ICTC 2024

The 15th International Conference on ICT Convergence *16-18 October 2024* Ramada Plaza Hotel, Jeju Island, Korea

Application of Machine Learning for Panic Attack Detection using Health Wearable Sensors

Anis Najihah Abu Samah, *Asma Abu-Samah, Nor-Fadzilah Abdullah, Rosmina Jaafar

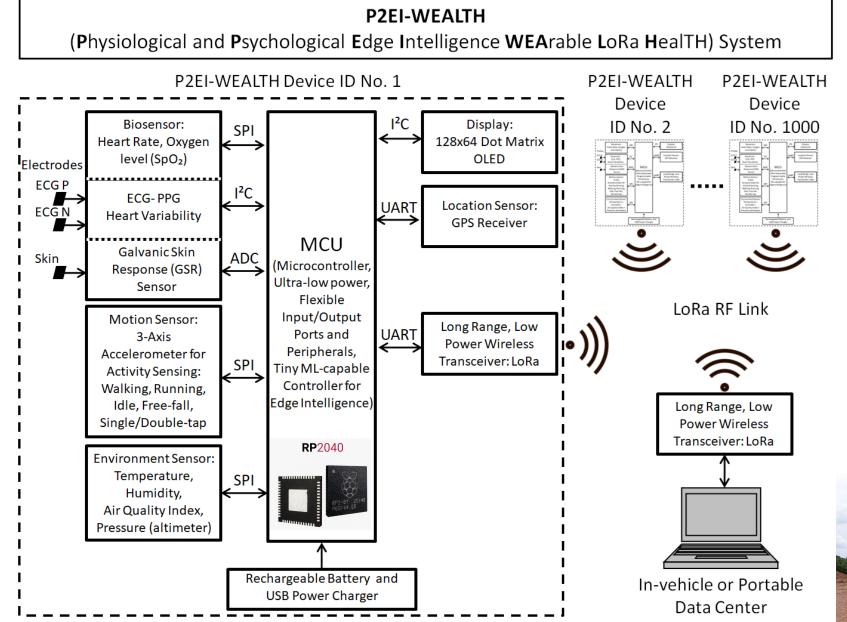
Department of Electrical, Electronic and Systems, Faculty of Engineering and Built Environment, National University of Malaysia (UKM)

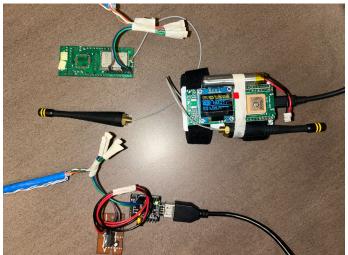
Funded by the P2EI-WEALTH (Physiological and Psychological Edge Intelligence WEArable LoRa HealTH) System for Remote Indigenous Community and Disaster Recovery Operations project under the NICT Japan (ASEAN-IVO)

Background on the project

1. The indigenous people and the rescue operators in remote and dangerous vicinities cannot profit from the use of intelligent wearable health support system due to limited connectivity;

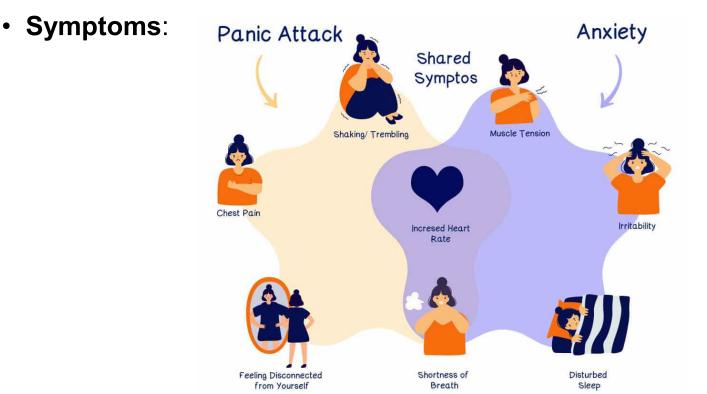
- 2. Current existing wearables are for individual purposes and not for common monitoring and intervention purposes;
- 3. Current wearables have multiple measurements from Physio sensors but not supported by edgeintelligence to be analyzed together for Psychological purposes.





Background on Panic Attack

- **Description**: Sudden overwhelming surge of extreme panic or fear. Frequent episodes are onset for Panic disorder.
- **Triggers**: Long periods of stress, activities that lead to intense physical reactions, physical changes after illness, or a sudden change of environment.

