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Introduction

• Text-to-speech (TTS) models focus on synthesizing intelligible and 
natural sounding speech
• In recent years, end-to-end neural TTS models have emerged to simplify 

traditional speech synthesis pipeline and their synthesized speeches can 
be comparable with human recordings.
• The end-to-end neural TTS is typically composed of two main processing 

models
• spectral representation generator : generates the spectral representation such 

as mel-spectrograms given the input text or phoneme
• vocoder : converts the speech waveforms from the generated mel-spectrograms
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Introduction (Cont’d)

• The separately trained neural vocoders based on Generative Adversarial Network(GAN) have 
demonstrated remarkable capabilities in generating natural-sounding synthetic speech.

• In this work, two GAN based neural vocoders, Parallel WaveGAN and HiFi-GAN were trained 
on Myanmar speech dataset

• The ability of each vocoder in ground truth mel-spectrogram inversion, generalization on 
unseen speakers, and Myanmar end-to-end speech synthesis was examined

• This is the first effort to explore the advance of neural vocoder in Myanmar end-to-end TTS.

• The audio samples are available on 
http://nlpresearch-ucsy.edu.mm/subeval-voc.html
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Myanmar End-to-End Speech Synthesis

• Tacotron2 (Shen et al., 2018) model was trained for phoneme to mel-spectrogram generation

• Tacotron2 is a recurrent sequence-to-sequence feature prediction network with attention that 
maps phoneme embeddings to mel-spectrograms

• Parallel WaveGAN (Yamamoto et al., 2020) and HiFi GAN (Kong et al., 2020) are separately trained 
on Myanmar speech dataset.

• The generated mel-spectrograms were given into the GAN-based vocoders as the input conditions 
to synthesize speech waveform.
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Parallel WaveGAN
• The Parallel WaveGAN (Yamamoto et al., 2020) is a distillation-free, fast, 

and small-footprint waveform generation method using GAN.
• The model is non-autoregressive at both training and inferencing.
• The generator is trained by jointly optimizing the multi-resolution short-

time Fourier transform (STFT) auxiliary loss 𝐿!"# and the waveform domain 
adversarial loss 𝐿!$%

• The discriminator is trained to correctly classify the generated sample as 
fake and simultaneously ground truth sample as real
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HiFi-GAN

• HiFi-GAN has been composed of one generator and two discriminators 
containing multi-scale discriminator (MSD) and multi-period discriminator 
(MPD) (Kong et al., 2020)
• The generator of HiFi-GAN is a fully convolutional neural network with 

multi-receptive field fusion (MRF) module that can perceives the various 
length of patterns in parallel

• In the discriminator part, each sub-discriminator of MPD handles equally 
spaced samples of input audio and MSD was used to capture consecutive 
patterns and long-term dependencies.

7



Dataset

• Myanmar phonetically balanced speech corpus (PBC) (Thu et al., 
2015) built from Basic Travel Expression Corpus (BTEC) (Kikui et al., 
2003)

• 4000 utterances recorded by a native female speaker

• 16 kHz sampling rate of speech data
• 3,800 utterances were utilized for training, 100 utterances each for 

validation and testing
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Experimental Setup of Parallel WaveGAN

• 80-band log-mel spectrograms with band-limited frequency range (80 
to 7600 Hz) as the input auxiliary features
• Weight normalization was applied to all convolutional layers of both 

generator and discriminator
• The model was trained for 200K steps 
• The discriminator was fixed for the first 100K steps, and then both the 

generator and the discriminator were trained

• https://github.com/kan-bayashi/ParallelWaveGAN
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Experimental Setup of HiFi-GAN

• The configuration of HiFi-GAN V1 from the original paper (Kong et al., 
2020), was applied to train the model on Myanmar speech dataset.
• 80-band log-mel spectrograms with band-limited frequency range (80 

to 7600 Hz) as input conditions
• The model was trained for only 200K steps, the same steps used for 

training the Parallel WaveGAN model
• This is very small compared to the training steps used in the original 

paper (2.5M steps)
• Each vocoder model was trained on a Nvidia Tesla K80 GPU
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Experimental setup of Tacotron2

• The Tacoron2 model was trained for 125K steps with Adam optimizer 
and a batch size of 32
• In the training process, the guided attention loss was used to promote 

a fast and robust attention learning
• ESPnet, an end-to-end speech processing toolkit was used for 

modelling 
• https://github.com/espnet/espnet

• This model was trained on two Nvidia Tesla K80 GPUs

11

https://github.com/espnet/espnet


Results

• Three mean opinion score (MOS) tests for
• Ground truth mel-spectrogram inversion
• Generalization to unseen speakers
• End-to-end Myanmar speech synthesis

• Ten native non-expert speakers participated in all MOS tests.
• Subjects were given the synthesized speeches of two models and ground truth 

audio
• They had to rate the quality of synthesized speeches on a scale of 1 to 5 where 1 

is bad and 5 is excellent.
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Results (Cont’d)

• Ground Truth Mel-spectrogram Inversion
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Results (Cont’d)

• Generalization to unseen speakers
• 10 utterances of two unseen female speakers were utilized for investigating 

the ability of our trained models
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Results (Cont’d)

• End-to-end Myanmar speech synthesis
• To verify the effectiveness GAN-based vocoders in Myanmar end-to-end TTS 

pipeline, each model was integrated to the Tacotron2 model
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Conclusion

• Both Parallel WaveGAN and HiFi-GAN models achieve high-fidelity 
speech synthesis with fast inference speeds, showing the ability of 
generalizing to unseen speakers.

• GAN-based models, even trained on the small dataset with limited 
training steps, can achieve high quality speech for low-resource 
languages.

• Future work will focus on the mel-spectogram generator to better 
capture the prosody of speech and using GAN-based vocoders in 
various end-to-end speech synthesis settings.
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