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Abstract: Stress has become a common mental health issue in modern society, causing

individuals to experience acute behavioral changes. Exposure to prolonged stress without

proper prevention and treatment may cause severe damage to one’s physiological and

psychological health. Researchers around the world have been working to find and create

solutions for early stress detection using machine learning (ML). This paper investigates the

possibility of utilizing Tiny Machine Learning (TinyML) in developing a wearable device,

comparable to a smartwatch, that is equipped with both physiological and psychological

data detection system to enable edge computing and give immediate feedback for stress

prediction. The main challenge of this study was to fit a trained ML model into the

microcontroller’s limited memory without compromising the model’s accuracy. A TinyML-

based framework using a Raspberry Pi Pico RP2040 on a customized board equipped with

several health sensors was proposed to predict stress levels by utilizing accelerations, body

temperature, heart rate, and electrodermal activity from a public health dataset. Moreover,

a few selected machine learning models underwent hyperparameter tuning before a porting

library was used to translate them from Python to C/C++ for deployment. This approach

led to an optimized XGBoost model with 86.0% accuracy and only 1.12 MB in size, hence

perfectly fitting into the 2 MB constraint of RP2040. The prediction of stress on the edge

device was then tested and validated using a separate sub-dataset. This trained model on

TinyML can also be used to obtain an immediate reading from the calibrated health sensors

for real-time stress predictions.

Keywords: edge intelligence; machine learning; stress detection; tinyml; healthcare;

xgboost; knn; micromlgen

1. Introduction

Stress disorder has now become a common mental health issue in the community.

Stress, however, is a highly subjective experience due to its nature occurring for various

reasons, even in similar pressuring or unavoidable circumstances [1]. People tend to adjust

to stress over time, but unknowingly, even being exposed to prolonged minor stress can

cause severe health damage [2]. Untreated stress may cause not only psychological but also

umpteen physiological health issues such as a suppressed immune system, heart attack,
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and stroke [3,4]. Since this matter has become a significant issue in the general health

of society, rapid technological innovations have encouraged the solution for early stress

detection to enhance the healthcare system with better aids [5,6]. Hence, it is important to

first detect the existence of stress to avoid aggravating this problem. The most user-friendly

solution is the usage of wearable devices embedded with multimodal sensors for real-time

stress monitoring. There are various wearable commercial devices available in the market

nowadays but most of them rely on limited health monitoring sensors.

The most commonly used devices in research for data collection, continuous study,

and monitoring of participants’ stress levels are the Empatica E4 and, most recently, the

Embrace Plus [2]. The device is used for stress detection as it provides an electrodermal

activity (EDA) sensor, which measures and suggests a body reaction to stress. Empatica

devices are very helpful in this aspect, but the cost is not for mass usage, and no detection

model has been integrated for automated detection and alarm triggers. Despite commercial

devices, some researchers have taken another direction and developed their own wearable

devices [7,8], made from low-cost sensors.

Appropriate use of wearable multimodal sensors for health data collection can be

beneficial for evaluating and analyzing stress detection based on the physiological and/or

psychological features of interest [9]. Physiological traits that are frequently used in stress

detection studies comprise EDA, also known as Galvanic Skin Response (GSR), photo-

plethysmogram (PPG), electrocardiogram (ECG), and respiration. Generally, stress detec-

tion using these traits is regarded as the most dependable initiative in practical applications.

Among the numerous physiological traits, features extracted from ECG and EDA signals,

such as heart rate and skin conductivity metrics, are found to be the most closely correlated

with the level of stress and have been utilized in various fields for stress detection [1,10].

In most recent studies, machine learning (ML) models have been widely used to

automatically identify stress by exploiting a number of physiological and psychological

signals obtained from a collection of data [11]. The research aspect in this paper is the

identification of ML models with powerful detection performance that can operate on

limited power and computational capacity. The trend in this aspect is now to integrate a

stress detection model on the cloud or the device itself. The latter empowers the integration

of complex and ML-based models on the edge to give immediate detection to users. As

such, this study is motivated to identify and test ML models that can be integrated into an

edge device.

This paper explores the feasibility of deploying machine learning models on a TinyML

device with constrained resources to classify stress levels using data from wrist-worn

wearable sensors. The study addresses key challenges in implementing such systems,

including handling large datasets, optimizing models for deployment, and ensuring real-

world applicability. The primary contributions of this work are as follows:

1. Focus on Wrist-Worn Wearable Data: Unlike other datasets, such as the Wearable

Stress and Affect Detection (WESAD) [12], which combine wrist-worn and chest-worn

wearables, this study exclusively uses wrist-worn wearable data to reflect real-world

use cases of compact, user-friendly devices. The dataset also features three stress

levels, no stress, low stress, and high stress, providing a broader scope than binary

classification datasets.

2. Prediction from Multiple Physiological and Motion Features: This study incorporates

six physiological and motion-based features collected from wrist-worn wearable sen-

sors: heart rate (HR), electrodermal activity (EDA), body temperature (TEMP), and

3-axis accelerometer data (X, Y, Z). By leveraging these diverse features, the study

achieves a comprehensive assessment of stress levels, capturing both physiological re-
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sponses and physical activity patterns. This holistic approach enhances the robustness

of stress predictions compared to systems relying on fewer features.