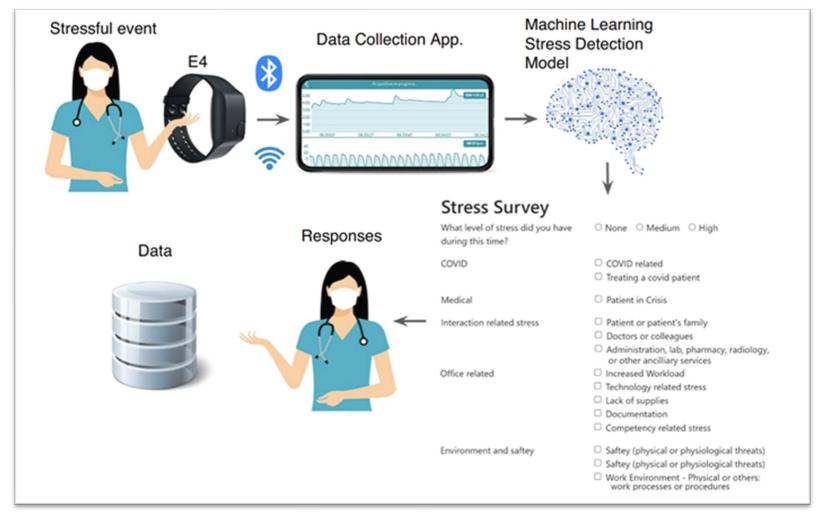


Comparative Works

Authors	Title	Sensors data	Machine Learning technique
Henry et al., 2023	On the robustness of machine learning models for stress and anxiety recognition from heart activity signals	ECG, BVP	SVM, RF, XGBoost, 3 NN-based classifiers
Nath et al., 2021	Machine learning-based anxiety detection in older adults using wristband sensors and context feature	EDA, BVP	SVM, RF, LR
Tsai et al., 2022	 Panic attack prediction using wearable devices and machine learning: development and cohort stud Garmin Vívosmart 4 Mobile apps 	sleep, heart rate (HR), activity level, BDI, BAI, STAI-S, STAI-T, Air Quality Index	6 decision tree-based classifiers
Our work (panic attack detection)		HR, EDA, Body Temperature	11 classifiers (Decision Tree, KNN and SVM kernels)

*ECG – Electrocardiagram, PPG – Photopleytismogram, BVP – Blood volume Pulse, HR – Heart Rate, BDI - Beck Depression Inventory, BA - Beck Anxiety Inventory, STAI-S -State-Trait Anxiety Inventory state anxiety [STAI-S]

Identification of Dataset



Results (1): Development of Rules for Panic Attack & Creation of Dataset

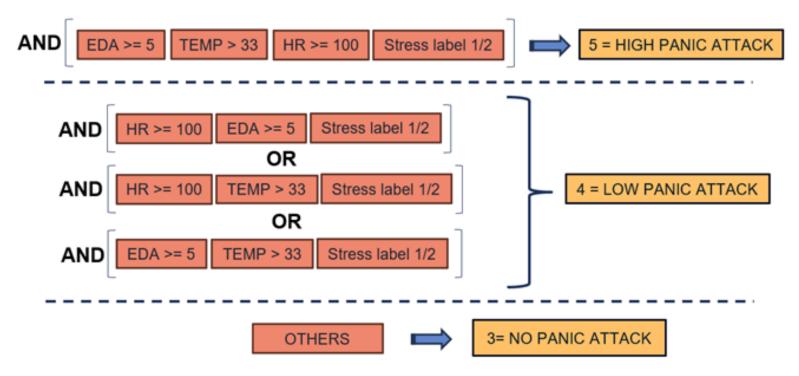


Figure 2. Classification rules of panic attack condition.

Results (2): Creation of Dataset

Electroder mal Activity	Body Temperature	Heart Rate	Panic Attack Class
			[3,4,5]
Continuous data			3 – No panic attack
			4 – Low panic attack
			5 – High panic attack

Training Dataset	Testing Dataset	Validation Dataset
12 Nurses data	10-Cross Validation	3 Nurses data
11,509,052		104,857

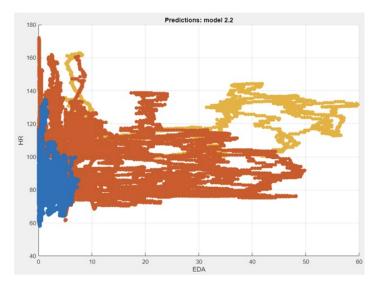


Figure 3: Scatter plot for all training data of Heart Rate (HR) vs ElectrodermalActivity (EDA)

Results (3) Classification Performance

Machine	Accuracy and Respective Nurses Dataset		
Learning Model	Training (Full 12') Data	Validation (10% of 12') Data	Testing (3 Selected) Data
	(943718)	(104857)	(903752)
Fine Tree	100%	100%	99.96%
Medium Tree	100%	100%	99.96%
Coarse Tree	94.94%	94.89%	82.44%
Fine KNN	100%	100%	87.58%
Medium KNN	99.98%	100%	87.58%
Coarse KNN	99.82%	99.85%	87.81%
Cosine KNN	99.99%	100%	88.44%
Cubic KNN	99.98%	100%	86.92%
Weighted KNN	100%	100%	87.57%
Efficient Logistic Regression	91.88%	91.81%	74.01%
Efficient Linear SVM	91.69%	91.68%	74.04%

Table 3: Comparison of accuracy across different

 Machine Learning models.

