

NerveNet

Never Die Network In Thailand

Presented By

Kulit Na Nakorn, Ph.D. (kulit.n@chula.ac.th) Faculty of Engineering, Chulalongkorn University

Authors

Assoc. Prof. Kultida Rojviboonchai, Ph.D. (kultida.r@chula.ac.th) Faculty of Engineering, Chulalongkorn University

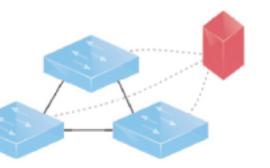
Masugi Inoue

National Institute for Information and Communications Technology (NICT), Japan

Our Research

Vehicular Networks

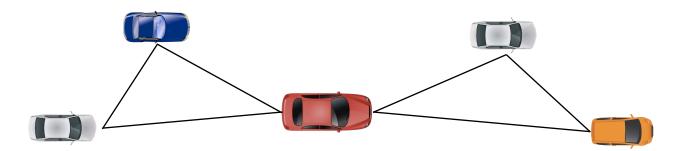
- Intelligent Transportation System
- Reliable Broadcasting Protocol
- Heterogeneous Network



Localization

- Floor and Indoor Localization
- Indoor Navigation System

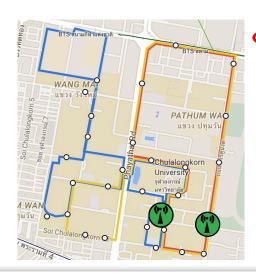
Software Defined Network (SDN)


Vehicular Networks Reliable Broadcasting Protocol

DECA: Density-Aware Reliable Broadcasting Protocol

DECA is designed to be simple and flexible but reliable in vehicular networks. A forwarder is selected by using only density information. (no. 1-hop neighbors)

NoG: Non-geographical Knowledge Reliable Broadcasting Protocol NoG is also designed for vehicular network. It is an improvement of DECA. NoG selects a preferred forwarder using density information and node relationship.


Vehicular Networks Field Test in Chulalongkorn University

Testing Platform on Shuttle Buses in Chulalongkorn University Campus

- Chulalongkorn University campus area ~1.5 km²
- 21 DENSO WSU-5001T Devices (IEEE802.11p)
 - 19 Units are deployed on Chula Shuttle Buses
 - 2 Units are deployed as infrastructures
- Each unit equips with Raspberry Pi and Wi-Fi access point
 - 6 sensors are connected with Rpi :
 GPS/Accelerometer/Gyroscope/Light Sensor/Temperature Sensor/Humidity Sensor
- Use DECA as a protocol
- More than 2 years of testing and still goes on

Supported by

Vehicular Networks Field Test in Highway Area and Urban Area

IEEE802.11p performance testing

- Highway Area
 - Testing Distance 20.7km
 - Speed 60-100 km/h
- Urban Area
 - Testing Distance 4.2km
 - Speed 25-30 km/h
- 4 DENSO WSU-5001T Devices are deploy on 4 cars
- Use DECA as a protocol
- Total testing distance is almost 1000 km.

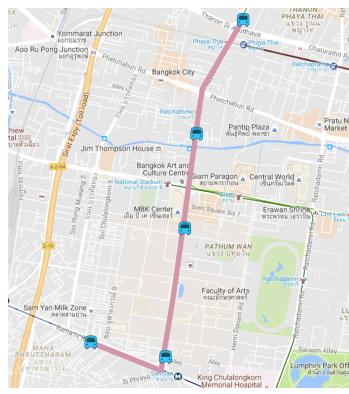
Supported by

Highway Area (20.7km)

Urban Area (4.2km)

Vehicular Networks Field Test on Public Transport in Bangkok

IEEE802.11p performance testing on public transportation in downtown of Bangkok


- 7 DENSO WSU-5001T Devices
 - 5 bus stops on Phaya Thai road that cannot connect to each other.
 - 2 buses in opposite direction (must carry data and deliver to bus stops)
- Distance from the first bus stop to the last bus stop is 3.65km.
- Use **DECA** as a protocol
- New data will be generated every 1 minute and data lifetime is 30 minutes.
- The delivery ratio results are more than 83%

Supported by

— Vehicular Networks Heterogeneous Networks

Currently, we develop our testing platform to be a vehicular cloud system for applications such as monitoring, warning or communicating.

Our middleware will select appropriate network connection for each application.

NerveNet can be a part of our heterogeneous networks in the future as a mesh structure.

Database

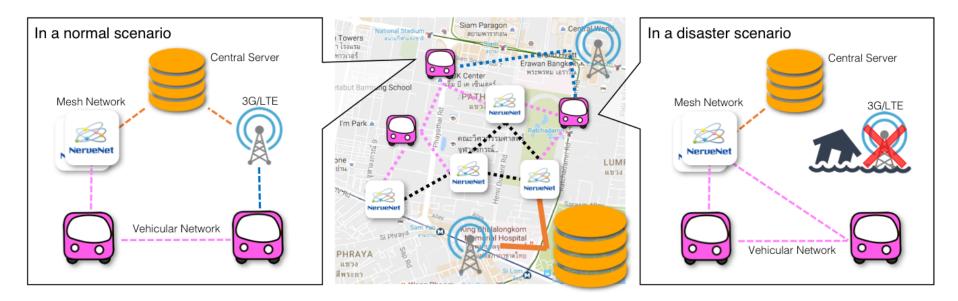
IEEE802.11p via DENSO WSU

DECA/NOG

Wi-Fi via Chula-WiFi Cellular via 3G/LTE Mesh via NerveNet

Future

Current System


Never Die Network in Thailand

In a normal scenario

NerveNet mesh network can be a part of network infrastructures to provide more network capacities and availabilities for IoT devices such as Chula shuttle buses.

In a disaster scenario

Other infrastructures were destroyed, the NerveNet mesh network can serve as the main infrastructure for the IoT devices to communicate to the central server. Therefore, search-and-recue applications or disaster-recovery applications can take benefit from the network.

THANK YOU COMPUTER