3. Optimization for TinyML Deployment: Machine learning models, including XGBoost

and Random Forest, were selected for deployment based on their compatibility with a

micromlgen [13] library. Hyperparameter tuning ensured the models fit within the 2 MB

memory of the Raspberry Pi RP2040 while maintaining competitive accuracy. The

study demonstrates how resource constraints were balanced with model performance.

4. Real-World Implications and Compact System Design: This study advances the inte-

gration of machine learning into TinyML devices by demonstrating the potential for

real-time stress classification. The RP2040 controller serves as the central component

of the system, showcasing the viability of deploying computationally efficient models

in low-cost, embedded systems.

The work in this paper is part of the PJ2022-03, ASEAN IVO Project entitled “P2EI-

WEALTH (Physiological and Psychological Edge Intelligence WEArable LoRa HealTH)

System for Remote Indigenous Community and Disaster Recovery Operation”. The paper

is structured as follows: Section 2 elaborates on related works, focusing on existing datasets

to help develop the model, relevant ML models to be considered and an overview of

TinyML. Section 3 focuses on the research methodology, while Section 4 elaborates on

the results and provides analysis. Finally, Section 5 provides discussion and concludes

the paper.

2. Related Works

2.1. Available Dataset for Stress Identification Using Health Wearable

Over the years, many datasets containing health sensor data recorded using wearable

wrist devices have become available for public use. This study is specifically interested in

datasets with EDA signals generated from wearable devices for stress detection. Table 1

shows the current work on stress detection using different datasets. One of the most

commonly used datasets is the WESAD dataset [12], which incorporates physiological

signals from two wearable devices, Empatica E4 (wrist-worn) and RespiBan (chest-worn).

Combining both devices, this dataset contains signals from EDA, ECG, blood volume

pulse (BVP), electromyogram (EMG), respiration, body temperature, and acceleration. The

recorded data were from 15 participants who were required to do several activities while

collecting physiological signals.

Research by [14] has presented the Cognitive Load, Affect and Stress (CLAS) dataset,

which can be utilized for general studies which include stress detection. The dataset con-

tains physiological signals such as ECG, PPG, EDA, and accelerometer from 62 participants,

for which they are required to perform several tasks. The device used was Shimmer3 GSR+

(wrist-worn) with GSR and ECG sensors, where the EDA signals were collected from the

fingers via two electrodes from the GSR sensor. A private dataset from [15] called the

VerBIO contains physiological signals such as EDA, ECG, and BVP. They were recorded

during 344 public speaking sessions given by 55 subjects to study if stress can cause changes

in physiological signals while giving a public speech with the aid of a virtual reality device.

The EDA signals were specifically recorded using the Empatica E4 device.

In this study, a multimodal sensor dataset for continuous stress detection of nurses in

a hospital collected by researchers at the University of Louisiana [6] was used. The dataset

contains physiological data such as acceleration, temperature of the skin, heart rate (HR),

EDA, and BVP from 15 nurses working hospital shifts over one week during the COVID-19

outbreak. The data were collected using the Empatica E4 wristwatch.
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2.2. Machine Learning-Based Techniques for Stress Prediction

Relevant research in published papers has greatly influenced this study and is essen-

tial to developing theory and experimental design of stress detection using wrist-worn

devices [16]. Using the WESAD dataset, researchers in [17] evaluates their selected features

(EDA, BVP, and TEMP) with different ML models such as Stacking Ensemble Learning

(SEL), Logistic Regression, Decision Tree, and Random Forest. Meanwhile, a comparative

study by [18] compares and evaluates deep learning architecture using Convolutional

Neural Networks (CNN) to the traditional ML methods (KNN and XGBoost). This study

uses the same dataset but with slight difference in their choices of features, where they

have selected ECG instead of BVP, opposed to the prior study.

Additionally, a study by [19] examined the performance of six ML methods, including

Support Vector Machine (SVM), SEL, Random Forest, Naïve Bayes, Logistic Regression, and

KNN. Three physiological features (EDA, ECG, PPG) from the WESAD and CLAS datasets

were chosen for training and testing in the pre-acquisition phase. Another collaborative

study by [20] included the VerBIO dataset to assist their practical study by including EDA

sensors on smartwatches. All the physiological features available on the dataset (EDA, ECG,

BVP) were used to train and test KNN, Logistic Regression, and Random Forest models.

Findings by [21] revealed that the researchers had designed their sensor board using

nRF52832 microcontroller embedded with MAX86150 for ECG and EDA data collection.

They first test and train some features from the WESAD dataset using the KNN model

before implementing the model into their own dataset. The custom dataset consists of ECG

and EDA signals from 18 participants who were required to complete three phases of the

stress test. Table 1 shows the summary of recent works in this aspect.

Table 1. Recent works on stress detection using different datasets.

Dataset Author Features Selection Devices Best ML Model Accuracy

WESAD

[17] EDA, BVP, TEMP Empatica E4
Random

Forest
73.40%

[18] EDA, ECG, TEMP
Empatica E4,

RespiBAN
XGBoost 96.83%

CLAS [19] EDA, ECG, PPG
Shimmer3

GSR+
SVM 66.70%

VerBIO [20] EDA, ECG, BVP
Empatica E4,

Actiwave
Logistic

Regression
85.30%

Custom [21] EDA, ECG Custom KNN 94.40%

2.3. TinyML Optimization in Predicting Stress

Tiny Machine Learning (TinyML) is an emerging field that focuses on deploying

machine learning models on resource-constrained devices, such as microcontrollers and

low-power embedded systems. This approach enables on-device data processing, reducing

latency and enhancing privacy by minimizing data transmission to external servers. The

integration of TinyML into small devices not only makes them intelligent but also offers

advantages like reduced computation, power usage, and response time [22].

