

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

An Optimized Multi-Task Learning Model for
Disaster Classification and Victim Detection in
Federated Learning Environments
YI JIE WONG1, MAU-LUEN THAM1, BAN-HOE KWAN2, EZRA MORRIS ABRAHAM
GNANAMUTHU1, AND YASUNORI OWADA3
1Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai
Long Campus, Selangor 43000, Malaysia
2Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman,
Sungai Long Campus, Selangor 43000, Malaysia
3Resilient ICT Research Center, National Institute of Information and Communications Technology (NICT), Tokyo, Japan

Corresponding author: Mau-Luen Tham (thamml@utar.edu.my).

This work is the output of the ASEAN IVO (http://www.nict.go.jp/en/asean_ivo/index.html) project titled “Context-Aware Disaster Mitigation using
Mobile Edge Computing and Wireless Mesh Network” and financially supported by NICT (http://www.nict.go.jp/en/index.html).

ABSTRACT Disaster classification and victim detection are two important tasks in enabling efficient
rescue operations. In this paper, we propose a multi-task learning (MTL) model which accomplishes these
two tasks simultaneously. The idea is to attach one pruned head model to another backbone network. We
mathematically pinpoint the optimal branching location and the depth of the pruned head model. Apart
from the decoupled task training capability, the MTL model offers lesser memory requirements (12.8 MB
saving) and better disaster classification accuracy (1-2% gain), while preserving the same detection
performance (0.694 of average precision (AP)), as compared to the traditional method. Such advantages of
flexibility, speed and accuracy facilitate the large-scale deployment of Internet of Things (IoT) applications,
where we explore the potential of federated learning (FL) and active learning (AL). Given the high
ambiguity within disaster images, a modified version of AL-based technique is introduced. For realistic
implementation, production-ready OpenFL and OpenVINO tools are adopted to update the global FL model
and to optimize the trained model, respectively. Experiment results are promising: the FL-based techniques
are comparable to or better than their centralized learning (CL) counterparts. Also, our application
portability is demonstrated via different hardware such as CPU and Raspberry Pi.

INDEX TERMS Disaster Classification, Victim Detection, Convolution Neural Network (CNN), Hard
Parameter Sharing, Representation Similarity Analysis, Multi-Task Learning, Federated Learning,
Uncertainty Sampling, Optimal Branching, OpenVINO

I. INTRODUCTION
Annually, natural disasters inflict damages, monetary costs,
injuries, and deaths. For instance, the 2021 Fukushima
earthquake inflicted 187 casualties, while causing significant
damage across Japan [1]. Given that the first 72 hours after a
disaster are critical for rescuing survivors [2], disaster
detection plays a vital role in facilitating search and rescue
efforts. The successfulness of these operations heavily relies
on the reported activity of disasters and number of victims.

Deep learning (DL) can extract the aforementioned
features through a convolutional neural network (CNN).
Disaster classification task can be readily trained by utilizing

CNN architectures such as VGG16 [3] and MobileNet [4].
Whereas for victim counting, it falls into the class of object
detection task, which can be addressed by the popular CNN
models such as You Only Look Once (YOLO) [5] and
Single-Shot Detector (SSD) [6]. In the literature on disaster
detection, these two tasks are generally studied in isolation.
How to design a joint disaster classification and victim
detection CNN model is a topic worthy of investigation.

Training a disaster detection model in practice presents
another technical hurdle. Existing works commonly assume
that the abundant labelled dataset is available at a centralized
server with high-performance graphical processing units

VOLUME XX, 2017 9

(GPUs) [7]. These assumptions do not hold in a large-scale
disaster monitoring environment, especially with a massive
deployment of relatively low powered Internet of Things
(IoT) devices. Within an IoT, all connected devices are able
to collect and exchange data. However, such flexibility is
accompanied with several challenges such as the scarcity of
labelled dataset, data privacy concerns and prohibitive cost of
transmitting data as training samples. Federated learning (FL)
is an emerging paradigm that can help to build an accurate
global CNN model via a collaborative training among edge
IoT devices, without sharing the confidential and bandwidth-
hungry data.

A few recent works such as [8-9] have demonstrated the
promising performance of disaster classification via FL.
However, training-level evaluation results do not necessarily
translate into good inference performance. For actual model
deployment in production environment, the legitimate judges
of CNN model quality are IoT local devices, serving as
monitoring nodes. Given the heterogeneity of IoT system, the
portability and acceleration of inference process are crucial
towards scalable disaster monitoring frameworks.

In this paper, we optimize the CNN performance at both
training and inference stages. The starting point is the design
of an efficient multi-task learning (MTL) model that
simultaneously performs disaster classification and victim
detection. The training burden is relieved by active learning
(AL), which allows the training algorithm to interactively
query and label informative data from the pool of unlabelled
dataset in each local IoT device.

Once the model is trained, we aim to minimize the
processing time while maximizing classification and
detection performance at the inference phase. Indeed, this
stage must be designed and analyzed correctly in order to
achieve a robust model working in production environment.
To this end, we first accelerate the inference process and port
the optimized model on different Intel platforms via the Intel
OpenVINO toolkit [10]. It is comprehensive toolkit which
fine-tunes and optimizes DL inference performance on target
low-powered devices. Note that the optimized model
facilitates edge computing, which is one of goals of the
ASEAN IVO project titled “Context-Aware Disaster
Mitigation using Mobile Edge Computing and Wireless
Mesh Network”.

Experiment results are encouraging: the FL-based disaster
detection techniques are comparable to or better than their
centralized learning (CL) counterparts. Our application
portability is demonstrated via different hardware such as
CPU and Raspberry Pi. Under the same hardware, the
optimized model achieves 151% of frames per second (FPS)
gain over the original MTL model, while having higher
accuracy and slightly lower AP.

A preliminary version of this article appeared at the IEEE
UEMCON 2021 [12]. While sharing the same basic solution
concept, this version includes a substantial amount of new
material, including a discussion on how optimal branching

can be determined by quantitative analysis instead of
empirical approach, an extended framework with the aid of
AL and FL, and new results for deployment in production
environment. The main contributions of this work are
summarized as follows:
1. Existing studies focus on solving single-task issue of

disaster classification [13,16,27-29] and victim detection
[18–21, 31–33] separately. In contrast, we introduce a
MTL model by attaching a disaster classification head
model to the backbone of a victim detection model.
Different from existing MTL works [34-38], we employ
an efficient mathematical analysis to pinpoint the
optimal branching location and to prune the head model.

2. The framework design decouples training of two tasks.
Solutions can be found in a per-task fashion before
merging them into one unified model, which has smaller
size than a combination of two separate single-task
models. Such lightweight network architecture facilitates
both bandwidth-sensitive FL training and cost-limited
inference. On top of being lightweight, the proposed
model can even produce better classification-related
accuracy while preserving the same detection-related
AP.

3. Most AL methods advocate uncertainty sampling, which
selects the most uncertain samples from the unlabeled
data pool to label [22]. Such strategy is ill-suited for
disaster dataset, where samples from different classes
exhibit high similarity. To enable efficient AL-based FL,
we introduce a simple heuristic by combining both
uncertainty and diversity samplings.

4. The correctness of the post-training optimization results,
especially for model accuracy, is very crucial for actual
deployment. The majority of the research in [23–26]
tries to accelerate the inference process without detailing
the degree of accuracy loss. In contrast, our
measurement outputs are based on open-source and
production-ready frameworks to ensure reusability,
interoperability, and scalability.

The rest of the paper is organized as follows. Section II
describes the related work. Section III presents the proposed
solution. Section IV discusses the experimental setup,
followed by results and discussions. Section VI concludes the
paper and outlines future research directions.

II. RELATED WORK
To give the readers a big picture of the works in this broad
area, this section reviews related works on disaster
classification and victim detection, MTL, FL and AL,
followed by inference optimization.

A. DISASTER CLASSIFICATION & VICTIM DETECTION
The performance of disaster monitoring is tightly connected
with the quality and quantity of dataset. The authors in [15]
collected and filtered tweet messages that people post during
disasters into one dataset, known as Artificial Intelligence for

VOLUME XX, 2017 9

Disaster Response (AIDR). Similar work can be found in
[14], where a large multimodal dataset collected from Twitter
during different natural disasters, known as CrisisMMD was
released. To facilitate benchmarking purpose, the authors in
[16] consolidated the aforementioned datasets into a dataset
called Crisis Image Benchmarks Dataset (CrisisIBD), which
will be served as input dataset in this paper.

