2 Mobile” application. Ocular
Surface Temperature (OST) values were recorded at three predefined regions of interest
(ROIs): nasal cornea (NC), temporal cornea (TC), and center cornea (CC), as described
in Table 1. The extracted OST data were analyzed using JASP software (Version 0.18.3)
to conduct preliminary statistical evaluations and explore potential correlations between
temperature distribution and DED status. These thermal features were also used as inputs
for classification models developed in MATLAB R2023b, enabling ML-based differentiation
between DED and normal eyes. The integration of well-defined clinical assessments,
strict measurement protocols, and controlled imaging conditions ensures the reliability
and reproducibility of the dataset, forming a robust foundation for further statistical and
predictive analyses.
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Table 1. Examples of DITI captured consecutively over 4 s for each subject, with ocular surface
temperature recorded at each second. NC, CC, and TC denote Nasal Cornea, Central Cornea, and
Temporal Cornea, respectively.

NC=33.2°C NC=33.1°C NC=329°C NC=327°C NC=327°C
CC=33.0°C CC=329°C CC=329°C CC=327°C CC=327°C
TC=328°C TC=329°C TC=329°C TC=327°C TC=327°C

2.2. Preprocessing of DITI Data

Preprocessing of the DITI data was a critical step to ensure data quality, balance, and
suitability for both statistical analysis and ML applications. The initial dataset comprised
22 thermographic eye images from normal subjects and 58 from individuals diagnosed
with DED, presenting a notable class imbalance. While such an imbalance can significantly
affect ML model performance by biasing predictions toward the majority class, it may also
impact statistical tests like the t-test, particularly if assumptions of equal variances and
normal distribution are not met. To mitigate these challenges, a data cleaning and balancing
process was implemented, resulting in a representative subset of 20 normal and 20 DED
eye images. This process included the exclusion of extreme or outlier cases, specifically
those with very severe DED, to prevent these atypical values from disproportionately
influencing model training and statistical evaluations. The decision to exclude severe cases
was made to enhance model generalizability for typical DED detection scenarios and to
reduce potential bias introduced by extreme clinical presentations.

As part of the preprocessing step, the Shapiro-Wilk test was initially conducted to
evaluate the general distribution of the dataset, guiding the decision to apply parametric
methods in subsequent analysis. In this test, a p-value greater than 0.05 suggests that the
data does not significantly deviate from a normal distribution, thereby supporting the
assumption of normality required for parametric tests. Conversely, a p-value less than
0.05 would indicate a non-normal (i.e., non-parametric) distribution. Since most of the
variables in the dataset yielded p-values above this threshold, it was concluded that the
data approximated a normal distribution. Therefore, the independent (unpaired) ¢-test, a
parametric statistical method, was selected as an appropriate tool for comparing the mean
values across the two groups.

This preprocessing and statistical validation step was crucial in ensuring a fair and
statistically sound comparison between the normal and DED classes. By balancing the
sample sizes and confirming the distributional assumptions, the dataset became more
suitable for both inferential statistical analysis and ML model development. Moreover,
removing extreme or unrepresentative data points reduced potential bias and enhanced
the robustness and generalizability of the resulting classification models. This systematic
approach provided a reliable foundation for subsequent thermal feature analysis and the
development of data-driven screening tools for DED.

2.3. Statistical Analysis

All processed DITI data, including OST measurements and participant diagnostic
information, were documented in a standardized proforma and systematically compiled
in Microsoft Excel for initial organization, tabulation, and visualization. Before applying
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statistical comparisons, the normality of specific thermal variables, including initial OST,
cooling rate, and average OST across ROIs, was assessed using the Shapiro-Wilk test to
confirm their suitability for parametric evaluation. Figure 3 shows an example of how
the average OST was extracted for each ROI. When normality assumptions were satisfied,
Analysis of Variance (ANOVA) and independent unpaired ¢-tests were applied to identify
significant differences between the normal and DED eye groups.