One of the primary advantages of TinyML is its ability to perform real-time inference

on low-power devices. This capability is particularly beneficial in applications where

immediate decision-making is crucial, such as wearable stress detection systems. By

processing data locally, TinyML reduces the reliance on continuous data transmission,

thereby conserving energy and extending battery life, a critical factor for wearable devices.
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Additionally, on-device processing enhances data privacy, as sensitive information remains

within the device, mitigating potential security risks associated with data transfer [22].

Recent advancements in TinyML have demonstrated its potential in health monitoring

applications. For instance, a study by [23] has presented a real-time stress detection system

employing an LSTM-based deep learning model on STM32H7xx microcontrollers. Their

approach effectively processed raw photoplethysmography (PPG) signals to distinguish

between stressed and non-stressed states, achieving high accuracy with minimal compu-

tational overhead. Similarly, researchers in [24] has developed a microcontroller-based

EdgeML system for real-time health monitoring, focusing on stress and sleep analysis via

heart rate variability (HRV). Their approach effectively processed HRV data to provide

continuous and personalized insights into stress levels and sleep quality. These studies

underscore the feasibility of implementing TinyML in wearable stress detection systems,

offering scalable and efficient solutions that align with current technological trends.

3. Methodology

The methodology subsection is organized into several subsections to highlight the

different research activities involved in the different stages of the study. The first is the

preparation of the historical dataset for the purpose of model training and modeling,

followed by the propose pre-processing and dataset resampling. Different models were

then tested to select the most relevant model before being deployed in the proposed

hardware configuration. Figure 1 iterates the different steps of the studies, also highlighting

the dataset that was input to the development.

Figure 1. The complete proposed workflow accompanied by an image of the edge device prototype.

3.1. Dataset for Modeling

In this paper, a merged csv file dataset provided on Kaggle based on the study for

continuous stress detection of nurses in a hospital during the COVID-19 outbreak was used

for the training and testing of the best stress model classification [6,25]. The merged dataset

was made up of approximately 11.5 million inputs across nine columns, which include

accelerations in X, Y, and Z-axis, EDA, HR, the temperature of the skin (TEMP), id of the

15 users (id), extensive date and time inputs (datetime), and three levels of stress (label).

The full database containing the signals, stress events, and survey responses was also made

available on Dryad [26] for public release as the data has been properly anonymised. The

structure of the dataset is presented in Table 2, while the distribution of each feature in the

dataset is illustrated as in Figure 2.
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From Figure 2, a few observations can be made while referring to the skewness and

kurtosis values in Table 2. Features like EDA, HR, and X exhibit notable positive skewness,

indicating higher values are less frequent. Apart from that, most features have flat peaks or

platykurtic, except HR, which shows a sharper peak (leptokurtic). These features should be

normalized by min-max scaling during dataset preprocessing to ensure all features are on a

similar scale for machine learning models. Finally, the most obvious observation is that

the class imbalance in the label distribution could affect model training and might require

techniques like resampling to address the imbalance.

Table 2. Structure of the dataset that is employed in the study along with the skewness and kurtosis

of each variables.

Data X Y Z EDA HR TEMP id Datetime Label

0 −13.0 −61.0 5.0 6.769995 99.43 31.17 15 8 July 2020 14:03:00.000 2.0

.

.

.

11,509,050 −22.0 −24.0 29.0 3.374543 88.33 33.75 F5 23 July 2020 17:29:00.000 2.0

Skewness 0.966240 −0.206264 −0.349053 0.814998 0.927843 −0.282816 - 0.078673 -

Kurtosis 0.848937 −0.067435 0.254031 −0.014349 2.327563 −1.088713 - −1.183099 -

Figure 2. Data distribution of each feature.

3.2. Data Preprocessing and Feature Scaling

Before training any machine learning models, a dataset must be preprocessed to

convert raw data into polished and functional format. In this stage, data frame training



Electronics 2025, 14, 687 7 of 21

was conducted to find data with missing or unimportant values. This particular dataset

was proven to have 11,509,051 entries with no null values. The dataset information dated

from 8th until 23rd of July 2020 with time stamps was provided in the ’datetime’ column

as shown in Table 2. Since it was originally non-numerical labels, the column was then

converted to numerical labels using LabelEncoder() from the sklearn.preprocessing module.

Another crucial process is to reduce the number of bits used to represent data using a

technique called quantization. In the study, data was converted from 64-bit to 32-bit using

the astype() function to emit the data from float64 to float32 data types. This conversion

was performed to optimize the memory usage and computational efficiency for processing

the data. However, for real-time, embedded applications, further compression to 16-bit or

8-bit precision must be done to reduce computational load and power consumption.

It is also important to identify the most pertinent features that contribute to a model’s

performance. Based on the process, the six main activity and physiological data features

namely the three axis of acceleration (X, Y, Z), EDA, HR, and TEMP, were selected for

the model training process and the rest were dropped. The selection of the most rele-

vant features was guided by a combination of prior research and exploratory analyses.