Inspired by the richness of dataset information, various
disaster classification methods have been devised. The work
in [28] analyzed the aerial images for flood magnitude
assessment. However, the assessment is limited to only
single disaster type. By focusing on four natural disasters,
the authors in [27] proposed a damage assessment method
which outperforms traditional machine learning approach.
The work in [16] also investigate multi-disaster
classifications by harnessing the power of several existing
CNN models such as VGG16 and MobileNet. However,
these CNNs are directly used without any modification for
further improvement. Differently, we prune the MobileNetv2
network in such a way that it can be attached to another CNN
backbone network and yet performs better than the original
version. Another CNN framework was adopted in [13],
where multiple pre-trained unimodal CNNs that extract
textual and visual features independently are combined and
fed into a final classifier for disaster damage identification.
The results in [13, 16, 27, 28] however, did not discuss the
inference speed aspect, which is critical for real-time disaster
response. Besides that, the aforementioned works focus on
single-task domain.

In [29], the authors presented a cross-domain dataset,
called FloodNet, which incorporates tasks of image
classification, sematic segmentation and visual question
answering. These tasks are accomplished by executing three
separate models. Such approach (hereafter referred to as
conventional approach), however, requires high memory
footprint and computational resources.

Unlike the previous works [13, 15, 27, 29] which focus on
single-task classification, the same authors in [16] extended
their work to a multi-task classification model [17], which
targets on (i) disaster types, (ii) informativeness, (iii)
humanitarian, and (iv) damage severity assessment.
However, the solution is limited to the image-classification
domain, without considering the victim detection.

Another pool of literature is exploring the potential of IoT
technologies in detecting victims. Unmanned aerial vehicle
(UAV) has emerged as one of the effective IoT solutions for
dealing with a broad affected area [30]. In [18], the authors
leveraged a MobileNet-SSD model to detect victims of
natural disaster through Raspberry Pi camera installed on a
drone. The work in [19] investigated similar problem by
considering a thermal camera. Results show that their victim
detection from aerial thermal view can achieve up to AP of
82.49 %. The studies in [20] and [21] shifted their focus from
aerial view to burning building and flood scenes,
respectively. Apart from the aforementioned image-based

victim detection, the authors in [31] proposed an integrated
audio-visual human search system, in order to boost the
system performance. The works in [32], [33] took another
divergent approach by locating mobile terminals based on
radio frequency (RF) signal. However, this method is
effective only when user equipment and victims are in the
proximity of each other. Furthermore, none of the above
works [18–21, 31–33] consider a multitask system that
concurrently strives for two coupled goals.

From the literature survey, it is observed that disaster
classification and victim detection are generally studied in
isolation. In contrast, our work aims to develop a MTL
model which executes these two tasks simultaneously.

B. MULTI-TASK LEARNING (MTL)
MTL is to perform more tasks using one model, without the
need of using a separate model for each task. In the context
of object detection, MTL can be categorized into three types.
In the first category, the number of head models represents
the total tasks needed to perform. If the head models share a
backbone, it is called hard parameter sharing. Whereas for
soft parameter sharing, each task has its own backbone.
Examples of using hard parameter sharing can be found in
[34–35]. In self-driving car application, the work in [34]
added another head model for lane lines detection to the joint
segmentation and detection model. The scheme in [35]
adopted four head models for (i) citrus detection and (ii)
segmentation, as well as (iii) maturity and (iv) quality
classification on the citrus detection. On the other hand, the
authors in [36] resorted to the soft parameter sharing
approach, for achieving joint detection and segmentation.

Secondly, multi-tasking is made possible with minimal
modifications on the original detector model. It was
demonstrated in [37] for the application of joint vehicle
classification and distance estimation. The idea is to make the
distance prediction a classification task and subsequently
merge it with the task of vehicle classification in order to
form a unified task. Thirdly, some models improve their
main tasks based on several auxiliary tasks. For example,
[38] defined three auxiliary tasks, namely (i) closeness
labelling, (ii) multi-object labelling and (iii) foreground
labelling, in order to refine the learning process of the object
detection model.

The successes of the aforementioned MTL solutions are
proven via a centralized data availability. Such assumption
does not hold in a large-scale disaster monitoring scenario.
How effectively MTL can be trained from distributed
datasets at local devices is still largely missing. Also,
majority of these works adopt empirical approach to
determine the best branching settings by performing transfer
learning on different combinations and subsequently
selecting the optimal one. Such approach requires intensive
computation due to the additional training on each
combination to evaluate the transfer learning performance.

VOLUME XX, 2017 9

This paper aims to cast some light on these aspects by
utilizing FL and smarter branching selection strategy.

C. FEDERATED LEARNING (FL) & ACTIVE LEARNING
(AL)
In FL, only the model weights have to be transferred across
the network for aggregation, which is more efficient as
compared to sharing the entire dataset. Such FL benefits are
exploited in a wide variety of applications ranging from
healthcare [39], wireless communications [40], through
vehicular edge computing [41], to manufacturing [42]. In the
context of disaster detection, the work in [9] proposed a FL
and autonomous UAVs for hazardous zone detection. The
CNN-LSTM model weights trained within each UAV are
transmitted to a central server for global model aggregation.
Despite promising results, the FL usage has been limited by
single-task models adopted in these previous works.

The scheme in [8] also considered FL based single-task
disaster classification, with additional concern regarding the
annotation burden for each local training. Armed with AL,
the authors reported that the proposed AL-based FL
framework performs equally well under two strategies
namely uncertainty sampling and query by committee. Our
work distinguishes itself by offering more insights into the
properties of disaster dataset. For dataset samples that are
close to classification boundary, uncertainty sampling may
always choose similar samples without diversity [43].
Furthermore, most of the aforementioned works such as [8–
9] do not use production-ready tools for FL implementation.

D. INFERENCE OPTIMIZATION
Efficient execution of a CNN model is undoubtedly another
important criterion for implementing production-ready DL
solutions. This is especially true for deploying heterogeneous
IoT devices of different hardware constraints. How to enable
fast inference on low-powered embedded platforms remains
an open research question. Intel OpenVINO toolkit emerges
as an extremely useful tool of choice since it optimizes DL
models across Intel hardware while minimizing the inference
time [11]. A large portion of the studies discussed above
quite commonly neglect this design aspect and demonstrates
their DL solutions based on expensive GPU resources.

By recognizing the importance of inference optimization, a
plethora of works utilized OpenVINO on various use cases
such as license plate detection [23], person re-identification
system [24] and face recognition [25]. Work that explicitly
optimizes OpenVINO model for disaster scenario was found
in [26]. However, all these research tries to accelerate the
inference process without detailing the degree of accuracy
loss. An allied question is: How much accuracy and AP we
need to sacrifice while pursuing faster inference? In contrast,
our measurement outputs are based on OpenVINO DL
Workbench [11], which is an open-source and production-
ready framework to ensure reusability, interoperability, and
scalability.

III. PROPOSED APPROACH
Fig. 1 displays the overview of the proposed disaster
detection framework. In the federated network, there are 𝐾
devices communicating with a server. Each IoT device can
locally train its model for Task 1: Disaster Classification or
Task 2: Victim Detection, or in combination of both. Note
that even within the same device, both tasks are trained
individually for the following rationales. Firstly, it allows
fine-tuning of specific tasks, depending on target
performance requirements. Secondly, not all clients have
gathered both task information. Thirdly, some devices are not
powerful enough to train both tasks.

The overall procedures are illustrated in Fig. 1(b). Firstly,
the local training for Task 1 or/and Task 2 are executed.
Secondly, the local model weights are transmitted to the

(a)

(b)

FIGURE 1. Overview of the proposed disaster detection framework.
(a) Communications between server and devices. (b) Interaction
from training to inference.

VOLUME XX, 2017 9

server for model aggregation. Thirdly, the global fine-tuned
model is sent back to each device for another round of
training. This process repeats until convergence. Fourthly,
both individual trained models are merged into a single
unified model. Fifthly, the multi-task model is optimized in a
device agnostic manner. Lastly, the optimized model is
executed on device 𝑘 by setting the inference engine mode
compatible with their own hardware.

A. MTL MODEL
Since hard parameter sharing is the most frequently used
approach in MTL [45], our design follows this setting by
branching a disaster classification head model from the
backbone of a selected object detection model.