Nasal Comeg: Notmal Eye Average Nasal Cornea: Normal Eye

4

8 , B B8

>

ular Surface Temperature (°C)

— ) | == =i -
(a) OST at three ROIs (b) Changing of OST against time (c) Average of the OST

Figure 3. An example of how average OST was extracted for each ROL

Additional statistical analysis was conducted to investigate the potential associations
between thermographic features and clinical diagnostic indicators. Pearson’s correlation
coefficients were computed to evaluate the relationships between OST-based metrics such
as initial temperature, average cooling rate, body temperature, and clinical measures,
including OSDI scores and TBUT values. This analysis aimed to determine whether
temperature-derived features could objectively reflect the severity or presence of DED
symptoms. Given that the dataset was considered normally distributed, Pearson’s correla-
tion was selected as the appropriate method due to its suitability for continuous, normally
distributed variables [20]. The correlation coefficient (r) indicates the strength and direc-
tion of the linear association between variables, while the p-value assesses the statistical
significance of the observed relationship.

2.4. Machine Learning Classification

To further validate the utility of DITI features in automated DED screening, a range of
ML classification models were implemented using the Classifier Learner app in MATLAB
R2023b. This environment enabled the comparison of multiple algorithms under consistent
conditions, facilitating the identification of the most effective model for classifying eyes as
either normal or DED-affected. Models evaluated included support vector machines (SVM)
and k-nearest neighbours (k-NN) methods. Each model was trained using the same input
features, primarily OST values from the three ROIs (NC, CC, and TC), and was evaluated
using a cross-validation strategy to minimize overfitting and enhance model robustness.

Feature selection through ML ranking methods is essential for optimizing predictive
models in DED screening using IRT. Key features identified include average OST, initial
OST, and OST cooling rate. Average OST reflects the baseline thermal condition of the ocular
surface, influenced by tear film stability and vascularization, where lower temperatures
may indicate tear film deficiencies. Initial OST, measured immediately after eye opening,
has been linked to ambient and body temperature, as well as tear film instability [21,22]. The
OST cooling rate, representing the rate of temperature decline due to tear evaporation, has
been widely validated as a biomarker for DED, with several previous studies by [15,23,24].
The OST cooling rate is calculated using the formula,

Temperature_final — Temperature _initial

Cooling Rate(A"C/second) = Elapsed Time(seconds)

@)
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Despite international advancements, limited research in Malaysia highlights the im-
portance of this study, considering local environmental factors such as climate and lifestyle,
which can influence OST dynamics and DED prevalence.

To assess model performance, standard classification metrics including accuracy,
sensitivity (recall), and specificity were derived from confusion matrices generated for each
algorithm. These matrices, which detail the counts of true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN), provided a comprehensive evaluation of
each model’s ability to distinguish between DED and normal cases. Accuracy reflected the
overall correctness of classifications, while sensitivity measured the model’s effectiveness in
correctly identifying DED cases, and specificity assessed its ability to accurately recognize
normal eyes. Furthermore, Receiver Operating Characteristic (ROC) curves were plotted to
visualize classification performance, with the Area Under the Curve (AUC) serving as a
key indicator of each model’s discriminative power between normal and DED conditions.
This multi-metric evaluation approach ensured a balanced and robust assessment, which is
crucial in medical diagnostics where minimizing false negatives is vital.

3. Results
3.1. DITI Dataset Processing and Analysis

For the statistical analysis, a balanced dataset comprising 40 eyes (20 normal and
20 diagnosed with DED was utilized. Table 2 summarizes the demographic and clinical
characteristics of the participants. The mean age of the normal group was significantly
higher (31.25 £ 17.57 years) compared to the DED group (25.63 £ 10.63 years, p < 0.001).
This age difference arose because the study included subjects regardless of age, gender,
or ethnicity. Interestingly, the DED group tended to be younger. Additionally, while both
groups consisted predominantly of female participants, the proportion was notably higher
in the DED group (85%) than in the normal group (65%), which aligns with established
epidemiological patterns linking higher DED prevalence to females [25].

Table 2. Summary of demographic and clinical characteristics of the participants.

Parameters Normal DED Shapiro-p
Number of eyes 20 20 -
Age (year) 31.25 £ 17.57 25.63 +10.63 <0.001
Gender (female%, n) 65% (13) 85% (17) -
TBUT (s) 585+ 1.14 2.37 £ 0.60 <0.001
OSDI score 15.90 £ 8.48 3743 £ 6.83 0.035
Body temperature (°C) 33.62 £0.92 33.77 £ 0.54 <0.001

Clinically significant differences were observed between the two groups across key
diagnostic parameters. TBUT, an indicator of tear film stability, was markedly lower in
the DED group (2.37 £ 0.60 s) compared to the normal group (5.85 & 1.14 s, p < 0.001),
reflecting characteristic tear film instability in DED patients. Similarly, the OSDI scores
were significantly elevated in the DED group (37.43 £ 6.83) relative to the normal cohort
(15.90 £ 8.48, p = 0.035), indicating greater subjective symptoms of ocular discomfort.