Specifically, referring to the work of the dataset provider [6], the researchers highlighted

key features such as heart rate (HR), electrodermal activity (EDA), and body temperature

(TEMP) as significant indicators of stress. Building on this foundation, this study has ex-

panded the feature set by incorporating data from the 3-axis accelerometer (X, Y, Z), which

provides motion-related information. This addition was made to enhance the model’s

ability to capture physical activity patterns and postural changes, which are also relevant

in stress detection.

The dataset was then divided into training, testing, and validation set using a 6:2:2

split to help prevent overfitting. The training set is used to train the model, the testing

set is used to test the model after completing the training, while the validation set is for

validating the model performance after deployment. The split was performed using a

fixed random state (random_state = 42) to maintain consistency across different runs of

the experiment. Additionally, the splitting process was stratified to preserve the class

distribution of the dataset, ensuring that all three stress levels (no stress, low stress, and

high stress) were proportionately represented in each subset. This approach enhances the

reliability of the results which helps improve generalization and mitigate biases introduced

by the original imbalance. The training features are then transformed by scaling each of

them using MinMaxScaler() to a given range, usually of zero to one. Without altering the

shape of the original distribution, it scaled the values to the specified range.

Since the size of this dataset is too large to fit in memory, a method to reduce the di-

mension of the input features called Incremental Principal Component Analysis (IPCA) was

introduced in the process. IPCA was selected over traditional PCA and other dimensionality

reduction techniques due to the large dataset size, which exceeded available memory. IPCA

processes data in smaller batches, making it more suitable for handling high-dimensional

datasets efficiently [27]. To determine the optimal number of components, standard PCA

was first applied, and the cumulative explained variance ratio was analyzed, leading to

the selection of five components to retain most of the dataset’s variance while reducing

dimensionality. The transformed features were then used as inputs for machine learning

models to improve performance by removing irrelevant and redundant information.

3.3. Dataset Resampling Using Near Miss Undersampling

The stress in nurse dataset is considered a multiclass classification as it is composed

of more than two classes, and each sample can only be assigned to one target class. This

particular dataset is divided into three levels of stress; class 0 representing no-stress (18.8%),
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class 1 representing low stress (7%), and class 2 representing high stress (74.2%). The

distribution of the three classes are depicted in Figure 3. Referring to the study by [6] for

the dataset collection, the classes were calculated based on the mean value of stress ‘S’

during the session between the start and end time where: ‘no stress’ if S ≤ 0.65, ‘low stress’

if 0.65 ≤ S ≤ 1.3, and ‘high stress’ if S ≥ 1.3. These thresholds were established by them

using the AffectiveRoad [28] dataset and were subsequently confirmed through survey

responses in the early stage of their [6] study.

Figure 3. Original class distribution of the nurse dataset.

From Figure 3, it was evident that the dataset are highly imbalanced and biased, which

means that the distribution of classes within the dataset are unequally distributed [29].

This issue can be solved with either two of the resampling methods, undersampling where

samples are removed from the majority class, or oversampling where samples are added

to the minority class. In this study, both techniques have been explored to identify which

resampling method is the best to solve this specific classification problem.

Since the dataset originally has over 11 million entries, performing oversampling to

replicate the existing samples or generate new synthetic samples for the minority class

resulted in a high computing time (up to days or weeks) and an excessive amount of

data [30]. In this case, nearly 14 million new samples will be generated, causing the

ML model to train over 25 million data and suffer in memory usage due to its high

complexity. Therefore, an undersampling approach was taken to manage computational

resources effectively, despite the potential trade-off of information loss [31]. The results

were then analyzed.

The resampling method used in this case was the Near Miss, an undersampling tech-

nique that minimizes the distance of dominant samples nearer to the minority class. This

technique delivers a more vigorous and equitable class distribution boundary to enhance

the performance of prediction classifiers in large-scale imbalanced datasets [32]. According

to imbalance-learn documentation [33], the Near Miss technique has three versions:

1. NearMiss-1 picks samples from the majority class for which the mean distance to

some closer neighbors, k is the smallest.

2. NearMiss-2 picks samples from the majority class for which the mean distance to the

farthest neighbors, k is the smallest.
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3. NearMiss-3 has two steps; first, a nearest-neighbors will short-listed samples from

the majority class. Then, the sample with the highest mean distance to the k nearest-

neighbors are picked.

In this particular study, NearMiss-1 undersampling technique was applied to the

original dataset and the post-resampling class distribution is visualized in Figure 4. In this

process, NearMiss-1 picked samples from Class 0 and Class 2 (majority classes) with the

smallest mean distance to the 10 nearest neighbors of Class 1 (minority class) samples. As

a result, around 62.7% of samples from Class 0 and 90.6% of samples from Class 2 were

removed. The three classes were equally distributed totaling up to 2,418,666 entries for the

dataset training.

Figure 4. Class distribution before and after NearMiss-1 undersampling.

3.4. Model Selection and Hyperparameters Tuning

In this study, six different models which are K-Nearest Neighbor (KNN), XGBoost,

Random Forest (RF), Decision Tree (DT), LightGBM, and Logistic Regression (LR) have

been empirically tested. An extensive explanation on each models are discussed in

Section 3.4.1. The hyperparameters were fine-tuned through a grid search within a spec-

trum of parameters using GridSearchCV tool from the scikit-learn library to identify the

optimal hyperparameters for the model to achieve the best performance. The optimal

hyperparameters setting chosen for each model are shown in Table 3.