In this work, we select MobileNetv2 [46] and YOLOv3 as
the model for Task 1 and Task 2, respectively. MobileNetv2
is one of the lightweight network architectures, which is
suitable for real-time disaster classification. Whereas for

YOLOv3, it is one of the most widely used object detector
[47], thanks to its superiority in achieving the trade-off
between accuracy and speed [48]. Note that our proposed
branching strategy is not limited to only these two CNNs and
can be expectably applicable to other CNNs such as
YOLOv7 [49].

Fig. 2 (a) depicts the “conventional approach” where the
same image serves as an input to two separate models, which
undergo transfer learning for accomplishing Task 1 and Task
2, respectively. Specifically, Task 1 adopts a pre-trained
model on ImageNet and finetunes all 𝑁௢௥௜ blocks for disaster
classification. This original model is denoted as 𝜃1,௢௥௜, which
consists of one convolution layer, seven inverted residual
blocks (IRBs), one pointwise convolution layer followed by a
global average pooling, and one more pointwise convolution
layer for the classification.

On the other hand, Task 2 initially extracts all weights
learned from the MS-COCO pre-trained model. Then, the

(a)

(b)

(c)

FIGURE 2. Network architecture of Task 1 and Task 2. (a) Conventional model. (b) Task 1 splitting. (c) Proposed model.

Convolution (Conv)
Pointwise (PW)

Trainable Blocks

Frozen Blocks

VOLUME XX, 2017 9

backbone known as DarkNet-53 and Feature Pyramid
Network (FPN) are kept frozen. FPN takes three feature
maps from the 82nd, 94th and 106th of DarkNet-53 as its
inputs. Correspondingly, there are three head models which
detect object at different scales. To detect victim, the
weights belonging to three head models are fine-tuned. Given
that an object detector will likely predict more than one
bounding box for the same object, we apply the non-
maximum suppression (NMS) technique for removing
redundant object. Here, we denote Task 2 model as 𝜃2.

To merge these two CNNs into one unified model, the
following questions arise. Questions: How do we split 𝜃1,௢௥௜
into one base model 𝜃1,௕௔௦௘ and one head model 𝜃1,௛௘௔ௗ , as
shown in Fig. 2 (b)? Where do we attach 𝜃ଵ,௛௘௔ௗ among three
different depth of the shared DarkNet-53? Fig. 2 (c) provides
the answers, where the optimized head model 𝜃ଵ,௛௘௔ௗ

∗
consists of two IRBs, followed by the remaining blocks, and
𝜃ଵ,௛௘௔ௗ

∗ is branched from the 94th location. Another question
arising is: How do we decide these optimal settings with
quantitative analysis? Hence, it is important to investigate the
relationship between Task 1 and Task 2.

The study in [50] demonstrates that representation
similarity analysis (RSA) can measure the task similarity
using the learned representations, without any subsequent
training. Their results show that a higher score of task
similarity leads to better model selection strategy for transfer
learning. Here, we adopt the RSA to decide the optimal
branching location. We enumerate the steps to compute the
similarity score for a different merging combinations of Task
1 and Task 2 in the following paragraph.

Firstly, a subset of images is randomly selected from
CrisisIBD as the conditions for dissimilarity computation.
We can acquire the representation or feature map of each
image at any layers of a CNN by forward passing the image
until the target layer. The dissimilarity score of a pair of
images can be expressed as 1 − 𝜌, where 𝜌 is the Pearson’s
correlation coefficient of the feature maps of the two images.
𝜌 is formulated as follows:

𝜌(𝒙, 𝒚) =
∑ (𝑥௜ − 𝑥̅)(𝑦௜ − 𝑦ത)ே

௜ୀ1

ඥ∑ (𝑥௜ − 𝑥̅)2ே
௜ୀ1 ඥ∑ (𝑦௜ − 𝑦ത)2ே

௜ୀ1

 (1)

where 𝑁 represents the feature map size. Then, a
representation dissimilarity matrix (RDM) is populated by
the dissimilarity scores for all pair of images in the subset.
This process is repeated six times for different CNN
frameworks, as shown in Fig. 3 (a).

Secondly, the similarity between the RDMs of two CNNs
can be computed with the Spearman’s correlation (𝑟௦)
between the upper or lower triangular part of the RDMs, as
shown in (2):

𝑟௦ = 1 −
6 ∑ 𝑑௜

ெ
௜ୀ1

𝑀(𝑀2 − 1)
 (2)

where 𝑑௜ denotes the difference between the ranks of 𝑖௧௛
elements of the lower triangular part of the two RDMs in Fig.
3 (b), and 𝑀 is the number of elements in the lower
triangular part of the RDM. This procedure is repeated nine
times for various combinations of two CNNs, as shown in
Fig. 3 (b). Intuitively, the combination pair with the highest
𝑟௦ yield the best multitasking performance, which will be
validated in Section IV.

The unified model in Fig. 2 (c) deserves further
elaboration. The frozen model weights from 𝜃2,௕௔௖௞௕௢௡௘ and
𝜃2,ி௉ே allows the training process of Task 1 𝜃ଵ,௛௘௔ௗ

∗ and Task
2 𝜃2,ℎ௘௔ௗ to be decoupled. This indicates that solutions can be
found in a per-task fashion before merging them into one
unified model. Such lightweight network architecture
facilitates both bandwidth-sensitive FL training and cost-
limited inference. On top of being lightweight, the proposed
model can even produce better classification-related accuracy
while preserving the same detection-related AP. This is
accomplished by transferring feature representations from
denser network 𝜃2,௕௔௖௞௕௢௡௘ to learn Task 1.

Overall, the benefits of using the model are flexibility,
speed, and accuracy. The training procedures of Task 1 and
Task 2 are described in Algorithm 1 and Algorithm 2,
respectively.

 ACTIVE LEARNING (AL)
There exist two pool-based strategies, namely uncertainty
sampling and query by committee. We choose the former
since it is one of the most popular approaches [22] and
consumes lesser computational power [51]. The category of

*Repeat with all combinations of 𝜃1,௕௔௦௘ (where 𝑁ூோ஻=1, 2, 3) and
𝜃2,௕௔௖௞௕௢௡௘ (82nd, 94th and 106th Layer)

*CNN will be 𝜃1,௕௔௦௘ (where 𝑁ூோ஻=1, 2, 3) and 𝜃2,௕௔௖௞௕௢௡௘ (82nd, 94th
and 106th Layer)

(a)

(b)

FIGURE 3. RSA approach to quantify the similarity score between
Task 1 and Task 2. (a) RDM computation. (b) 𝒓𝒔 computation.

VOLUME XX, 2017 9

Algorithm 1 Training Strategy for Task 1

Input: Labeled Dataset, ℒ
 Number of Epoch, 𝒩௧ଵ

Learning rate, 𝛼

Task 1 Head Model, 𝜃ଵ,௛௘௔ௗ
∗

Categorical Cross-Entropy Loss Function, ℐ஼஼ா

Output: Trained Task 1 Head Model, 𝜃ଵ,௛௘௔ௗ
∗

01 ℒ is divided into mini batches of data, 𝑙
02 Obtain and freeze pre-trained 𝜃2,௕௔௖௞௕௢௡௘ (until 94th Layer)
03 // Train Task 1 Head Model, 𝜃ଵ,௛௘௔ௗ

∗
04 for 𝑡 = 1: 𝒩௧ଵ do
05 for 𝑙 in ℒ do
06 // Use 𝜃2,௕௔௖௞௕௢௡௘ to extract 𝑙’s feature maps, 𝒇
07 𝑓 ← 𝜃2,௕௔௖௞௕௢௡௘(𝑙)
08 // Compute gradients and update model
09 ∇ ← ഃ

ഃೣ
 ℐ஼஼ா(𝜃ଵ,௛௘௔ௗ

∗ , 𝑓)

10 𝜃ଵ,௛௘௔ௗ
∗ ௧ାଵ ← 𝜃ଵ,௛௘௔ௗ

∗ ௧ − 𝛼 ∇
11 end for
12 end for

Algorithm 2 Training Strategy for Task 2

Input: Labeled Dataset, ℒ
 Number of Epoch, 𝒩௧ଶ

Mini Batch Gradient Accumulation Round, ℬ

Learning Rate, 𝛼

Task 2 Head Model, 𝜃2,head

YOLOv3 Loss Function, ℐ௒ଷ
Output: Trained Task 2 Head Model, 𝜃2,ℎ௘௔ௗ

01 ℒ is divided into mini batches of data, 𝑙
02 Obtain and freeze both pre-trained 𝜃2,௕௔௖௞௕௢௡௘ and 𝜃2,ி௉ே
03 // Train Task 2 Head Model, 𝜃2,ℎ௘௔ௗ
04 for 𝑡 = 1: 𝒩௧ଶ do
05 Counter: 𝑐 ← 0
06 Accumulated Gradients: ∇௔௖௖௨௠௨௟௔௧௘ ← 0
07 for 𝑙 in ℒ do
08 // Compute & accumulate gradients
09 ∇ ← ഃ