While the difference in body temperature between the groups was statistically sig-
nificant (DED: 33.77 £ 0.54 °C vs. Normal: 33.62 &£ 0.92 °C, p < 0.001), the small ab-
solute variation of approximately 0.15 °C may have limited clinical significance. This
variance is likely attributable to measurement sensitivity or sample size effects rather
than a true physiological distinction. Overall, these findings highlight clear demographic
and clinical distinctions between normal and DED subjects, validating the group strat-
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ification employed in this study and reinforcing the dataset’s representativeness for
subsequent analysis.

The analysis identified two primary thermal biomarkers for differentiating normal
eyes from those affected by DED: the normalized average OST and the OST cooling rate
across three regions of interest ROIs (NC, CC, and TC). These findings, summarized in
Table 3, revealed consistent patterns in both temperature distribution and cooling behaviour
that are indicative of ocular health status.

Table 3. Normalized average OST and the OST cooling rate across three regions of interest (ROIs).

Parameter Normal DED
NC 0.58 +0.20 0.51 £0.18
Normalized average OST (°C) CcC 0.62 £ 0.22 0.52 £ 0.21
TC 0.57 £0.24 049 £0.22
NC —0.071 £ 0.06 —0.233 £ 0.05
Cooling rate of OST (°C/s) CC —0.074 + 0.05 —0.228 + 0.04
TC —0.074 £ 0.06 —0.217 £ 0.06

In terms of normalized average OST, the NC consistently exhibited the highest values
in both groups, measuring 0.58 & 0.20 in normal eyes and 0.51 & 0.18 in DED eyes. This
was followed by CC and TC, reflecting a stable temperature gradient across corneal regions
regardless of disease presence. The relatively elevated temperature in the nasal region is
likely due to its anatomical proximity to vascularized structures, contributing to localized
heat retention.

More critically, the OST cooling rate demonstrated a clear discriminatory pattern
between normal and DED eyes. Subjects with DED exhibited significantly higher (more
negative) cooling rates across all ROIs, indicative of accelerated heat loss associated with
tear film instability and increased evaporative stress, which are the key characteristics of
DED pathology. The steepest cooling was observed in NC (-0.233 °C/s), followed by CC
(-0.228 °C/s) and TC (-0.217 °C/s). In contrast, normal eyes showed much lower cooling
rates, reflecting better tear film stability and ocular surface protection. In normal subjects,
CC exhibited the highest cooling rate (-0.074 °C/s), with minimal differences compared
to the NC (-0.071 °C/s) and TC (-0.074 °C/s) regions, underscoring effective thermal
homeostasis in healthy eyes. Collectively, these findings highlight that reduced normalized
average OST combined with elevated cooling rates are distinctive thermal signatures of
DED, reinforcing their potential as reliable, non-invasive biomarkers for the classification
and diagnosis of DED.

Table 4 presents the average OST values (mean + SD) across three ROIs (NC, CC,
and TC) measured at the starting point (0 s) and sequentially at 1, 2, 3, and 4 s. The
Shapiro-Wilk test results indicate that the majority of temperature parameters follow a
normal distribution, as reflected by p-values exceeding the 0.05 threshold. However, a
few exceptions were observed, such as the starting OST in TC with a p-value of 0.035,
suggesting minor deviations from normality in isolated cases.

