

## Speech Watermarking for Tampering Detection Using SSA with a Psychoacoustic Model

4 December 2023

26<sup>th</sup> O-COCOSDA, IGDTUW, Delhi, India

Phondanai Khanti, Pannathorn Sathirasattayanon, Patthranit Kaewcharuay, Nanthayod Termkoh, Ekachai Phaisangittisagul, Kasorn Galajit, <u>Jessada Karnjana</u>

### **Issue: Tampering**



Unauthorized modification of speech signals can lead to misinformation, invade privacy, and reduce the reliability of individuals and agencies.



How can we detect the tampering?



# **Solution: Watermarking**





## **Speech/Audio Watermarking**





□ Inaudibility or transparency

 $\Box$  Fragile to malicious attacks

Robust against non-malicious signal processing

Blindness

Secrecy and security

Capacity

#### **Problem Statement**



Trade-off between the robustness and fragility (i.e., semi-fragility)

- e.g., too fragile to some non-malicious attacks
- □ Trade-off between the sound quality and semi-fragility
  - e.g., sound quality is reduced in the blind scheme

# **Objective**



To develop a speech watermarking scheme based on the singular spectrum analysis (SSA) and a psychoacoustic model (PAM) for tampering detection that improves the sound quality of the watermarked speech signal



#### **Motivation**





#### **Singular Spectrum Analysis**



Born in 1986, it has become a standard tool in the analysis of climate, meteorological, and geophysical time series.





#### **Psychoacoustic Principles**



Noise

Masker

Threshold

Masked

Tone

Freq. (Hz)

80

76

SPL (dB)

4 dB

SMR.

Masking threshold

Frequency

Maskee

Neighboring

critical band

410

Crit. BW

80 Tonal Masker Absolute threshold of hearing 명 24 SMR SPL (dB) Masking Threshold 56 Masked  $T_q(f) = 3.64 \left(\frac{f}{1000}\right)^{-0.8} - 6.5e^{-0.6\left(\frac{f}{1000} - 3.3\right)^2} + 0.001 \left(\frac{f}{1000}\right)^4$ Noise 1000 Freq. (Hz) Crit. BW 250 Absolute threshold of hearing  $T_{q}(f)~(dB)$ Masker Sound Pressure Level (dB) 200 150 100 50  $\Delta z$ -50∟ 0 0.5 1.5 2 2.5 Neighboring Critical Frequency (Hz) x 10<sup>4</sup> critical band band

# **PA Model 1 (ISO/IEC 11172-3)**







#### **Proposed Method**



Embedding processExtraction process



## **Embedding Process**





### **Suggested Interval**



 $\Box$  We set a predefined SMR threshold ( $\beta$ ) such that the frequency components in which its SMR is lower than the threshold are considered suitable for hiding the watermark bit.



lacksquare Convert  $f_p$  to a singular-value index p.

#### **Frequency-to-Index Conversion**

**STEP 1**: Find a spectrum of each sub-signal.



## Freq-to-Ind Conversion (cont'd)

 $\Box$  STEP 2: Divide the sub-signal spectrum into two parts at  $f_p$ .



The first singular-value index of the first sub-signal that satisfies a condition that the spectral energy on the left is greater than the spectral energy on the right is chosen as the index p.

#### **Extraction Process**





#### **Experimental Data**



 $\square$  12 Japanese speech signals from the ATR dataset (B set)

□ 16 kHz sampling rate

□ 16-bit quantization

single channel signal

frame size = 1024 samples

 $\Box$  100 watermark bits per signal (i.e., duration = 6 seconds)

In signal-processing operations: Gaussian-noise addition, G.711, G.726, band-pass filtering, MP3, MP4, pitch shifting, single echo addition, replacing a segment, and changing the speed

### **Evaluation**



□ Robustness and fragility: Bit Error Rate (BER, in %)

- BER < 10% for untouched or non-tampered signals
- BER > 20% for malicious attacks
- BER between 10% and 20% for unintentionally modified or tampered with a low amount
- □ Sound quality
  - Perceptual Evaluation of Speech Quality (PESQ, in ODG)
    - ODG > 3 (Note that ODG = -0.5 means highly othersome, and ODG = 4.5 means imperceptible)
  - Log-spectral Distance (LSD, in dB)
    - LSD < 1 dB
  - Signal-to-Distortion Ratio (**SDR**, in dB)
    - SDR < 25 dB