ഃೣ
 ℐ௒ଷ(𝜃ଶ,௛௘௔ௗ

௧ , 𝑙)

10 ∇௔௖௖௨௠௨௟௔௧௘ ← ∇௔௖௖௨௠௨௟௔௧௘ + ∇
11 // Update model
12 if 𝑐 mod ℬ = 0 then
13 ∇௔௖௖௨௠௨௟௔௧௘ ← ∇௔௖௖௨௠௨௟௔௧௘ / ℬ
14 𝜃ଶ,௛௘௔ௗ

௧ାଵ ← 𝜃ଶ,௛௘௔ௗ
௧ − 𝛼 ∇

15 ∇௔௖௖௨௠௨௟௔௧௘ ← 0
16 end if
17 // Increase 𝛼 after 10 epochs of warm up training
18 if 𝑡 mod 10 = 0 then
19 𝛼 ← 𝛼 × 10
20 end if
21 end for
22 end for

uncertainty sampling can be further divided into three
subgroups namely least confidence, entropy sampling, and

margin sampling. Here, we focus on only the third technique
since these three methods perform equally well in a disaster
classification scenario [8].

Fig. 4 visualizes the t-SNE results for the test images from
CrisisIBD [16]. From the figure, it is observed that most of
the images, regardless of the classes, are clustered near to the
centre. These samples, labelled as “hard”, would always be
prioritized by margin sampling in terms of selection. Table 1
illustrates some sample images from the CrisisIBD [16] with
high ambiguity.

A better strategy is to incorporate diversity into the query
process [43]. To this end, we design a simple heuristic by
combining both uncertainty and diversity samplings. Apart
from the hard samples, our modified sampling process as
shown in Algorithm 3 considers two additional categories
namely “easy” and “moderately-hard (mod)”. These samples
represent those that are far away from the centre and have
clear classification boundaries. Specifically, for each round
of query selection in Phase 2, all available unlabelled
samples are ranked in terms of uncertainty and sorted in a
descending order. Hard, moderately-hard and easy samples
are then picked according to the lines 9, 10, 11 of Algorithm
3. These selected samples are removed from the unlabelled
dataset pool and the process repeats until the communication
epoch 𝒩௔ is reached.

TABLE 1. Examples of high-similarity images in CrisisIBD [16].
Sample Image Predicted Class Actual Class

Flood

Hurricane

Not Disaster

Hurricane

FIGURE 4. t-SNE results for the test dataset. Bold color
corresponds to 33 % of hard samples.

VOLUME XX, 2017 9

Algorithm 3 The Proposed Active Learning Process

Input: Initial Model, 𝜃ଵ,௛௘௔ௗ
∗

 Number of Active Learning Epoch, 𝒩௔
 Small Labeled Dataset (seed), ℒ଴
 Unlabeled Dataset, 𝒰௧

 Uncertainty Function, ℱ௨௡௖
 Query Batch Size, ൫𝒦௘௔௦௬ , 𝒦௠௢ௗ , 𝒦௛௔௥ௗ ൯
Output: Labeled Dataset, ℒ௧

01 Each Client executes:
02 // Phase 1: Warm Up the Model
03 𝜃ଵ,௛௘௔ௗ

∗଴ ← train 𝜃ଵ,௛௘௔ௗ
∗ for 5 epochs using ℒ଴

04 for 𝑡 = 1: 𝒩௔ do
05 // Phase 2: Query Selection
06 𝒬 ← ℱ௨௡௖(𝒰௧, 𝜃௧); Rank the uncertainty of each data

point in 𝒰௧
07 Arrange 𝒬 in descending order based on uncertainty
08 𝒬௧

௘௔௦௬
 ← ൛𝒰௧ ,௜ | 𝔦 ∈ argbtmK൫𝒬, 𝒦௘௔௦௬ ൯ൟ; Pick the

 unc
 last corresponding 𝒦௘௔௦௬ samples from 𝒬

09 𝒬௧
௠௢ௗ ← ൛𝒰௧ ,௜ | 𝔦 ∈ argmidK(𝒬, 𝒦௠௢ௗ)}; Pick the

 unc
 corresponding (1 + |𝒰௧| 2⁄ 𝑡𝑜 𝒦௠௢ௗ + |𝒰௧| 2⁄)

samples from 𝒬
10 𝒬௧

௛௔௥ௗ ← ൛𝒰௧ ,௜ | 𝔦 ∈ argtopK(𝒬, 𝒦௛௔௥ௗ)}; Pick the
 unc

 first corresponding 𝒦௛௔௥ௗ samples from 𝒬

11 𝒬௧ = 𝒬௧
௘௔௦௬

 ∪ 𝒬௧
௠௢ௗ ∪ 𝒬௧

௛௔௥ௗ
12 // Phase 3: Sample Annotation
13 𝒴௧ ← annotate 𝒬௧
14 ℒ௧ ← ℒ௧ିଵ ∪ { (𝒳, 𝒴) | 𝒳 ∈ 𝒬௧ , 𝒴 ∈ 𝒴௧}
15 // Phase 4: Update Model
16 𝜃ଵ,௛௘௔ௗ

∗௧ାଵ ← fine-tuning 𝜃ଵ,௛௘௔ௗ
∗௧ using ℒ௧

17 𝒰௧ାଵ ← 𝒰௧ \ 𝒬௧
18 if |𝒰௧ାଵ| = 0
19 break
20 end for
21 return ℒ௧ାଵ

 FEDERATED LEARNING (FL)

To minimize the effort of implementation, we choose the
simple Federated Averaging (FedAvg) algorithm as in [52-
54]. FedAvg combines the model parameters collected from
each local device via averaging. Algorithm 4 describes the
overall process. Firstly, a FL server is initialized with a
global model. Secondly, it will share the global copy with a
group of selected clients participating in the local model
training. Thirdly, the trained model parameters are collected
and averaged at the FL server. Lastly, this process repeats
until it reaches the threshold of 𝒩௘. The entire FL framework
is implemented using the OpenFL [55]. It is a Python 3 open-
source FL framework that supports many real world
applications such as medical imaging [39, 56-57].

D. INFERENCE OPTIMIZATION
Once the individual head models for Task 1 and Task 2 are
trained, they are merged into a unified model. Given the
heterogeneity of IoT devices, it is favourable to accelerate the

Algorithm 4 Train Task 1 or Task 2 using Federated Learning

Input: Initial Model, 𝜃ଵ,௛௘௔ௗ
∗ or 𝜃2,head

 Number of Communication Round, 𝒩௖
 Total Number of Clients, 𝐾
Output: Trained Model, 𝜃ଵ,௛௘௔ௗ

∗ or 𝜃2,௛௘௔ௗ

1 If Task 1, set 𝜃 = 𝜃ଵ,௛௘௔ௗ
∗ ; else, set 𝜃 = 𝜃2,௛௘௔ௗ

2 Server executes:
3 Initialize a global model, 𝜃௚௟௢௕௔௟
4 for 𝑡 = 1: 𝒩௖ do
5 Operations on the server side:
6 // Select a fraction of Clients, C
7 m ← max (𝐶 ∙ 𝐾 , 1)
8 𝑆௧ ← {random set of m clients}
9 // Train each selected client, 𝜃௞
10 for each client 𝑘 ∈ 𝑆௧ in parallel do
11 𝜃𝒕ା𝟏

𝒈𝒍𝒐𝒃𝒂𝒍
 ← ClientUpdate(𝜃𝒕

𝒈𝒍𝒐𝒃𝒂𝒍)
12 end for
13 𝜃𝒕ା𝟏

𝒈𝒍𝒐𝒃𝒂𝒍
 ← ∑௞ ୀ ଵ

௄ ೙ೖ
೙

𝜃௧ାଵ
௞

14 end for
15 ClientUpdate(𝜃௚௟௢௕௔௟):
16 // Train the client model using local dataset
17 𝜃 ← 𝜃௚௟௢௕௔௟
18 update 𝜃 using any preferred strategy
19 return 𝜃

inference in such a way that the same optimized model can
be executed across different hardware. OpenVINO is a
promising candidate to meet these portability requirements. It
calibrates the model for execution on several hardware types
including Intel CPU, Intel Integrated GPU, Intel FPGA, and
Intel Movidius Neural Compute Stick 2 (NCS2). Overall,
OpenVINO involves two major steps as follows.
1. Model Optimizer: It converts the trained model into an

OpenVINO format, known as intermediate
representation (IR). IR consists of two files (*.xml +
*.bin). The former and the latter contain the network
topology and model weights, respectively.