Despite these few deviations, the overall dataset demonstrates strong adherence
to parametric assumptions. Variance analysis further confirmed measurement stability,
with standard deviations consistently low across both normal and DED groups, where
none exceeding +0.59. This consistent dispersion highlights the reliability of the ther-
mographic measurements and supports the robustness of the data preprocessing and
extraction methods.
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Table 4. Average OST values (mean + SD) across three regions of interest (ROISs).
Parameter Normal DED Shapiro-p

NC 33.99 £+ 0.44 33.99 £+ 0.41 0.075

Starting OST 0's (°C) CC 33.83 £ 0.51 33.75 £ 0.45 0.515
TC 33.80 £ 0.52 33.77 £ 041 0.035

NC 33.85 £ 0.46 33.68 £ 0.42 0.342

OST at1s (°C) CC 33.64 £ 0.50 33.42 £ 0.51 0.184

TC 33.68 + 0.51 33.47 +£0.45 0.479

NC 33.79 £0.53 33.46 £+ 0.40 0.589

OST at2s (°C) CC 33.60 £ 0.56 33.21 £ 0.46 0.539

TC 33.61 £ 0.56 33.29 £+ 0.45 0.230

NC 33.70 £ 0.53 33.26 £ 0.36 0.769

OST at3s (°C) CC 33.54 + 0.57 33.02 +£0.43 0.806

TC 33.55 £ 0.55 33.08 £ 0.44 0.337

NC 33.71 £ 0.51 33.06 £ 0.39 0.852

OST at4 s (°C) CC 33.53 £ 0.59 32.84 £+ 0.45 0.253

TC 33.51 £ 0.59 32.90 £ 0.46 0.133

34
33.8
33.6
334
33:2

33

«=@=DED =@

Nasal Cornea

Osec 1lsec 2sec 3sec 4sec
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Given these results, the use of parametric statistical tests, particularly the independent
unpaired ¢-test, is appropriate for comparing OST values between normal and DED groups
across different ROIs and time points. The general conformity to normal distribution
and controlled variance ensures that subsequent statistical analyses can reliably detect
meaningful physiological differences, minimizing the risk of inaccurate conclusions due to
data irregularities or variability.

Figure 4 illustrates the OST cooling dynamics over a 4-s interval across three distinct
ROIs. The temperature profiles range from approximately 32.8 °C to 34.0 °C, reflecting
subtle but clinically relevant thermal variations. A clear distinction is observed between
subjects with DED and those with normal ocular conditions. Across all ROls, DED subjects
consistently exhibit both a lower initial OST and a steeper cooling rate compared to normal
subjects, as evidenced by the more pronounced downward slope of the DED curves. This
accelerated cooling pattern in DED eyes may reflect compromised tear film stability and
increased evaporative loss, characteristic of dry eye pathology.

Center Cornea

Temporal Cornea

33.8
33.6
334
332
33.0
32.8
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Figure 4. OST cooling dynamics over a 4-s interval across three distinct regions of interest (ROIs).

Additionally, DITT assessments reveal a consistent temperature gradient across the
corneal regions. The NC area demonstrates the highest average OST throughout the
measurement period, with initial temperatures approximating 33.798 °C, followed by CC
(33.520 °C) and TC (33.487 °C). This regional temperature variation may be indicative
of differential tear film distribution, vascular proximity, or localized metabolic activity.
Notably, the nasal region’s relative thermal preservation could be associated with its



Diagnostics 2025, 15, 2084

11 of 19

anatomical proximity to the medial canthus and lacrimal structures, potentially influencing
tear dynamics and surface cooling behavior.

These findings highlight the potential of OST profiling as a non-invasive biomarker
for distinguishing DED from normal ocular states, while also offering insights into the
physiological thermoregulation patterns across different corneal zones.

3.2. Feature Selection and Correlation Analysis

This section presents the selection of key features based on two primary criteria:
statistical significance determined by independent unpaired t-tests (p < 0.05) and strong
linear associations with clinical outcomes, as indicated by Pearson’s correlation coefficients
(r > 0.5). Detailed statistical outcomes are summarized in Table 5, with inter-feature
relationships visualized in Figure 5. Among all evaluated parameters, the OST cooling rate
consistently demonstrated the strongest discriminatory power between normal and DED
groups. Significant differences were observed across all ROIs (NC, CC, and TC) with highly
significant t-values (t = —9.034 to —9.851, p < 0.001). Furthermore, the OST cooling rate for
all ROIs showed strong positive correlations with clinical validation metrics, particularly
TBUT (r = 0.717), reinforcing its role as a primary biomarker for DED classification.

Table 5. Results from independent unpaired ¢-tests on main features and secondary features.