3.4.1. Classification Model

KNN is ideal for sensor data classification and has better noise sensitivity control due

to its flexibility in choosing number of neighbors or the k-value [18]. The KNN algorithm is

a non-complex, non-parametric method that can be used for classification and regression.

It operates on the principle that similar data points are near each other in the feature space.

When making a prediction, KNN identifies the ‘k’ closest training examples to the input

data point based on a chosen distance metric (e.g., Euclidean distance). For classification,

hyperparameter tuning is needed in the KNN algorithm. It needs to assign the input

to the class most common among its ‘k’ nearest neighbors. K-fold cross-validation (CV)

will produce consistent results and help provide reliable training errors while reducing

fluctuations caused by them [34].

Extreme Gradient Boosting or most commonly known as XGBoost is a Boosting itera-

tive algorithm based on a linear classifier or tree which integrates several weak classifiers
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to produce one strong classifier with better classification or regression outcomes [35]. The

XGBoost model consistently incorporates and trains new trees in every iteration to adjust

for the residuals of the predicted values from the prior decision tree and the total predicted

values from all preceding decision trees. As the final result, it summed up all the predicted

values of the decision trees together. XGBoost is broadly used due to its great performance

in both classification and regression and it provides fast computing speed. A proper hyper-

parameter tuning is needed for XGBoost model’s training performance, including objective,

‘max_depth’, and ‘n_estimators’. To perform multiclass classification, the objective function

was set to ‘multi:softmax’ as it outlines the learning task for the model. On the other hand,

‘max_depth’ represents the maximum depth of the tree, influencing the XGBoost model’s

degree of overfitting or underfitting to a certain extent, while ‘n_estimators’ represents the

total count of iterations, which is equivalent to the number of decision trees.

Random Forest consists of a group of decision trees used for data classification and

prediction [16]. The input is passed through the root node at the top and then traverses

down to the leaf nodes. Each tree in the forest can have hundreds of branches, all built

using the same method. For classification, the Random Forest analysis produces results

based on the mode of each tree in the forest, while prediction results are derived from the

average value of all the trees. The function criterion is used to decide a split in decision

trees and measure the quality of a split. Supported criterias are ‘gini’ for the Gini impurity

and ‘entropy’ for the Shannon information gain.

Decision Tree model is a top-down structure that transforms data into a decision tree

and generates rules. It offers a structure that starts from the root node at the top and extends

down to the leaf nodes [36]. Branches are used to connect the nodes. Decision trees utilize

if-then conditions, which form the logical structure within the nodes. Decision trees can

reveal relationships. This structure begins with the root node at the top level, and each

branch’s possible outcome is evaluated at the decision nodes. This model uses recursive

partitioning to make decisions, as its flowchart structure closely mirrors human thought

processes. The time complexity of a decision tree is influenced by the number of features in

the given data and is independent of any assumptions about probability distributions [37].

LightGBM is a framework designed to support efficient parallel training and offers

several advantages, including faster training speeds and the ability to quickly handle large

datasets [38]. LightGBM uses the negative gradient of the loss function as a residual approx-

imation for the current decision tree, which is then used to fit a new tree. The framework

employs a histogram-based algorithm that reduces memory usage and simplifies data

partitioning. Additionally, it follows a leaf-wise strategy with depth restrictions, selecting

the leaf with the largest splitting gain and the most data for each split. This approach

minimizes errors and improves accuracy when the number of splits is the same. To perform

multiclass classification using LightGBM, the objective function was set to ‘multiclass’.

Logistic Regression is a supervised machine learning technique that is mainly used

in classification tasks to predict the probability of an instance belonging to a particular

class [37]. In classification, Logistic Regression takes the output from linear regression

and transforms it with a sigmoid function to estimate class probabilities. This model

focused on predicting the likelihood of an instance belongs to a specific class, unlike linear

regression which produces continuous values. In the case of multiclass classification,

the training algorithm applies cross-entropy loss when the ‘multi_class’ option is set

to ‘multinomial’. The ‘multinomial’ option is compatible with the ‘newton-cg’ solver,

which implement regularized logistic regression. For multiclass problems, the ‘newton-

cg’ solver handle multinomial loss as it support only L2 regularization with a primal

formulation. The ‘max_iter’ is the maximum number of iterations required for the solvers

to reach convergence.
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Table 3. Model hyperparameter settings.

Model Hyperparameters Settings

KNN
n_neighbors 3
cv 10

XGBoost
objective ‘multi:softmax’
max_depth 15
n_estimators 100

Random Forest
criterion ‘entropy’
max_depth 15
n_estimators 100

Decision Tree
criterion ‘entropy’
max_depth 15

LightGBM objective ‘multiclass’

Logistic Regression

solver ‘newton-cg’
penalty ‘L2’
multi_class ‘multinomial’
max_iter 100

3.4.2. Performance Metrics

The performance evaluation of the prediction model is carried out by considering

several performance evaluation metrics, the most common to evaluate the model’s perfor-

mance in predicting stress. These metrics including accuracy, precision, recall, and F1-score

are derived from the confusion matrix. It is a valid results’ representation, alongside

classification report, to assess the performance of a classifier model against a set of test

data [39].

A multiclass confusion matrix with three classes depicting the three labels (stress level)

from the dataset used in this study is visualized in Table 4a. The outcome of a predicted

class from the actual class is also visualized in this table. This matrix is made up of true

positive (TP), true negative (TN), false positive (FP), and false negative (FN). Referring to

Table 4b, TP is considered as the numbers of positive classes that are correctly classified for

class C3, whereas FN and FP are the values that were misclassified as class C3 on the row

and the column respectively. TN on the other hand compromises all the other tiles apart

from the considered class C3. When switching from one class to another, the values are

recalculated and the labels for the confusion matrix must be changed accordingly [40].