2. Inference Engine: It is a C++ library with a set of C++
classes to infer input data (images) and obtain a result.
The C++ library provides an API to read the IR, set the
input and output formats, and execute the model on
target devices.

IV. EXPERIMENT, RESULTS AND DISCUSSIONS
 DATASETS

The datasets used in Task 1 and Task 2 are listed in Tables 2
and 3, respectively. All images are extracted from CrisisIBD
[16]. For Task 1 dataset, those events related to road
accident, plane crash, explosion, and war are classified as
“other disaster”. For Task 2 dataset, additional annotation
efforts are required since there is a lack of publicly available
victim detection datasets. Specifically, we identify those
images containing victims from [16] and generate bounding
boxes via a combination of automatic [58] and manual
annotations.

VOLUME XX, 2017 9

TABLE 2. Data split for disaster types.

Class Label Train Validation Test

Fire 1270 121 280

Hurricane 1444 175 352

Flood 2336 266 599

Earthquake 2058 207 404

Landslide 940 123 268

Other Disaster 1132 143 302

Not Disaster 3666 435 990

Total 12846 1470 3195

TABLE 3. Data split for victim detection.

Class Labels Count

Train 5994

Validation 634

Test 1448

Total 8076

 EXPERIMENTAL SETUP

Fig. 5 depicts the experiment with following setup.
1. Training phase: A maximum of three FL clients (𝐾=3)

can be instantiated by OpenFL. A workstation consists
of an Intel core i7 processor with 2.30GHz, 64 GB of
DDR4 RAM memory and NVIDIA RTX 2070 SUPER.
The workstation hosts two FL clients whereas the
remaining client is executed at an Intel NUC with an
Intel core i7 processor with 4.70GHz and 64 GB of
DDR4 RAM memory. This yields a sum of one
Tensorflow GPU and two Tensorflow CPU operators.
During the FL training, these two hardware are
connected via Wi-Fi and model weights are shared for

each communication epoch. Clearly, the local training
completion time differs for each FL client and model
aggregation can be initiated once all participating FL
clients finish their tasks. Without loss of generality, we
made the following assumptions:

 All FL clients always participate in each round
 All FL clients train Task 1 and Task 2
 The workstation concurrently acts as the FL

server
2. Inference phase: We calibrate the model to a variety of

IR format, ranging from single-precision floating-point
(FP32), through half-precision floating-point (FP16) to
unsigned integer value (INT8). Obviously, the lower the
quantization bits, the higher the throughput capacity.
These models are benchmarked over three hardware:
CPU 1, NCS2 and Raspberry Pi 4 (RP4) via OpenVINO
DL Workbench. NCS2 is a dedicated hardware
accelerator for inference with ultra-low power
consumption. The great power savings, however, is
accompanied by two limitations: (i) it can run only FP16
mode and (ii) it does not support the NMS feature.

 TRAINING STAGE

𝜃ଵ,௛௘௔ௗ
∗ is trained using the Cosine Decay strategy. Different

from Task 2, we train FL model of Task 1 in combination
with offline AL technique, as proposed in Algorithm 3. This
implies that the FL phase will only commence after the
completion of AL at each client. We do not use the online
AL mode in order to bypass the time-consuming round-by-
round sample selection in FL [8].

For Task 2, we adopt the gradient accumulation strategy to
facilitate the training at edge level. The hyperparameter for
both Task 1 and Task 2 are tabulated in Table 4.

TABLE 4. Important hyperparameter for Task 1 and Task 2.

Parameters Values

Task
1

Max AL round, 𝒩௔ 32

AL Seed, |ℒ଴| 700

Size of AL Labeled Dataset in Each Client, |ℒ௧| 2716

Query Batch Size, (𝒦௘௔௦௬, 𝒦௠௢ௗ , 𝒦௛௔௥ௗ) 21

Number of epoch, 𝒩௧ଵ 40

Number of Communication Round, 𝒩௖ 40

Batch Size 32

Initial Learning Rate, 𝛼 5 x 10-3

Size of Local Dataset in Each Client (2-Client Setup) 6423

Size of Local Dataset in Each Client (3-Client Setup) 4282

Task
2

Number of epochs, 𝒩௧ଶ 20

Mini Batch Size 8

Mini Batch Gradient Accumulation Round, ℬ 8

Initial Learning Rate, 𝛼 5 x 10-3

Size of Local Dataset in Each Client (2-Client Setup) 2997

Size of Local Dataset in Each Client (3-Client Setup) 1998 FIGURE 5. Experimental setup.

VOLUME XX, 2017 9

 RESULTS AND DISCUSSIONS

1) RSA SIMILARITY
Firstly, we validate our hypothesis that the optimized head
model 𝜃ଵ,௛௘௔

∗ consists of two IRBs, followed by the
remaining blocks, and its optimal branching location is at the
94th location of 𝜃2,backbone. To do so, we select 200 images
from CrisisIBD and use equation (2) to compute the 𝑟௦ for
each possible combination of 𝜃1,௕௔௦௘ (where 𝑁ூோ஻ = 1, 2, 3)
and 𝜃2,௕௔௖௞௕௢௡௘ (82nd, 94th and 106th Layer), as shown in
Table 5. It can be observed that all the 𝑟௦ score at 82nd layer
has the lowest value. This makes sense as the feature maps
produced at this level are considerably too low-level. On the
other hand, the highest score can be identified at 94th layer,
instead of 106th layer. One possible reason is that the feature
maps generated by this deepest layer are highly specialized
for victim detection.

These explanations are justified by using Grad-CAM [59]
to visualize the activation maps as shown in Fig. 6. We limit
our analysis to 𝑁ூோ஻ = 2 since this configuration gives the
best result in Table 5. A direct inspection suggests that
among all three layers, 𝜃2,backbone (94th Layer) at Fig. 6 (b)
yields the highest similarity with 𝜃1,௛௘௔ௗ (𝑁ூோ஻ = 2) at Fig. 6
(d). This indicates that 𝜃2,backbone at this layer still preserves
the meaningful semantic background knowledge needed for
disaster scene classification.

To prove that higher task similarity leads to better
branching selection, we first attach 𝜃1,௛௘௔ௗ to 𝜃2,backbone for a
total of nine combinations as shown in Table 5 and retrain
𝜃1,௛௘௔ௗ for Task 1. Then, the computed F1 score is displayed
in Table 6. It can be observed that the performance of F1
score is generally consistent with that of 𝑟௦, where both
optimal points lie at the same location.

TABLE 5. Similarity (𝒓𝒔) between each 𝜽1,𝒃𝒂𝒔𝒆 and 𝜽2,backbone.

 𝜽2,backbone
𝜽1,𝒃𝒂𝒔𝒆

82nd Layer 94th Layer 106th Layer

𝑵𝑰𝑹𝑩 = 1 0.195 0.343 0.393

𝑵𝑰𝑹𝑩 = 2 0.366 0.490 0.487

𝑵𝑰𝑹𝑩 = 3 0.338 0.408 0.422

TABLE 6. F1 Score of 𝜽1,𝒉𝒆𝒂𝒅 on top of each 𝜽2,backbone after retraining.

 𝜽2,backbone
𝜽1,𝒉𝒆𝒂𝒅

82nd Layer 94th Layer 106th Layer

𝑵𝑰𝑹𝑩 = 1 0.755 0.761 0.764
𝑵𝑰𝑹𝑩 = 2 0.769 0.792 0.782
𝑵𝑰𝑹𝑩 = 3 0.759 0.765 0.759

2) TASK 1: DISASTER CLASSIFICATION
 The performance of the CL-trained 𝜃ଵ,௛௘௔ௗ

∗ is compared to
the benchmarks provided by [17]. Note that their reported
results stem from several single-task CNN models that are
trained exclusively for Task 1. Also, for fair comparisons, we
retrain the entire MobileNetv2 in our environment (labelled
as MobileNetv2*). Table 7 compares the performance from
four perspectives.