Main Features t p

NC —1.109 0.275

Normalized average OST (°C) CcC —1.483 0.147
TC —1.007 0.320

NC —0.004 0.997

Starting OST (°C at 0 s) CC —0.504 0.617
TC —0.203 0.840

NC —9.034 <0.001

Cooling rate of OST (°C/s) CC —9.851 <0.001
TC -7.29 <0.001

Secondary Features t P

NC —1.165 0.251

OSTat1s (°C) CC —1.361 0.182

TC —1.312 0.198

NC —2.165 0.037

OST at2s (°C) CcC —2.359 0.024

TC —1.931 0.061

NC —2.988 0.005

OST at3s (°C) CcC —3.241 0.003

TC —2.923 0.006

NC —4.423 <0.001

OST at4s (°C) CcC —4.124 <0.001

TC —3.588 <0.001
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Figure 5. Pearson’s correlation test between clinical validation (TBUT and OSDI) with main features.

In contrast, features such as normalized average OST, starting OST (0 s), and body
temperature exhibited limited discriminatory capability. The normalized average OST
did not show statistically significant differences between groups (p > 0.1 across all ROIs),
although moderate positive correlations with TBUT were noted (e.g., r = 0.297, p = 0.099).
Similarly, starting OST and body temperature yielded non-significant p-values (p = 0.345
and p = 0.691, respectively), indicating their limited utility as standalone diagnostic features
due to weaker linear associations with clinical outcomes.

Secondary feature analysis revealed that OST measurements at later time points,
particularly at 4 s, provided additional discriminatory value, with significant differences
across all ROIs (t = —4.423 to —3.588, p < 0.001). NC exhibited the greatest separation
between normal and DED groups at this time point. Additionally, the OSDI questionnaire
maintained strong diagnostic relevance, showing a significant negative correlation with
TBUT (r = —0.733, p < 0.001) and notable negative correlations with both OST cooling rate
(r= —0.654, p < 0.001) and normalized average OST in selected ROIs. These correlations
suggest that higher symptom severity aligns with faster cooling rates and reduced OST
values. Based on these findings, the OST cooling rate was identified as the most robust and
reliable feature for distinguishing DED, while secondary features such as OST at 4 s and
OSDI scores further enhanced diagnostic accuracy. The integrated relationships between
thermal imaging features, clinical evaluations, and subjective assessments are illustrated
in Figure 5, underscoring the potential of combining DITI metrics with clinical tools for
effective DED screening.

3.3. Evaluation of Classification Performance Using Machine Learning
3.3.1. Support Vector Machine Classifier

For the SVM classifier, this study assessed five kernel functions: Linear, Quadratic,
Cubic, Fine Gaussian, and Medium Gaussian using thermal imaging features from the DITI
dataset to differentiate between normal and DED eyes. Feature selection was performed
using ranked subsets of the Top-3, Top-5, and Top-10 most significant features to evaluate
how feature quantity impacts model performance. As shown in Table 6, the Quadratic
kernel demonstrated the most robust and balanced performance across these subsets,
achieving the highest average metrics with an Accuracy of 90.54%, Sensitivity of 91.44%,
Specificity of 88.20%, and the lowest Error rate of 9.46%. Notably, the Quadratic kernel
maintained consistent performance regardless of whether fewer (Top-3) or more features
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(Top-10) were used, highlighting its stability and effectiveness in balancing DED detection
while minimizing false positives.

Table 6. SVM assessment using the three top features. Acc, Sen, Spe, and Err represent accuracy,
sensitivity, specificity, and error, respectively.

Top-3 Top-5 Top-10
Kernel Assessment Features Features Features Average
Linear Acc (%) 86.49 90.54 89.19 88.74
Sen (%) 93.75 94.12 92.31 93.39
Spe (%) 73.08 82.61 81.82 79.17
Err (%) 13.51 9.46 10.81 11.26
Quadpratic Acc (%) 90.54 89.19 91.89 90.54
Sen (%) 92.45 89.29 92.59 91.44
Spe (%) 85.71 88.89 90.00 88.20
Err (%) 9.46 10.81 8.11 9.46
Cubic Acc (%) 86.49 77.03 90.54 84.68
Sen (%) 90.38 85.71 92.45 89.52
Spe (%) 77.27 60.00 85.71 74.33
Err (%) 13.51 22.97 9.46 15.32
Fine Gaussian Acc (%) 87.84 87.84 77.03 84.23
Sen (%) 86.44 86.44 76.92 83.27
Spe (%) 93.33 93.33 77.78 88.15
Err (%) 12.16 12.16 22.97 15.77
Medium Gaussian Acc (%) 85.14 81.08 78.38 81.53
Sen (%) 83.61 79.69 7727 80.19
Spe (%) 92.31 90.00 87.50 89.94
Err (%) 14.86 18.92 21.62 18.47

