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1.Linear frequency cepstral coefficients (LFCC) Gaussian mixture model (GMM) [Baseline]

2.Constant-Q cepstral coefficients (CQCC).                         Gaussian mixture model (GMM)  [Baseline]

3. LFCC CNN

4. CQCC and Spectrogram ResNet

5. Constant Q Transform (CQT) ResNet-18

• Most conventional features were processed in the phase features, 
power spectrum features, and cepstral coefficients.  

• How about using pathological features to detect deepfake speech?



Motivation 

• Speech pathological features are used mainly to discriminate healthy voices from 
pathological voices (disordered voices).

• The hypothesis is that deepfake speech could possibly be the perceived acoustic quality of 
the disordered voice.

• Deepfake speech and disordered voice represent the unnaturalness.

• Pathological features can be crucial clues for deepfake speech detection.
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Proposed method

1. Jitter
2. Shimmer 
3. Harmonics-to-noise ratio (HNR) 
4. Cepstral-harmonics-to-noise ratio (CHNR)
5. Normalized noise energy (NNE)
6. Glottal-to-noise excitation ratio (GNE)
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Jitter/Shimmer

• Jitter is the measure of the 
cycle-to-cycle variations of 
the fundamental frequency 
(F0) waveform.

• Shimmer measures the 
amplitude variation of a F0 
waveform.
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1. Jitter

A) Jitter (local) is the percentage of the average absolute difference 
between consecutive periods divided by the average period.

B) Jitter x-point (PPQx) is the difference between the frequency of 
each index (Ti) and an average of the x-point closest neighbors 
around Ti.

Jitter PPQ3, and PPQ5 are used.
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2. Shimmer

A) Shimmer (local)  refers to the average of absolute differences 
between the source-signal amplitude in  each index (Ai) and its next 
neighbor (Ai+1) divided by the average of the signal amplitudes. 

B) Shimmer x-point (APQx):. represents the average absolute 
difference between a period of its average and its x−point closest 
neighbors, divided by the average period. 

     Shimmer APQ3, APQ5, and APQ11 are used.
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3. Harmonics-to-noise ratio

• The HNR is a measure of the proportion of the harmonic and noise 
components of speech.

• The noise (𝚤𝐸𝑛) is computed as the energy of the residual produced 
after subtracting the average waveform from each individual cycle.

• The harmonic energy (𝛾𝐸𝑛) is determined as the energy of an average 
waveform of a
frame.
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4. Cepstral harmonics-to-noise ratio

• CHNR is to calculate HNR as the difference in level between the 
cepstral total energy and the noise energy. 

2024/7/22 9



5. Glottal-to-noise excitation ratio

• GNE is used to describe turbulent noise while disregarding 
modulation effects.

• GNE is assumed that glottal pulses produce a simultaneous and 
synchronous excitation of multiple frequency channels.
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6. Normalized noise energy (NNE) 

• Normalized noise energy (NNE)  is defined as the ratio of the energy 
of the noise to the total energy of the signal for each frame of analysis.

11



Dataset: ASVspoof2019 and 2021 (LA)

• Two ASVspoof datasets  have no background noise.
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Box plots of speech-pathological features derived from 1,000 signals of both genuine (green) and fake (red) speech: 

(a) jitter (local), (b) jitter (PPQ3), (c) jitter (PPQ3), (d) shimmer (local), (e) shimmer (APQ3), (f) shimmer (APQ3), (g) (APQ11), (h) CHNR, (i) NNE, (j) GNE, and (k) HNR. 

Feature analysis
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Block diagram of proposed method

- Trained 100 epochs 

- Adam optimizer 

- Batch size is 128 

- Binary cross- entropy 
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Evaluation results (averaged)

Development set of ASVspoof2019
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Extension: frame-based analysis

Features Accuracy 

(%)

Balanced 

accuracy (%)

Precisio

n (%)

Recall 

(%)

F1-Score 

(%)

F2-score 

(%)

1.Average (10 features) 89.94 61.82 92.04 97.20 94.55 96.12

2. Segmental frames of 

analysis  (10 features) 

with ResNet-18

96.67 85.81 96.60 99.47 98.17 99.17
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Extended: proposed method 

- Trained 100 epochs 

- Adam optimizer 

- Batch size is 32 

- Binary cross- entropy 

• PF is ten segmental pathological features

• ∆ is the first order derivative of ten segmental 

pathological features

• ∆∆ is the second order derivative of ten 

segmental pathological features. 17



Evaluation results (frame-based)
Evaluation set of ASVspoof2019
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Evaluation results (frame-based)

Evaluation set of ASVspoof2021

• PF is ten segmental pathological features

• ∆ is the first order derivative of ten segmental pathological 

features

• ∆∆ is the second order derivative of ten segmental 

pathological features.
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Summary
• Speech-pathological features to detect deepfake speech has been proposed. 

• Using only 10 numerical features with an MLP neural network could 
potentially detect deepfake speech.

• This work proposed segmental frames of analysis for speech-pathological 
features, and the overall performance has significantly improved.

• To compare the speech-pathological features with Mel-spectrogram and 
LFCC, the speech-pathological features outperform in terms of recall, while 
the differences in other metrics are insignificant in both datasets.

• The dimension of the proposed feature is only 30×159, while the Mel-
spectrogram is 80×401 and the LFCC is 60×265.

• When combining the proposed feature with the Mel-spectrogram, almost all 
metrics are improved.
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Thank you for your kind attention
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