 Among all models, the most closely related model is the
MobileNetv2* since 𝜃ଵ,௛௘௔ௗ

∗ inherits similar network
structure. Interestingly, the ability to distinguish disasters on
top of a victim-detection model does not jeopardize the
classification performance. In fact, it achieves 1-2% of
performance gain, in terms of accuracy, precision, recall and
F1 score. The rationale behind this is that 𝜃2,௕௔௖௞௕௢௡௘ has a
denser network than MobileNetv2* to learn Task 1.
Quantitatively speaking, the total parameters of 𝜃2,௕௔௖௞௕௢௡௘ is
6.6x more than that of 𝜃1,௕௔௦௘ (𝑁ூோ஻ = 2).

A direct comparison from Table 7 suggests that
EfficientNetb1 [60] will be always the best choice. However,
another important factor in model selection is the
computational efficiency, which is ignored in [17]. In fact,
MobileNetv2 has less than doubled the parameters required
by EfficientNetb1 [61]. Nevertheless, there exist some state-
of-the-art models with high accuracy and yet fast processing
such as CustomNet [62]. We argue that our proposed
branching strategy is also applicable to these models,
provided that the task similarity between two merging
candidate networks is good enough. Overall, our solution is
considered robust given that it can handle two tasks.

So far, 𝜃ଵ,௛௘௔ௗ
∗ as tabulated in Table 7 is a CL-trained

model. In Table 8, we will use this as the benchmark
(labelled as “CL (all data)”) with respect to the FL and AL-
FL performance. We also consider two scenarios (“CL (1/2
data)” and “CL (1/3 data)”) where IoT devices individually
train the model without sharing their model weights. As
expected, the individual training of each device yields
inferior results due to limited dataset.

 (a) (b)

FIGURE 6. Grad-CAM visualization of activation maps. (a)
𝜽2,backbone (82nd Layer). (b) 𝜽2,backbone (94th Layer). (c) 𝜽2,backbone (106th
Layer). (d) 𝜽1,𝒃𝒂𝒔𝒆 (𝑵𝑰𝑹𝑩 = 2).

 (c) (d)

VOLUME XX, 2017 9

TABLE 7. CL-Trained head model (𝜽𝟏,𝒉𝒆𝒂𝒅
∗) Vs. Benchmarks in [17].

MobileNetv2* was Retrained in the Same Environment as 𝜽𝟏,𝒉𝒆𝒂𝒅
∗ to

Ensure Fair Comparisons.

Backbone Accuracy Precision Recall F1 Score

ResNet101 0.819 0.815 0.816 0.816

AlexNet 0.755 0.753 0.753 0.753

VGG16 0.803 0.797 0.798 0.798

SqueezeNet 0.726 0.719 0.717 0.717

InceptionNetv2 0.808 0.801 0.802 0.802

MobileNetv2 0.793 0.788 0.793 0.789

EfficientNetb1 0.838 0.834 0.838 0.835

MobileNetv2* 0.776 0.787 0.776 0.781

𝜃ଵ,௛௘௔ௗ
∗ 0.792 0.796 0.792 0.792

TABLE 8. Comparison between the disaster classification head models
trained via CL, FL and AL-FL. Methods labelled with an Asterisk (*) are
trained using 3 FL Clients.

Method Accuracy Precision Recall F1 Score

CL (all data) 0.792 0.796 0.792 0.792

CL (1/2 data) 0.754 0.757 0.752 0.743

CL (1/3 data) 0.732 0.739 0.727 0.721

FL (2 clients) 0.800 0.805 0.794 0.793

FL (3 clients) 0.796 0.800 0.790 0.788

 AL-FL
 hard*

0.719 0.720 0.720 0.720

AL-FL
mod/hard*

0.722 0.731 0.715 0.740

AL-FL
easy/mod/hard*

0.767 0.774 0.759 0.758

Surprisingly, it can be noticed that FL outperforms CL in

both 2-client and 3-client settings. For instance, FL with 2-
client and 3-client outperform CL by 1.64% and 1.04% in F1
score, respectively. This is a very encouraging result from a
system design point of view and such performance trend is
aligned with the findings in [44, 63].

Among all the AL-FL variations, the best performer is the
proposed heuristic, which picks a combination of easy, mod,
and hard samples. It approximates the CL model within
4.31% F1 score gap while using 36.57% less labelled dataset.

3) TASK 2: VICTIM DETECTION
Since 𝜃2,head is trained with a custom dataset, there is no
benchmark to compare the results with. We consider similar
settings as in Task 1, except for the AL approach. Table 9
compares the results of 𝜃2,head trained on each setting. This
time, it can be observed that the FL approach is weaker than
the CL method for Task 2. The performance loss is likely
attributed to the scarcity of training dataset [8]. In FL mode,
Task 2 clients has a maximum of 2997 images, which is less
than half of the 6423 images used in Task 1. Nevertheless,

TABLE 9. Average precision (AP) comparison for Task 2.

Method Average Precision

CL (all data) 0.694

CL (1/2 data) 0.467

CL (1/3 data) 0.400

FL (2 clients) 0.590

FL (3 clients) 0.542

the FL approaches outperform their distributed learning
counterparts by up to 35%. These results again highlight the
importance of sharing model weights for better performance.

4) BENEFITS OF USING PROPOSED MODEL IN FL
ENVIRONMENT
Table 10 compares the actual parameter size between
conventional and proposed methods. It can be observed that
the proposed model saves about 11.3% of the transmission
payload for every communication round 𝒩௖ . To train a
specific task in an FL environment, the total size of model
weights 𝑤1 2⁄ needed to exchange with a FL server can be
calculated as follows:

𝑤1 2⁄ = 𝒩௖ × 𝐾 × 𝑠1 2⁄ (3)

5) INFERENCE RESULTS VIA DL WORKBENCH
To ensure reusability, interoperability, and scalability, we
measure the inference results via the DL workbench tool.
Table 11 compares the speed in terms of FPS among three
hardware as mentioned Fig. 5.

As expected, the highest inference speed is attained by the
powerful GPU mode. A direct deployment in the CPU 1 will
drastically drop from 20.31 to 6.44 FPS. This unveils the
need of using OpenVINO models. Under the same hardware
and data format, the optimized model achieves 43% of FPS
gain. The speed can be further boosted to 151 % by using
INT8 IR model. For NCS2, the performance tradeoff is
visible through the reported FPS value of 2.50. The FPS

TABLE 10. Network model size comparison.

Conventional

Approach

Proposed Method

Network Structure

𝜃1,௢௥௜ + 𝜃2 𝜃ଵ,௛௘௔ௗ
∗ + 𝜃2

Full Model Size (MB) 27.6 + 247 = 274.6 14.8 + 247 = 261.8

Trainable Network 𝜃1,௢௥௜ + 𝜃2,ℎ𝑒𝑎𝑑 𝜃ଵ,௛௘௔ௗ
∗ + 𝜃2,ℎ𝑒𝑎𝑑

Task 1 Trainable Model
Size, 𝑠ଵ (MB)

27.6 14.8

Task 2 Trainable Model
Size, 𝑠ଶ (MB)

84.0 84.0

VOLUME XX, 2017 9

stemming from plugging the NCS2 into less powerful RP4
further drops to 1.8. However, this is acceptable since NCS2
consumes power of only 1.5 W [64], which is important in
establishing sustainable IoT solutions. To reveal more
insight, we also convert the models in conventional approach
into two separate OpenVINO models. A sequential execution
of these two models on RP4 results in another FPS slowdown
of 28%.

At this point, it is important to determine how much is the
accuracy and precision drop. Since the inference model is
multi-tasking, Table 12 compares both classification
(accuracy) and detection (AP) related metrics. At first glance,
all the accuracy accrued by OpenVINO models surprisingly
outperforms the original TensorFlow model. An in-depth
analyse reveals that such trend conforms to the OpenVINO
mechanism. In fact, the OpenVINO model optimizer uses
20% of the test dataset during the model calibration. Similar
performance trend can be observed for AP of Task 2.
Overall, the MTL model performance is retained after
optimization and such encouraging results will promote the
IoT deployment. Note that we wrote a custom Python 3 NMS
code to complement the OpenVINO IR Format without
NMS.

 Fig. 7 shows some examples of inference output of the
multi-task model.

TABLE 11. Model inference speed (FPS) before and after model
optimization via OpenVINO toolkit.

Hardware Framework Data Format FPS

GPU TensorFlow GPU FP32 20.31

CPU1 TensorFlow CPU FP32 6.55

CPU1
OpenVINO IR

Format
FP16 9.37

NCS2 on CPU1
OpenVINO IR
Format without

NMS
FP16 2.50

NCS2 on RP4
OpenVINO IR
Format without

NMS
FP16 1.80

NCS2 on RP4
(Conventional

Approach)

OpenVINO IR
Format without

NMS
FP16 1.52

CPU1
OpenVINO IR

Format
INT8 16.46

TABLE 12. Model accuracy and AP before and after model optimization
via OpenVINO toolkit.