The Linear kernel also showed strong performance, particularly excelling when using
Top-5 features, where it achieved its highest accuracy (90.54%) and maintained the highest
overall sensitivity (93.39%). This indicates that the Linear kernel is especially effective
when focused on a concise, highly informative feature set, although its lower specificity
(79.17%) suggests a greater tendency for false positives compared to the Quadratic kernel.

In contrast, the Cubic, Fine Gaussian, and Medium Gaussian kernels exhibited more
variability depending on the number of features used. The Cubic kernel performed well
with Top-10 features (90.54% accuracy), but its performance dropped significantly with
fewer features, indicating sensitivity to feature selection. Both Gaussian kernels (Fine and
Medium) showed declining accuracy and increasing error rates as more features were
introduced, likely due to overfitting or sensitivity to noisy and less relevant variables.

Overall, this analysis highlights that careful selection of both the kernel function and
the optimal number of features is crucial for maximizing classification performance. The
Quadratic SVM kernel proved to be the most reliable across varying feature subsets, offering
a strong balance of accuracy, sensitivity, and specificity for DED detection. The Linear
kernel remains a valuable alternative when prioritizing sensitivity with a reduced feature
set. Conversely, the inconsistent performance of the other kernels underscores the risks of
overfitting and the importance of feature optimization in biomedical ML applications.

3.3.2. k-Nearest Neighbours Classifier

The k-NN classification method in this study explored two critical parameters: the
number of neighbours (k = 1, 3, 5) and the choice of distance metric (Euclidean, Chebyshev,
and Mahalanobis). Using the top 10 selected features, model performance was evaluated
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based on accuracy (Acc), sensitivity (Sen), specificity (Spe), and error rate (Err), as de-
tailed in Table 7. Among all configurations, the Euclidean distance metric consistently
outperformed others, achieving the highest overall average performance (Acc = 88.74%,
Sen = 89.73%, Spe = 86.65%, Err = 11.26%). The best individual result was recorded
with k = 3, where Euclidean distance reached an impressive 91.89% accuracy, along-
side balanced sensitivity and specificity, highlighting its strong generalization ability for
DED classification.

Table 7. k-NN assessment using the top three features.

Distance Technique Assessment k=1 k=3 k=5 Average

Euclidean Acc (%) 85.14 91.89 89.19 88.74
Sen (%) 88.68 92.59 87.93 89.73

Spe (%) 76.19 90.00 93.75 86.65

Err (%) 14.86 8.11 10.81 11.26

Chebyshev Acc (%) 85.14 86.49 86.49 86.04
Sen (%) 88.68 86.21 85.00 86.63

Spe (%) 76.19 87.50 92.86 85.52

Err (%) 14.86 13.51 13.51 13.96

Mahalanobis Acc (%) 82.43 87.84 87.84 86.04
Sen (%) 86.79 87.72 87.72 87.41

Spe (%) 7143 88.24 88.24 82.63

Err (%) 17.57 12.16 12.16 13.96

While Euclidean distance emerged as the optimal choice, both Chebyshev and Ma-
halanobis distance metrics demonstrated stable and reliable performance, each averaging
86.04% accuracy across different k-values. The Chebyshev metric showed a slight advan-
tage in specificity (85.52%), making it suitable for minimizing false positives, whereas
Mahalanobis achieved marginally higher sensitivity (87.41%), indicating its effectiveness in
correctly identifying DED cases.

Overall, these findings suggest that Euclidean distance with k = 3 provides the best
balance between sensitivity and specificity for distinguishing normal and DED eyes within
this dataset. Nevertheless, Chebyshev and Mahalanobis serve as viable alternatives, partic-
ularly in clinical contexts where prioritizing either sensitivity or specificity is essential for
informed decision-making.