#### **Experimental Result: BER**



|                    | LSB-based<br>method [1] | CD-based<br>method [12] | FE-based<br>method<br>[13], [14] | SSA-based<br>method [6] | SSA-based<br>method [6] with<br>frame selection | Proposed<br>method |
|--------------------|-------------------------|-------------------------|----------------------------------|-------------------------|-------------------------------------------------|--------------------|
| No attack          | 0.00                    | ~0.00-1.00              | 0.00                             | 0.49                    | 0.00                                            | 0.34               |
| G.711              | 0.00                    | ~4.00                   | 0.00                             | 0.49                    | 0.00                                            | 0.34               |
| G.726              | 51.77                   | ~20.00-25.00            | 0.00                             | 27.66                   | 16.50                                           | 47.50              |
| MP3                | 50.49                   | 2                       | -                                | 3.69                    | 31.47                                           | 1.39               |
| MP4                | 49.53                   | Ē                       | 9                                | 32.79                   | 35.22                                           | 22.40              |
| BPF                | 50.83                   |                         | -                                | 50.23                   | 43.86                                           | 47.42              |
| AWGN (15, 40 dB)   | 50.70, 49.53            | -                       | $\sim 54.00$                     | 49.69, 24.53            | 55.68, 0.00                                     | 56.21, 27.54       |
| PSH                | 35.64, 35.33,           |                         | ~31.00, -,                       | 10.58, 22.03,           | 19.24, 21.41,                                   | 17.23, 26.34,      |
| (-4%, -10%, -20%)  | 4.08                    | -                       | 1721                             | 47.83                   | 43.08                                           | 43.08              |
| PSH                | 34.42, 34.36,           |                         | 1925                             | 12.44, 15.33,           | 20.56, 25.27,                                   | 20.42, 22.79,      |
| (+4%, +10%, +20%)  | 38.03                   | -                       | -                                | 20.47                   | 18.47                                           | 30.79              |
| Echo (20, 100 ms)  | 50.18, 51.34            | -, ~50.00               | -, ~5.00                         | 15.76, 20.33            | 30.28                                           | 30.73              |
| Replace (1/3, 1/2) | 16.51, 24.97            | -                       | ~57.00, -                        | 17.08, 25.78            | 32.84, 32.91                                    | 36.36, 36.56       |
| SCH (-4%, +4%)     | 49.47, 48.72            | Ē                       | ~20.00, -                        | 47.00, 47.19            | 35.79, 39.23                                    | 39.41, 40.28       |

The proposed method is better than the CD-based and FE-based methods and is comparable to the SSA-based method.



#### **Experimental Result: Sound Quality**



|                                           | ODG        | LSD        | SDR   |
|-------------------------------------------|------------|------------|-------|
| LSB-based method [1]                      | 4.49       | 0.19       | 65.35 |
| CD-based method [12]                      | ~3.10-4.30 | ~0.60-0.80 | -     |
| FE-based method [13], [14]                | ~3.90      | ~0.40      | -     |
| SSA-based method [6]                      | 3.64       | 0.69       | 30.96 |
| SSA-based method [6] with frame selection | 3.29       | 0.61       | 27.00 |
| Proposed method                           | 3.92       | 0.33       | 33.10 |

The sound quality of the watermarked signal from the proposed method is better than the others, except the LSB-based method.

 $\Box$  It should be noted that the LSB-based method is too sensitive to noise and non-malicious attacks.

## **Result: Tampering Detection**







Fig. 10. Results of the tampering detection. Original image (a) and the reconstructed images after performing the following signal-processing operations: (b) G.711, (c) G.726, (d) AWGN (15 dB), (e) BPF, (f) Echo (100 ms), (g) PSH -4%, (h) PSH +4%, (i) Replace (1/3), (j) Replace (1/2), (k) PSH -10%, (l) PSH +10%, (m) SCH -4%, (n) SCH +4%, (o) PSH -20%, and (p) PSH +20%.

## **Discussion**



The adoption of energy-based selection trades embedding capacity for partial improvement in the watermarked sound quality.

The tampering detection requires a sequence of suggested indices to decode singular spectra precisely. That is, the extraction process is not completely blind.

The parameters used in the proposed method have yet to optimize.







□ Issue: Speech tampering

Aim: To improve a speech-tampering detection scheme based on the watermarking approach in terms of transparency

□ Method: SSA + PAM

**Result**: 7.69% ODG improvement

6.91% SDR improvement

52.17% LSD reduction

# THANK YOU FOR LISTENING

Contact: Jessada Karnjana

jessada.karnjana@nectec.or.th