Framework Data Format Accuracy AP

TensorFlow
(GPU/CPU1)

FP32 0.792 0.694

OpenVINO IR Format FP16 0.793 0.696
OpenVINO IR Format
without NMS + custom

NMS
FP16 0.793 0.696

OpenVINO IR Format INT8 0.796 0.680

V. CONCLUSION
In this paper, we have devised a MTL model that performs
joint disaster classification and victim detection. Our two
merging CNN networks are MobileNetv2 and YOLOv3,
which can be trained separately. Through rigorous
mathematical analysis, we proved that optimal branching
location and the number of IRBs are 94th layer and two,
respectively. As compared to the conventional approach, the
proposed model has lesser memory requirements and better
classification-related results, while preserving the same
detection-related performance. The first advantage would be
very useful in IoT environment, where the data (e.g., network
weights) are exchanged. We showed that AL and FL can
complement each other to bring positive impact to the IoT
scenario, where massive data is generated within different
devices and requires exhaustive human annotation efforts. As
a proof of concept, we implemented our solution onto
different hardware by utilizing several open-source and
production-ready tools. Even for the low-cost and low-
powered Raspberry Pi 4, the proposed method can still reach
up to 1.8 FPS, which is 28% faster than the conventional
method.

Three potential directions have been identified as our
future works. Firstly, the communication between each FL
client and server is based on Wi-Fi technology, which has
transmission distance limitation. An alternative of long-
distance wireless technology such as LoRa and NB-IOT can
be considered. Secondly, the existing Wi-Fi implementation
operates in star topology, which is vulnerable to disaster

(a)

(b)
 FIGURE 7. Inference output of the multi-task model at different

area. (a) Flood. (b) Earthquake. The joint disaster classification and
victim count prediction are labeled at the top left corner of the input
images.

VOLUME XX, 2017 9

damage. Therefore, we need to explore a disaster-resilient
mesh network. Thirdly, the FL approach always requires all
clients to train their own models for every communication
round. In practice, some devices may have limited
computational capacity, scarce dataset and poor channel
conditions. Therefore, we need to select a subset of FL
clients in each round more efficiently.

ACKNOWLEDGMENT
This work is the output of the ASEAN IVO
(http://www.nict.go.jp/en/asean_ivo/index.html) project titled
“Context-Aware Disaster Mitigation using Mobile Edge
Computing and Wireless Mesh Network” and financially
supported by NICT (http://www.nict.go.jp/en/index.html).

REFERENCES
[1] S. Evans, “Claims paid for Japan’s M7 quake in Feb 2021 nearing

$900m,” Artemis.bm, 2021. https://www.artemis.bm/news/claims-
paid-for-japans-m7-quake-in-feb-2021-nearing-900m/ (accessed Oct.
14, 2021).

[2] United Nations Office for the Coordination of Humanitarian Affair,
“Five essentials for the first 72 hours of disaster response,” OCHA,
2017. https://www.unocha.org/story/five-essentials-first-72-hours-
disaster-response (accessed Aug. 20, 2021).

[3] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” Sep. 2014, doi:
10.48550/arxiv.1409.1556.

[4] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” Apr. 2017, Accessed:
Aug. 22, 2021. [Online]. Available: https://arxiv.org/abs/1704.04861.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” Jun. 2015, Accessed:
Aug. 16, 2021. [Online]. Available: https://arxiv.org/abs/1506.02640.

[6] W. Liu et al., “SSD: Single Shot MultiBox Detector,” in European
Conf. on Computer Vis., 2016, pp. 21–37, doi: 10.1007/978-3-319-
46448-0_2.

[7] A. Saeed, F. D. Salim, T. Ozcelebi, and J. Lukkien, “Federated Self-
Supervised Learning of Multisensor Representations for Embedded
Intelligence,” IEEE Internet Things J., vol. 8, no. 2, pp. 1030–1040,
Jan. 2021, doi: 10.1109/JIOT.2020.3009358.

[8] L. Ahmed, K. Ahmad, N. Said, B. Qolomany, J. Qadir, and A. Al-
Fuqaha, “Active Learning Based Federated Learning for Waste and
Natural Disaster Image Classification,” IEEE Access, vol. 8, pp.
208518–208531, 2020, doi: 10.1109/ACCESS.2020.3038676.

[9] P. Chhikara, R. Tekchandani, N. Kumar, M. Guizani, and M. M.
Hassan, “Federated Learning and Autonomous UAVs for Hazardous
Zone Detection and AQI Prediction in IoT Environment,” IEEE
Internet Things J., vol. 8, no. 20, pp. 15456–15467, Oct. 2021, doi:
10.1109/JIOT.2021.3074523.

[10] Intel, “Intel® Distribution of OpenVINOTM Toolkit,” intel.com.
https://www.intel.com/content/www/us/en/developer/tools/openvino-
toolkit/overview.html (accessed Mar. 15, 2022).

[11] A. Demidovskij et al., “OpenVINO Deep Learning Workbench: A
Platform for Model Optimization, Analysis and Deployment,” Proc.
- Int. Conf. Tools with Artif. Intell. ICTAI, vol. 2020-November, pp.
661–668, Nov. 2020, doi: 10.1109/ICTAI50040.2020.00106.

[12] M.-L. Tham, Y. J. Wong, B. H. Kwan, Y. Owada, M. M. Sein, and
Y. C. Chang, “Joint Disaster Classification and Victim Detection
using Multi-Task Learning,” in 2021 IEEE 12th Annu. Ubiquitous
Comput., Electron. Mobile Commun. Conf. (UEMCON), 2021, pp.
407–412, doi: 10.1109/UEMCON53757.2021.9666576.

[13] H. Mouzannar, Y. Rizk, and M. Awad, “Damage Identification in
Social Media Posts Using Multimodal Deep Learning,” Proc. Int.
ISCRAM Conf., vol. 2018-May, no. May, pp. 529–543, 2018.

[14] F. Alam, F. Ofli, and M. Imran, “CrisisMMD: Multimodal twitter
datasets from natural disasters,” in 12th Int. AAAI Conf. on Web and
Social Media, ICWSM 2018, 2018, pp. 465–473, [Online]. Available:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85050637466&partnerID=40&md5=0fb528332fb3182d641214df5e8
54665.

[15] M. Imran, C. Castillo, J. Lucas, P. Meier, and S. Vieweg, “AIDR:
Artificial Intelligence for Disaster Response,” in Proc. 23rd Int.
Conf. on World Wide Web, 2014, pp. 159–162, doi:
10.1145/2567948.2577034.

[16] [F. Alam, F. Ofli, M. Imran, T. Alam, and U. Qazi, “Deep Learning
Benchmarks and Datasets for Social Media Image Classification for
Disaster Response,” in 2020 IEEE/ACM Int. Conf. on Advances in
Social Netw. Analysis and Mining (ASONAM), 2020, pp. 151–158,
doi: 10.1109/ASONAM49781.2020.9381294.

[17] F. Alam, T. Alam, F. Ofli, and M. Imran, “Social Media Images
Classification Models for Real-time Disaster Response,” CoRR, vol.
abs/2104.0, 2021, [Online]. Available:
https://arxiv.org/abs/2104.04184.

[18] D. R. Hartawan, T. W. Purboyo, and C. Setianingsih, “Disaster
victims detection system using convolutional neural network (CNN)
method,” Proc. - 2019 IEEE Int. Conf. Ind. 4.0, Artif. Intell.
Commun. Technol. IAICT 2019, pp. 105–111, Jul. 2019, doi:
10.1109/ICIAICT.2019.8784782.

[19] M. I. Perdana, A. Risnumawan, and I. A. Sulistijono, “Automatic
Aerial Victim Detection on Low-Cost Thermal Camera Using
Convolutional Neural Network,” 2020 Int. Symp. Community-Centric
Syst. CcS 2020, Sep. 2020, doi: 10.1109/CCS49175.2020.9231433.

[20] F. B. Jaradat and D. Valles, “A Victims Detection Approach for
Burning Building Sites Using Convolutional Neural Networks,”
2020 10th Annu. Comput. Commun. Work. Conf. CCWC 2020, pp.
280–286, Jan. 2020, doi: 10.1109/CCWC47524.2020.9031275.

