Functional Structural Plant Models for Optimal Red:Blue Lighting Ratio as Assimilation Light Source Using Light-Emitting Diode in Indoor Horticulture Application

Ir. Dr. Mohd Rashidi Bin Che Beson, Member (UniMAP, Malaysia):
Prof. Ir. Dr. Syed Alwee Aljunid Bin Syed Junid, Ir. Dr. Norshamsuri Bin Ali@Hasim, Ir. Rosdisham Bin Endut.
Mohammad Abid A., Mohd Aziz R., Nur Shafini G. (MARDI, Malaysia)
Member (UTB, Brunei): Associate Professor Dr Mohammad Rakib Uddin
Current Research on Photonics

Optical CDMA/ Detection Techniques

- C.B.M. Rashidi, Optik, (2014)

FiWi/FSO/RoF

- Junita, M.N, Optik, (2013)
- A.A. Anis, MATEC, (2017)

Amplifier/Spectroscopy

Quantum Computing

Optical Fiber Sensor

- Imanuddin, ICED (2018)

VLC/OFDM

Problem Statement

Artificial lighting employing conventional broad-spectrum sources such as HID. These light sources are inefficient because of their light-to-heat output and the suboptimal light qualities for plant growth.

Current fluorescent lights also incur high energy cost that may include cooling to offset the high heat, radiant output and this makes these lighting unsuitable for cost-effective in large-scale plant production.

Light illumination emissions based on traditional artificial lighting is neither spectrally optimal nor energetically efficient for several photoperiodic plant species especially when lamps are placed near the plants, tissue damage from photo stress is induced.

The objectives to solve the problem:

1. To identify an effect of spectral quality by employing monochromatic or polychromatic LEDs for a variety of plants on a morphological or physiological change in plants.
2. To formulate an optimal red:blue ratio used for plant growth as chlorophyll a and b efficiently absorb blue and red wavelengths.
3. To analyze and validate the modelling of functional structural plant models (FSPM) performance of a new controlled environment agriculture with artificial lighting for indoor horticulture.
Flow Chart of Research Activities

Stage 1
- Spectral quality by employing monochromatic or polychromatic LEDs for a variety of plants on a morphological or physiological change in plants

Stage 2
- Mathematical formulation on optimal red/blue ratio used for plant growth as chlorophyll a and b efficiently absorb blue and red wavelengths

Stage 3
- Modelling of functional structural plant models (FSPM) plant growth

Stage 4
- Performance evaluation of a new controlled environment agriculture

Stage 5
- Proof of concept between final MATLAB model and optical setup with OSRAM-Horticulture Web Tool

A

Satisfactory

END

Troubleshooting and optimization

Final report preparation and project outcome:
Proposed Method:

This methodology is described in FIVE stages as follows:

1. **Stage 1: Literature review**
 - The study is conducted to acquire knowledge on technology and science, agriculture to understand the relationship and to identify limitation.

2. **Stage 2: Mathematical formulation on new chemical reaction-based photon for photosynthesis approach using MATLAB tool**
 - The characteristics of LED, the forward current and junction temperature (T_j) are two key parameters to get accurate (PAR). The optimal ratio between blue and red light is of great relevance in determining the yield of plant growth and crop.

3. **Stage 3: To design an optical model using visible light spectrum for artificial lighting ratio for optimal plant growth.**

4. **Stage 4: To analyze performance of a new controlled environment agriculture**
 - In order to optimize the spectrum for plant growth or algae, light regime should be considered. Light quality, quantity and photoperiod are three key parameters need to be considered for performance analysis based artificial lighting.

5. **Stage 5: Validation process**
 - This validation process is important to ensure that all parameters, characteristics, light setting, and result obtain align with industry specification for plant growth well in horticulture industry.

Mathematical Formulation:

\[
PAR_{blue} = 1.141 + 0.0071 \cdot T_j + 192.7 \cdot I_f - 0.4178 \cdot T_j \cdot I_f - 54.82 \cdot I_f^2 \quad (2)
\]
\[
PAR_{red} = -2.585 + 0.0173 \cdot T_j + 180.7 \cdot I_f - 0.7728 \cdot T_j \cdot I_f - 33.8 \cdot I_f^2 \quad (3)
\]

0.05A $\leq I_f \leq 1$A, 20°C $\leq T_j \leq 90$°C
Horticulture Web Tool as Graphical User Interface (GUI):
Indoor Horticulture (from idea to real implementation)

Tips of Hanging Distance and Lighting Time

<table>
<thead>
<tr>
<th>Stage</th>
<th>On/Off Time 1</th>
<th>On/Off Time 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germination</td>
<td>18/6</td>
<td>18/6</td>
</tr>
<tr>
<td>Vegetative</td>
<td>18/6 or 20/4</td>
<td>18/6 or 20/4</td>
</tr>
<tr>
<td>Flowering</td>
<td>12/12</td>
<td>12/12</td>
</tr>
</tbody>
</table>

PH Value: 6.0-6.5 in soil, 5.7-6.0 in hydro/DWC. Less nutrient less water. More call and mag than usual 75°F-85°F with plenty of airflow to replenish CO2.
Light Response Curve of Butterhead Lettuce Planted Under Combination of 2 Spectrums (R:B & R:B:G)

“Green light is transmitted through a plant’s organs and is utilized in deeper layers of cells. It is also used in the intra-canopy leaves and is more efficient than either blue or red light at driving CO2 fixation for photosynthesis at the abaxial (lower) sides” (Terashima., at al.,2009).
Non-invasive IOT based Mango Sweetness Prediction using NIRS

Description:
- Non-invasive/Non-destructive sampling
- Rapid & time saving for large sample
- Improve accuracy in term of sweetness detection
- Skip conventional chemical analysis
1. **Impact on Economy and Nation**

Economy: Agriculture remains an important sector of Malaysia's economy, contributing 12 percent (12%) to the national GDP and providing employment for 16 percent (16%) of the Malaysia population.

Nation: Aim to produce Horticulture Based on Photonics Expertise in Agricultural Application for the nation

Impact area: Horticulture in Malaysia

Priorities: Horticulture farm in Peninsular Malaysia

Testing site:
- Institute of Sustainable Agrotechnology (INSAT), Padang Besar, Malaysia
- Persiaran MARDI-UPM, 43400, Serdang, Selangor DE, Malaysia
Output/Outcome:

2. Scientifically:
 - The novel of formulation of spectral quality by employing monochromatic or polychromatic LEDs for a variety of plants on a morphological or physiological change in plants.
 - Modelling of functional structural plant models (FSPM) with different wavelengths can assist in identifying an optimal spectrum by reducing the number of experimental treatments to a feasible extent.

3. Potential Commercialization Industries
1. Agricultural commodity plantation (Vertical farming) – Bernas, Malaysia
2. Green house industry – Mardi, Malaysia
3. Raw material fertilization warehouse screening – SME Industry
4. Food Security – Jakim, Malaysia
Collaborators
• MyIPO Copyright Title: "Light Source Based on Artificial Light Spectrum for Indoor Horticulture Application“ Total Number of IP: 1
Conclusion:

- It is very significant in Malaysia as now country are moving towards vertical farming and broad field of plant growth research, with many diverse topics, e.g. How to improve colouration and how to affect biomass production for the use of green plant near future.

- A new modelling of optical design based on spectro spectrum for artificial lighting ratio for identifying optimal ratio of plant growth.

- As our nation is entering the last mile to Vision 2020, agriculture has become one of the component sectors that requires improvement to produce wealth to the nation. In order to realize this vision, the government has put emphasis to the development of agriculture technology via high-impact technology implementation related to IR 4.0 technology.