Table 4: Comparison of accuracy across different Machine Learning models.

Machine	Accuracy and Respective Nurses Dataset			
Learning	Training	Training	Testing	
Model	(Full 12' Nurses Data)	(Full 12' Nurses Data)	(3 Selected Nurses	Data)
	(943718)	(943718)	(903752)	
Fine Tree	Total cost : 0 Error rate : 0% Training time : 125.73s Model size : ~7kB Prediction speed : ~510000 obs/sec	Total cost : 0 Error rate : 0.0%	Total cost : 352 Error rate : 0.0%	
Medium Tree	Total cost : 0 Error rate : 0% Training time : 118.67s Model size : ~7kB Prediction speed : ~570000 obs/sec	Total cost : 0 Error rate: 0.0%	Total cost : 352 Error rate : 0.0%	
Coarse Tree	Total cost : 47743 Error rate : 5.1% Training time : 111.86s Model size : ~5kB Prediction speed : ~670000 obs/s	Total cost : 5361 Error rate : 5.1%	Total cost : 158723 Error rate : 17.6%	
Coarse KNN	Total cost : 1736 Error rate : 0.2% Training time : 525.4s Model size : ~64MB Prediction speed : ~7800 obs/s	Total cost :161 Error rate : 0.2%	Total cost: 110143 Error rate : 12.2%	
Cosine KNN	Total cost : 130 Error rate : 0.0% Training time : 21571s Model size : ~44MB Prediction speed : ~690 obs/s	Total cost : 0 Error rate : 0.0%	Total cost : 104508 Error rate : 11.6%	
Cubic KNN	Total cost : 159 Error rate : 0.0% Training time : 17347s Model size : ~64MB Prediction speed : ~2900 obs/s	Total cost : 3 Error rate : 0.0%	Total cost : 118200 Error rate : 13.1%	
Weighted KNN	Total cost : 0 Error rate : 0.0% Training time : 305.97s Model size : ~64MB Prediction speed : ~17000 obs/s	Total cost : 0 Error rate : 0.0%	Total cost : 112319 Error rate : 12.4%	
Efficient Logistic Regression	Total cost : 76665 Error rate : 8.1% Training time : 462.97s Model size : ~37kB Prediction speed : ~370000 obs/s	Total cost : 8589 Error rate : 8.2%	Total cost : 234907 Error rate : 26.0%	
Efficient Linear SVM	Total cost : 78409 Error rate : 8.3% Training time : 345.08s Model size : ~37kB Prediction speed : ~420000 obs/s	Total cost : 8722 Error rate : 8.3%	Total cost : 234635 Error rate : 26.0%	9

Conclusion

The study has proven that given a good rules, panic attack can be detected using werable sensors

Rooms for improvement include,

- 1. Integration to an edge device with limited ressources but at the same time can provide wireless communication capacity using tensorflow lite.
- 2. Comparative study with the same sensors/information as [5]
- 3. Seek more experts' advice on the design of the rules

References

[1] Henry, J., Lloyd, H., Turner, M. and Kendrick, C., 2023. On the robustness of machine learning models for stress and anxiety recognition from heart activity signals. IEEE Sensors Journal, 23(13), pp.14428-14436.

[2] Vaanathy, S., Charles, J. and Lekamge, S., 2023. Machine Learning Approach to Prediction and Assessment of Depression and Anxiety: A Literature Review. IUP Journal of Computer Sciences, 17(1).

[3] Zhang, N., Chen, S., Jiang, K., Ge, W., Im, H., Guan, S., Li, Z., Wei, C., Wang, P., Zhu, Y. and Zhao, G., 2024. Individualized prediction of anxiety and depressive symptoms using gray matter volume in a non-clinical population. Cerebral Cortex, 34(4), p.bhae121.

[4] Nath, R.K. and Thapliyal, H., 2021. Machine learning-based anxiety detection in older adults using wristband sensors and context feature. SN Computer Science, 2(5), p.359.

[5] Tsai, C.H., Chen, P.C., Liu, D.S., Kuo, Y.Y., Hsieh, T.T., Chiang, D.L., Lai, F. and Wu, C.T., 2022. Panic attack prediction using wearable devices and machine learning: development and cohort study. JMIR Medical Informatics, 10(2), p.e33063.

[6] S. Hosseini, R. Gottumukkala, S. Katragadda, R. T. Bhupatiraju, Z. Ashkar, C. W. Borst, and K. Cochran, "A multimodal sensor dataset for continuous stress detection of nurses in a hospital," Scientific Data,vol. 9, no. 1, p. 255, 2022