From the confusion matrix, the accuracy, precision, recall, and F1-score of a test data

can be calculated as shown in Equations (1)–(4).

Table 4. Confusion matrix and representation of three classes.

(a) (b)

Predicted Predicted
Class C1 C2 C3 Class C1 C2 C3

C1 T1 F12 F13 C1 TN TN FP
C2 F21 T2 F23 C2 TN TN FPActual
C3 F31 F32 T3

Actual
C3 FN FN TP

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)
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Recall =
TP

TP + FN
(3)

F1-score = 2 ∗
Precision ∗ Recall

Precision + Recall
(4)

3.5. Deployment in Tiny Edge Device

3.5.1. System Design and Prototype Development

Four sensors were carefully chosen for the prototype to designate the features selected

from the trained ML models. These include a BMA400 accelerometer sensor to acquire the

values of X, Y, and Z, a MAX86150 sensor for HR values, an STS21 temperature sensor for

TEMP values, and an LM324 circuit connected with two electrodes for EDA measurements.

These sensors were calibrated to replicate and function as similarly as possible to the health

sensors in Empatica E4 that was used to gather the nurse dataset. The sensor data output

and the stress prediction are then displayed on an SSD1306 OLED display. The sensors

data are programmed to be aligned in a single frequency so that all sensors data can be

used to predict the condition regularly using the developed model.

These sensors are connected to a microcontroller board based on the Raspberry Pi

RP2040 microcontroller chip [41]. This versatile and affordable Dual-Core, 32-bit ARM Cor-

tex M0+ processor board was chosen because of its compact size and extremely lightweight,

which makes it perfect for embedded system devices like TinyML. In terms of memory, the

Raspberry Pi module comes with 264 KB of high-performance SRAM and 2 MB of flash

memory. The SRAM is used for temporary data storage while the flash memory holds the

code and other data needed to operate the board. The microcontroller appears as USB mass

storage by default where no driver is needed if connected to a USB port. This function is

valuable in the circuit design. The microcontroller is flexible and can be programmed using

basic programming languages such as MicroPython, CircuitPython, C, C++, C alike in

Arduino IDE Programming Language. A comparative study of this controller to Arduino

SAMD21 was performed to highlight its advantages in embedded machine learning [42].

3.5.2. Porting the ML Model

After being validated and tested, a trained ML model with the best performance was

thoroughly picked for deployment. This includes the process of distinguishing a porting

library that is compatible with Raspberry Pi RP2040 and should support classifier models

designed for classification tasks. Several libraries are available on Github that fit the criteria

of this study, such as micromlgen [13], m2cgen [43], and everywhereml [44]. They are issued as

Python libraries which incorporate functions that can read pre-trained scikit-learn models

to translate them into plain if-else C/C++ codes.

In this study, micromlgen was used primarily as the porting library, as it supports most

scikit-learn models used during data preprocessing. Since this library only supports certain

classifier models, XGBoost and Random Forest were the main choices for deployment. The

decision to focus on these models was further reinforced by their strong performance in

the evaluation phase, where they ranked as the second and third best-performing models

after K-Nearest Neighbors (KNN). However, deploying KNN was not feasible due to its

incompatibility with micromlgen and the limitations of the Raspberry Pi RP2040.

KNN’s memory-intensive nature, requiring the storage of the entire training dataset

and distance calculations during inference, made it unsuitable for the resource-constrained

microcontroller, which has only 2 MB of flash memory. On the other hand, XGBoost and

Random Forest are more memory-efficient and compatible with micromlgen, allowing their

successful integration into the TinyML framework. To further optimize the models for
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deployment, their hyperparameters were fine-tuned to balance flash memory usage and

predictive performance, ensuring the system’s viability while maintaining robust accuracy.

This selection process reflects a careful alignment of computational constraints, hardware

compatibility, and model effectiveness.

3.5.3. Data Acquisition and Validation

When porting the model from python, it was necessary to save it as a header file with

.h extension. This header file contains the definitions for functions and variables of the ML

model. It can be used as an external library for the programming in Arduino IDE and was

called using the #include function. In the IDE sketch, a complete code to read the sensor

data was written and the stress predictions were made in real-time by utilizing the predict

function whenever inference from the ML model is required. This whole code was verified,

compiled, and uploaded into the RP2040. The prediction of stress on edge device was then

tested and validated in a laboratory environment using different sub-dataset (validation

set) to quantify that the prediction accuracy made by the deployed model is similar to the

origin model in Python.

4. Result and Discussion

4.1. Classification Models Comparative Analysis

The performance evaluation of the prediction model is carried out by considering

several performance evaluation matrices, the most common to evaluate the model’s perfor-

mance in predicting stress. These matrices include accuracy, precision, recall, F1-score, and

confusion matrix. The results of classification using different models can be analyzed in

Table 5 to show the accuracy, precision, recall, and F1-score of each trained classifier for

both validation and test sets.