4. Discussion

Table 8 presents a summary of the best-performing classifier methods in this study,
highlighting k-NN and SVM approaches. The k-NN classifier, utilizing the Euclidean
distance metric with k = 3 and the top 3 selected features, achieved the highest accuracy of
91.89%. Closely following, the SVM classifier with a Linear kernel and the top 10 features
attained an accuracy of 91.80%. These results demonstrate that both classifiers are highly
effective in distinguishing between normal and DED eyes, with k-NN showing a slight
advantage while requiring fewer features, indicating its efficiency in handling reduced
feature sets for this dataset. These optimized models formed the basis for further evaluation,
including the ROC analysis illustrated in Figure 6.
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Table 8. Summary of the best classifier method results k.

Classifier Method Parameter/Kernel Features Accuracy (%)

Type
k-NN Euclidean + (k = 3) Top-3 91.89
SVM Linear Top-10 91.80

0.9 —!
0.8
0.7
0.6
0.5 )
0.4 .KNN (AUC = 0.87)
0.3

0.2

0.1

——SVM (AUC =0.81)
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Figure 6. Linear SVM and Euclidean k-NN using top 3 features ROC results.

This study highlights the potential of DITI as a non-invasive screening tool for DED
by tracking temperature variations over time across NC, CC, and TC regions. Correlation
analysis revealed a strong association between TBUT and OST cooling rate, where a
lower cooling rate reflects greater tear film stability. As depicted in Figure 6, both k-
NN and SVM classifiers achieved promising AUC values of 0.87 and 0.81, respectively.
Additionally, independent t-tests confirmed significant differences in OST cooling rates
between normal and DED groups (p < 0.001). These findings suggest that dynamic thermal
metrics, particularly OST cooling rates, offer superior predictive capability compared
to static measures like starting OST or body temperature, which demonstrated limited
diagnostic value.

Based on clinical validation results, the cut-off values for TBUT and OSDI scores for
normal eyes were TBUT > 5 s and OSDI score < 13; for DED eyes, TBUT < 5 s and OSDI
score > 13. From this statistical analysis study validated by optometrists, the cut-off values
for normal eyes were TBUT > 5.46 s and OSDI score < 15.078; for DED eyes, TBUT < 1.86 s
and OSDI score > 42.51. The average OST measurements for three ROIs showed that
NC had the highest average OST in normal eyes (33.804 °C) and DED eyes (33.488 °C),
compared to CC and TC, with CC having the lowest average OST for DED (33.224 °C).
This result has supported the previous finding where OST for DED is higher than normal,
especially in the NC, CC, and TC regions [10]. For OST cooling rates, NC in DED eyes had
the highest rate (—0.233 °C/s), followed by the CC (—0.228 °C/s) and TC (—0.217 °C/s).
Since the nasal area had the highest starting OST, the OST cooling rate calculated also
contributed to the high rate (slope is steeper in the graph of NC compared to CC and TC).

Previous studies [26,27] have reported that individuals with DED tend to exhibit lower
starting OST and higher average OST cooling rates compared to normal subjects. The
findings of this study further suggest a link between DED and increased tear evaporation.
Additionally, research by [15] highlighted that patients with evaporative dry eye (EDE)
typically present with unstable tear film (TBUT < 5 s) despite having a normal tear quantity
(Schirmer test > 5 mm), leading to elevated tear evaporation rates, often indicative of
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meibomian gland dysfunction. In contrast, patients with aqueous-deficient dry eye (ADDE)
generally maintain stable tear film (TBUT > 5 s) but suffer from reduced tear production
(Schirmer test < 5 mm), resulting in low evaporation rates despite inadequate tear volume.

Besides, several studies have employed infrared thermography (IRT) cameras for
screening and detecting DED. For instance, Ref. [28] developed a custom non-contact
infrared (IR) thermal imaging system to measure ocular surface temperature variations, in-
troducing two key parameters, which are temperature difference and compactness value, to
differentiate between dry eye and normal eye groups. This system achieved 84% sensitivity,
83% specificity, and a 0.87 ROC area, demonstrating its potential as an effective non-contact
diagnostic tool for dry eye detection. Similarly, ref. [29] presented a non-invasive method
for automated dry eye detection using infrared thermography and Higher Order Spec-
tra (HOS) for feature extraction. This system achieved 99.8% accuracy, sensitivity, and
specificity for the left eye using PNN and KNN classifiers, and 99.8% accuracy, 99.9%
sensitivity, and 99.4% specificity for the right eye using an SVM classifier. Additionally,
ref. [30] developed an automated dry eye detection system using low-cost, low-quality
infrared images with higher-order spectra (HOS) bispectrum features, achieving over 80%
accuracy despite high noise levels. This method proves to be an efficient alternative to
expensive, high-quality IR cameras. While previous studies have demonstrated high per-
formance, the current study achieves comparable results and is among the first to use a
smartphone-based handheld IRT camera, providing a more accessible, user-friendly, and
cost-effective alternative to traditional high-end systems.

