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▪ In GBAS, Protection level is the
maximum error allowed before a
navigation system becomes unsafe.

i. Ground Based Augmentation System - Protection Levels

I. Overview
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▪ Protection levels are influenced by
various error sources represented by
the error model as:�
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Ref. RTCA SC-159. (2017). Minimum Operation Performance 
Standards for GPS Local Area Augmentation System Airborne 
Equipment. RTCA DO-253D
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ii. Protection Levels – Ground subsystem error contribution

I. Overview

▪ The ground subsystem error is the
standard deviation of the pseudorange
error as observed from GBAS Network
receivers

���_���

▪ The is then evaluated according to
the ground accuracy designator (GAD)
model

���_���

▪ The GAD model uses the elevation as a
reference and was initially developed for
GPS

Can we include the azimuthal distribution of the
ground subsystem error for different constellations?
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Ref. RTCA SC-159. (2017). Minimum Operation Performance 
Standards for GPS Local Area Augmentation System Airborne 
Equipment. RTCA DO-253D



5

iii. National CORS Data Center of Thailand (NCDC)

• Diverse types of receivers

• 250 stations across the kingdom

• Multi-stakeholders

• Real time and post processing

I. Overview
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Source: https://ncdc.in.th/
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I. Overview
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iv. Literature review
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I. Overview

Can we use a CORS Network for a Multi-Constellation
GBAS implementation in terms of ground subsystem
error contribution?

Question

Assess the feasibility of a GBAS implementation using a
CORS Network with GPS and BDS signals in terms of
ground subsystem error contribution.

Objective
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Geometric Range

NCDC data

Elevation

Sat clock errors

Azimuth

Signal 
Smoothing

• MQM
• PRC
• PRC_csa
• PRC_TX
• B-Values
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II. Methodology

Hatch Filter (100s)

For GPS and BDS

Corrections

Calcul.

GAD 
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a. 1D Ground subsystem error contribution
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: B-values in the elevation range E
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b. 2D Ground subsystem error contribution
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II. Methodology

: is the number of B-values in the
elevation range E and azimuth A

: standard deviation of the B-Values
in elevation range E and azimuth A

: Ground Subsystem error in the 
elevation range E and azimuth A
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c. Ground Accuracy Designator (GAD) model

 

Ground 
Accuracy 

Designator 
(GAD) 

 

degrees 

0a  

meters 

1a  

meters 
 

degrees 

2a  

meters 

A >5 0.5 1.65 14.3 0.08 

B >5 0.16 1.07 15.5 0.08 

C 
>35 0.15 0.84 15.5 0.04 

≤35 0.24 0 -- 0.04 
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II. Methodology

The GAD model evaluates the resulting ���_���
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a. NCDC selected receivers:

▪ SBKK receiver Leica GR50, choke ring
Antenna Leiar20.

▪ DPT9 receiver Leica GR50, choke ring
Antenna Leiar10.

▪ CUUT receiver Trimble NETR9, choke ring
Antenna Zephyr.

b. Dates: From January 15th to January 20th 2023.

c. Signals:
▪ L1 C/A GPS (1575.42MHz)
▪ B1I BDS (1561.098MHz)

d. Number of available satellites:

▪ GPS: 31
▪ BDS: 13

11

III. Experimental Setup
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III. Experimental Setup

L1 C/A GPS B1I BDS

Frequency 1575.42Mhz 1561.098Mhz

modulation BPSK BPSK

Encoding 
type

DS-CDMA DS-CDMA

Code scheme GOLD LFSR

Chipping rate 1.023MHz 2.046MHz

BPSK: Binary Phase-Shift Key
DS-CDMA: Direct Sequence Code Division Multiple Access
LFSR: Linear Feedback Shift Register 

c. Signals
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IV. Results

a. 1D ground subsystem error contribution using BDS B1I, GPS L1 C/A

Both GPS L1 C/A and BDS B1I
satisfy the requirements of the GAD-
A.

GPS B-values: 359338

BDS B-values: 194861

BDS B1I satisfies the requirements
of GAD-B.
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IV. Results

a. 1D ground subsystem error contribution using BDS B1I, GPS L1 C/A

Elevation
L1 
C/A 
GPS

B1I 
BDS

% 
decrement

10º 0.303 0.205 32.3%

50º 0.14 0.05 64.2%

80º 0.09 0.06 33.3%

���_��� ���_���
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IV. Results

b. 2D ground subsystem error contribution using BDS B1I, GPS L1 C/A

We cannot observe GPS or BDS satellites in the north below 30º due to
our geographical location.

for both GPS and BDS between 70º to 150º of azimuth and below 30º
of elevation show the higher levels of ground subsystem error

GPS B-values:

359338

BDS B-values:

194861
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V. Conclusions

▪ The dispersed location of the NCDC receivers, their types, antennas and environmental
conditions introduced different levels of error contribution, still satisfying the ICAO
requirements for GBAS CAT-I.

▪ The 2D Ground subsystem error can identify azimuthal areas where the multipath levels might
be higher. Further studies should address the effect in mitigating them.

▪ B1I signal returned a better response, mainly attributable to the coding signal schemes,
chipping rates, also to the correlation spacing in the receivers which influenced the multipath
mitigation due to the shorter chip length of the delayed multipath signals.

▪ As CORS Networks continue growing, under suitable conditions that satisfy ICAO
requirements, GBAS implementation using a CORS Network would be possible.
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Thank you!
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