From Table 5, it can be deduced that KNN and XGBoost classifiers attained the highest

performance in making predictions regarding all the matrix evaluation results. These

models achieved an accuracy, precision, recall, and F1-score of slightly over 98.0%, with

KNN surpassing XGBoost’s performance with only 0.08% difference. Random Forest on

the other hand reached an adequate results of over 91.0% in all four performance metrics

for both validation and test set. Relatively, Decision Tree outperformed LightGBM classifier

by merely 0.03% across all the evaluation metrics on both sets. Logistic Regression classifier

on the contrary, performed the worst out of the six with performance below than 50% in all

matrices and in both sets.

In the machine learning model classification task, the confusion matrix is used as

an evaluation method to evaluate the operational capability of the ML model tuned with

different hyperparameters and feature extractions. This matrix issues an overview of

the model’s classification performance on the test dataset. Figure 5 shows the confusion

matrix for the six classifier models tested in this study. The values 0, 1, and 2 represent the

classification’s stress class or data label. A value of 0 represents data classified as no stress,

a value of 1 as low stress, and a value of 2 as high stress.

From Figure 5a–f, inferences can be made for each classifier models based on the gen-

erated confusion matrix from sklearn_metrics function. Out of 483,734 test data across all

three classes, KNN classifier model could provide 475,485 TPs and misclassified only 1.71%

(8249) of the total test data. For XGBoost classifier, it was evident that 158,092 values were

correctly predicted for the high stress class, whereas Random Forest classifier accurately

predicted 148,002 at most for the same class. Respectively, Decision Tree and LightGBM

classifiers precisely predicted 140,623 and 133,381 values to their actual class (Class 2).

Contrariwise, Logistic Regression misclassified around 59.8% (96,428 FNs) values of the no

stress class and predicted only 64,816 values correctly.
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Table 5. Comparison of machine learning model performance.

Validation Set Test Set

Classifier Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

KNN 0.9831 0.9831 0.9831 0.9831 0.9829 0.9829 0.9829 0.9829
XGBoost 0.9823 0.9823 0.9823 0.9823 0.9821 0.9821 0.9821 0.9821
Random Forest 0.9125 0.9133 0.9125 0.9126 0.9128 0.9136 0.9128 0.9129
Decision Tree 0.8708 0.8710 0.8708 0.8709 0.8702 0.8704 0.8702 0.8703
LightGBM 0.8439 0.8444 0.8439 0.8440 0.8443 0.8448 0.8443 0.8444
Logistic Regression 0.4586 0.4595 0.4586 0.4575 0.4599 0.4609 0.4599 0.4588

Figure 5. Confusion matrix of the six classifier models: (a) K-Nearest Neighbour. (b) XGBoost.

(c) Random Forest. (d) Decision Tree. (e) LightGBM. (f) Logistic Regression.

4.2. Deployment Classification Models Comparative Analysis

In the proposed workflow, the best ML model was identified and selected to be

deployed in an edge device comprising of Raspberry Pi RP2040 as the main microcontroller

unit. Since it has limited computational capacities, the model must be translated from

Python into simple if-else C/C++ codes using the micromlgen porting library. Larger

models can be accommodated in C/C++ implementations, allowing us to achieve greater

accuracy from them [45]. The aim of this study is to find the best performing model with

high accuracy that can adhere to the 2MB flash memory constraints of the Raspberry Pi

RP2040 module. If this limitation is breached, the sketch will fail to compile indicating high

complexity in the code.

Even though an accuracy of 98.2% were achieved during the ML model training,

hyperparameters tuning must be done to generate a proper model that occupies the memory

within the 2MB constraint despite there will be slight decrease in accuracy. In this case,

two models (XGBoost and Random Forest) were selected to undergo hyperparameters
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tuning. The hyperparameters were optimized using a grid search across a range of valid

parameters: maximum depth (3, 5, 7, 15), number of estimators (30, 50, 100), learning rate

for XGBoost (0.1, 0.3, 0.7), and criterion for Random Forest (entropy, gini), as well as 10-fold

cross-validation for both models to ensure that the model is not overfitting.

Table 6 shows three different hyperparameters settings of XGBoost and Random Forest

respectively along with the accuracy and size of the models. Comparing the three versions

of the XGBoost model, it was evident that by tuning the learning rate to 0.7 and the number

of estimators to 50, the size of the model was significantly reduced by 200 MB. However,

the maximum depth also played a big role in determining the size of the model as the

difference between depth of 7 and 5 were profoundly visible in XGBoost(2) and XGBoost(3).

Even though the accuracy of the model decreased by 6.5%, resulting in only 86.0% of

accuracy, the size of the XGBoost(3) model is the one that fit into memory constraints of the

Raspberry Pi with 1.12 MB in size.

Random Forest models with different hyperparameter settings were also tested for

comparison. It is apparent that by changing the criterion from ’gini’ to ’entropy’ and

lowering the maximum depth and number of estimators from 15 and 100 to 7 and 50,

respectively, the model size was notably reduced by 200 MB, down to 1.5 MB. However,

this adjustment also led to a decrease in accuracy for Random Forest(3) model, which

dropped from over 90% to only 73.2%.

Therefore, to fulfill the objective of this study to find the best performing model with

high accuracy that could fit in the 2MB memory constraints of the RP2040, the XGBoost(3)

model with 86.0% accuracy and 1.12 MB was specifically chosen to deploy in the edge

device. The individual decision trees from the trained XGBoost(3) model was visualized in

Appendix A. A zoom in on one of the XGBoost(3) branch (or parallel tree) of the Figure A1

in making decision can be referred in Figure A2. XGBoost(3) uses a method that improves

decision trees by focusing on the significance of weights. Before making predictions, each

variable is given a weight. If a variable is incorrectly predicted by the first decision tree, it

gets more weight and is then processed by the next tree. This process shown in Figure A1

uses multiple trees to create a strong and accurate model.