However, there were several challenges faced during this study. Firstly, different
IRT instruments produce different DITI modalities for the proposed method, making it
difficult to standardize results from other researchers who achieved high accuracy but
used different features or parameters. For example, varying display resolutions can lead
to different results during training with the same models in this study. Another challenge
was that some individuals with DED were excluded from the study because they found
it difficult to keep their eyes open for 5 s for the assessment, potentially leading to the
loss of data in assessing DED prevalence in a population. There were also limitations in
the manual temperature extraction method from the three ROIs through DITI, which was
time-consuming at the data collection stage.

This study also identified five cases of very severe DED, in which subjects exhibit
extreme clinical indicators, including TBUT values averaging 0.80 & 0.45 s and OSDI
scores of 36.67 £ 11.75, alongside a body temperature of 33.76 £ 0.54 °C. Although their
OST cooling rates were lower than those observed in non-severe DED cases (indicating
slower heat loss), they remained slightly higher than in normal eyes, reflecting persistent
tear film dysfunction. Additionally, these subjects exhibited markedly elevated average
OST values across all regions of interest (NC = 34.04 £ 0.75 °C, CC = 33.78 £ 0.85 °C,
TC =33.79 £ 0.79 °C), which remained sustained throughout the 0 to 4-s measurement
period. This thermal profile is consistent with severe tear deficiency and pronounced tear
film instability characteristic of advanced DED.

These severe cases were excluded to avoid skewing the classification model with po-
tential outlier profiles, thereby enhancing robustness and ensuring optimal performance in
the early screening of DED. In the future, the inclusion of severe DED cases could be further
explored within a multi-class classification framework, enabling models to differentiate
between varying degrees of disease severity (e.g., Normal, Mild, Moderate, Severe). Such
an approach would enhance clinical applicability by facilitating both early detection and
precise severity grading, thereby supporting comprehensive DED management strategies.
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5. Conclusions

This proof-of-concept study explored the integration of smartphone-based infrared
thermography (IRT) with machine learning techniques as a potential non-invasive frame-
work for DED screening. While previous research has applied IRT in DED detection, this
study is among the first to combine smartphone-enabled thermographic imaging with
advanced classification algorithms.

The preliminary findings identified ocular surface temperature (OST) cooling rate as
the most robust thermal biomarker for differentiating DED from normal eyes, supported
by statistically significant group differences and strong correlations with clinical indicators
such as TBUT. Among the evaluated machine learning models, the k-Nearest Neighbours
(k-NN) classifier achieved the highest accuracy (91.89%), while the Quadratic Support
Vector Machine (SVM) demonstrated stable performance (90.54%). These results indicate
that DITI-derived features, when integrated with appropriate machine learning models,
show potential for non-invasive, automated DED screening,.

However, this study has certain limitations, including variability in IRT device specifi-
cations, manual thermal data extraction processes, and patient compliance during image
acquisition. Future research should focus on expanding the dataset, utilizing higher-
resolution thermographic sensors, and integrating complementary clinical assessments
such as the Schirmer test to improve differentiation of DED subtypes. Additionally, de-
veloping models to grade DED severity could enhance clinical applicability and support
personalized management strategies.

In conclusion, this study highlights that the integration of smartphone-based IRT
with machine learning provides a practical, efficient, and scalable solution for early DED
screening. This approach holds considerable promise for enhancing diagnostic accessibility
and outcomes, particularly in resource-limited or remote healthcare settings.
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The following abbreviations are used in this manuscript:

DED  Dry Eye Disease

DITI = Digital Infrared Thermal Imaging
DL Deep Learning

ML Machine Learning

OSsT Ocular Surface Temperature
NC Nasal Cornea

CcC Center Cornea

TC Temporal Cornea

TBUT  Tear Break Up Time

OSDI  Ocular Surface Disease Index
SVM  Support Vector Machine
k-NN  k-Nearest Neighbours
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