The selected XGBoost(3) model was then translated into C/C++ codes from Python

using the micromlgen porting library. Since XGBoost(3) is a decision tree based model, it was

executed through a sequence of interconnected conditional statements within one predict

function. The data input vector is sent to the predict function in the form of an array of

floating point numbers, and the function infers and returns the outcome as another floating

point number. Figure A3 on Appendix A shows a part of the conditional statements based

decision tree of XGBoost(3).

Table 6. Size of model and its performance comparison when model have different hyperparameter

settings.

Model Hyperparameters Settings Model Accuracy Size of Model

XGBoost(1)
objective ‘multi:softmax’

98.2% 226 MBmax_depth 15
n_estimators 100

XGBoost(2)

objective ‘multi:softmax’

92.5% 4.47 MB
learning_rate 0.7
max_depth 7
n_estimators 50
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Table 6. Cont.

Model Hyperparameters Settings Model Accuracy Size of Model

XGBoost(3)

objective ‘multi:softmax’

86.0% 1.12 MB
learning_rate 0.7
max_depth 5
n_estimators 50

Random Forest(1)
criterion ‘gini’

92.3% 213.7 MBmax_depth 15
n_estimators 100

Random Forest(2)
criterion ‘entropy’

91.4% 241 MBmax_depth 15
n_estimators 100

Random Forest(3)
criterion ‘entropy’

73.2% 1.5 MBmax_depth 7
n_estimators 50

5. Conclusions

This study has successfully developed a machine learning model targeted for wearable

devices using physiological and psychological data to classify stress levels to meet the

growing need for early stress detection in healthcare. The potential of using TinyML for

stress prediction using a wearable device equipped with physiological sensors was also

thoroughly discussed and demonstrated. A stress prediction classifier was trained, tested

and evaluated using an imbalance class nurse dataset that was addressed using the Near

Miss undersampling method. For classification purposes, the stress levels were categorized

into three classes: no stress, low stress, and high stress. The dataset was trained using

six different ML classifiers but only KNN and XGBoost that performed well in terms of

all performance metrics, reaching above 98.0%. Since KNN model is not supported by

the existing micromlgen porting library, XGBoost and Random Forest were chosen, then

empirically trained and tested for deployment after tuning their hyperparameters.

The proposed system, built on a Raspberry Pi RP2040, effectively addresses the chal-

lenge of fitting a machine learning model into the microcontroller’s limited memory without

sacrificing the model’s accuracy. The optimized XGBoost(3) model achieved 86.0% of accu-

racy and was successfully deployed on the edge device with only 1.12 MB in size. When

being tested and validated using a separate sub-dataset, the classification of stress on the

edge device exudes a satisfactory prediction results. This approach paves the way for

real-time stress monitoring and can be applied to other real-time applications and analyses

in the future.

There are several improvements, limitations, as well as strong points that can be

highlighted in this study. First, this system can be further improved with a more robust

real-time validation system that includes an immediate reading from the calibrated health

sensors as they give an immediate feedback for the stress prediction. Apart from that,

this work could also be enhanced by extracting more features from the current dataset or

include features from another dataset to achieve an unbiased performance score while still

satisfying the strong constraint of the memory limit of a tiny and low cost microcontroller.

Lastly, future research is needed to explore different combinations of resampling techniques

for an imbalanced dataset and classification models because the effectiveness of some

resampling technique may relatively be contingent to the classifier. On a positive note, the

results from this study could inform researchers on how to deploy ML model of their choice

using a porting library, depending on which microcontroller they are using. Additionally,

the empirical results from the comparison among different ML models’ performance might
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as well guide researchers in choosing the most suitable hyperparameter settings for their

TinyML device.

Overall, the objectives of this study have been propitiously achieved. The research

effectively addressed the key challenges outlined at the beginning, including the devel-

opment of an efficient machine learning model for stress prediction within strict memory

constraints on TinyML device, and ability to deliver an ML model that met performance

criteria, such as high accuracy but in compact size. These achievements not only fulfill

the study’s primary goals but also open up avenues for further research and real-time

applications in stress prediction and monitoring.
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Abbreviations

The following abbreviations are used in this manuscript:

BVP Blood Volume Pulse

CLAS Cognitive Load, Affect and Stress

CNN Convolutional Neural Networks

DT Decision Tree

ECG Electrocardiogram

EDA Electrodermal Activity

EMG Electromyogram

FN False Negative

FP False Positive

GSR Galvanic Skin Response

HR Heart Rate

IPCA Incremental Principal Component Analysis

LR Logistic Regression

ML Machine Learning

TEMP Temperature

PPG Photoplethysmogram

RF Random Forest

SEL Stacking Ensemble Learning
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SF Spreading Factor

SVM Support Vector Machine

TN True Negative

TP True Positive

WESAD Wearable Stress and Affect Detection

Appendix A

Figure A1. XGBoost(3) individual decision trees.
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Figure A2. A zoom in of Figure A1 on one of the XGBoost branch (or parallel tree) in making decision.

Figure A3. Some part of the conditional statements based decision tree of XGBoost(3) when being

translated into C/C++ code.
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