[21] Naveen K, Lokesh Kumar N, Kumaresh PM, Mallikarjun SC, and
Prachetha K, “Early Flood Detection and Disaster Victim Detection,”
Int. J. Sci. Technol. Eng., vol. 7, no. 1, pp. 11–17, Aug. 2020,
Accessed: Jul. 05, 2022. [Online]. Available:
http://ijste.org/Article.php?manuscript=IJSTEV7I1003.

[22] V. L. Nguyen, M. H. Shaker, and E. Hüllermeier, “How to measure
uncertainty in uncertainty sampling for active learning,” Mach.
Learn., vol. 111, no. 1, pp. 89–122, Jan. 2022, doi: 10.1007/S10994-
021-06003-9/FIGURES/13.

[23] M. L. Tham and W. K. Tan, “IoT Based License Plate Recognition
System Using Deep Learning and OpenVINO,” ACM Int. Conf.
Proceeding Ser., pp. 7–14, Oct. 2021, doi:
10.1145/3502814.3502816.

[24] E. Izutov, “Fast and Accurate Person Re-Identification with RMNet,”
CoRR, vol. abs/1812.0, 2018, [Online]. Available:
http://arxiv.org/abs/1812.02465.

[25] D. Brown, “Mobile Attendance based on Face Detection and
Recognition using OpenVINO,” Proc. - Int. Conf. Artif. Intell. Smart
Syst. ICAIS 2021, pp. 1152–1157, Mar. 2021, doi:
10.1109/ICAIS50930.2021.9395836.

[26] S. Bernabe, C. Gonzalez, A. Fernandez, and U. Bhangale,
“Portability and Acceleration of Deep Learning Inferences to Detect
Rapid Earthquake Damage from VHR Remote Sensing Images
Using Intel OpenVINO Toolkit,” IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens., vol. 14, pp. 6906–6915, 2021, doi:
10.1109/JSTARS.2021.3075961.

[27] D. T. Nguyen, F. Ofli, M. Imran, and P. Mitra, “Damage Assessment
from Social Media Imagery Data During Disasters,” in 2017
IEEE/ACM Int. Conf. on Advances in Social Netw. Analysis and
Mining (ASONAM), 2017, pp. 569–576.

[28] A. Sharma and U. Verma, “Flood Magnitude Assessment from UAV
Aerial Videos Based on Image Segmentation and Similarity,” IEEE
Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2021-
December, pp. 476–481, 2021, doi:
10.1109/TENCON54134.2021.9707250.

[29] M. Rahnemoonfar, T. Chowdhury, A. Sarkar, D. Varshney, M. Yari,
and R. R. Murphy, “FloodNet: A High Resolution Aerial Imagery
Dataset for Post Flood Scene Understanding,” IEEE Access, vol. 9,
pp. 89644–89654, 2021, doi: 10.1109/ACCESS.2021.3090981.

VOLUME XX, 2017 9

[30] M. Hong and R. Akerkar, “Victim detection platform in IoT
paradigm,” Concurr. Comput. Pract. Exp., vol. 33, no. 3, pp. 1–14,
Feb. 2021, doi: 10.1002/CPE.5254.

[31] Y. Yamazaki, C. Premachandra, and C. J. Perea, “Audio-Processing-
Based Human Detection at Disaster Sites with Unmanned Aerial
Vehicle,” IEEE Access, vol. 8, pp. 101398–101405, 2020, doi:
10.1109/ACCESS.2020.2998776.

[32] R. Avanzato and F. Beritelli, “A Smart UAV-Femtocell Data
Sensing System for Post-Earthquake Localization of People,” IEEE
Access, vol. 8, pp. 30262–30270, 2020, doi:
10.1109/ACCESS.2020.2972699.

[33] C. Dorn, A. Depold, F. Lurz, S. Erhardt, and A. Hagelauer, “UAV-
based Localization of Mobile Phones for Search and Rescue
Applications,” in IEEE Annu. Conf. on Wireless and Microw.
Technol. (WAMICON), 2022, pp. 1–4, Jun. 2022, doi:
10.1109/WAMICON53991.2022.9786189.

[34] Y. Qian, J. M. Dolan, and M. Yang, “DLT-Net: Joint Detection of
Drivable Areas, Lane Lines, and Traffic Objects,” IEEE Trans.
Intell. Transp. Syst., vol. 21, no. 11, pp. 4670–4679, 2020, doi:
10.1109/TITS.2019.2943777.

[35] C. Wen et al., “Multi-scene citrus detection based on multi-task deep
learning network,” in 2020 IEEE Int. Conf. on Systems, Man, and
Cybern. (SMC), 2020, pp. 912–919, doi:
10.1109/SMC42975.2020.9282909.

[36] W. Zhang, K. Wang, Y. Wang, L. Yan, and F.-Y. Wang, “A loss-
balanced multi-task model for simultaneous detection and
segmentation,” Neurocomputing, vol. 428, pp. 65–78, 2021, doi:
https://doi.org/10.1016/j.neucom.2020.11.024.

[37] Y. Chen, D. Zhao, L. Lv, and Q. Zhang, “Multi-task learning for
dangerous object detection in autonomous driving,” Inf. Sci. (Ny).,
vol. 432, pp. 559–571, 2018, doi:
https://doi.org/10.1016/j.ins.2017.08.035.

[38] W. Lee, J. Na, and G. Kim, “Multi-Task Self-Supervised Object
Detection via Recycling of Bounding Box Annotations,” in 2019
IEEE/CVF Conf. on Computer Vis. and Pattern Recog. (CVPR),
2019, pp. 4979–4988, doi: 10.1109/CVPR.2019.00512.

[39] E. Isik-Polat, G. Polat, A. Kocyigit, and A. Temizel, “Evaluation and
Analysis of Different Aggregation and Hyperparameter Selection
Methods for Federated Brain Tumor Segmentation,” Feb. 2022, doi:
10.48550/arxiv.2202.08261.

[40] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, “Federated Learning: Strategies for Improving
Communication Efficiency,” Oct. 2016, doi:
10.48550/arxiv.1610.05492.

[41] H. Xiao, J. Zhao, Q. Pei, J. Feng, L. Liu, and W. Shi, “Vehicle
Selection and Resource Optimization for Federated Learning in
Vehicular Edge Computing,” IEEE Trans. Intell. Transp. Syst., 2021,
doi: 10.1109/TITS.2021.3099597.

[42] L. U. Khan, M. Alsenwi, I. Yaqoob, M. Imran, Z. Han, and C. S.
Hong, “Resource optimized federated learning-enabled cognitive
internet of things for smart industries,” IEEE Access, vol. 8, pp.
168854–168864, 2020, doi: 10.1109/ACCESS.2020.3023940.

[43] G. Wang, J. N. Hwang, C. Rose, and F. Wallace, “Uncertainty
sampling based active learning with diversity constraint by sparse
selection,” 2017 IEEE 19th Int. Work. Multimed. Signal Process.
MMSP 2017, vol. 2017-January, pp. 1–6, Nov. 2017, doi:
10.1109/MMSP.2017.8122269.

[44] Z. Xiong et al., “Facing small and biased data dilemma in drug
discovery with federated learning,” bioRxiv, p. 2020.03.19.998898,
Jan. 2020, doi: 10.1101/2020.03.19.998898.

[45] S. Ruder, “An Overview of Multi-Task Learning in Deep Neural
Networks,” CoRR, vol. abs/1706.0, 2017, [Online]. Available:
http://arxiv.org/abs/1706.05098.

[46] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in 2018
IEEE/CVF Conf. on Computer Vis. and Pattern Recog., 2018, pp.
4510–4520, doi: 10.1109/CVPR.2018.00474.

[47] K. Cai, X. Miao, W. Wang, H. Pang, Y. Liu, and J. Song, “A
modified YOLOv3 model for fish detection based on MobileNetv1
as backbone,” Aquac. Eng., vol. 91, p. 102117, 2020, doi:
https://doi.org/10.1016/j.aquaeng.2020.102117.

[48] J. A. Kim, J. Y. Sung, and S. H. Park, “Comparison of Faster-RCNN,
YOLO, and SSD for Real-Time Vehicle Type Recognition,” 2020
IEEE Int. Conf. Consum. Electron. - Asia, ICCE-Asia 2020, Nov.
2020, doi: 10.1109/ICCE-ASIA49877.2020.9277040.

[49] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7:
Trainable bag-of-freebies sets new state-of-the-art for real-time
object detectors,” Jul. 2022, doi: 10.48550/arxiv.2207.02696.

[50] K. Dwivedi and G. Roig, “Representation similarity analysis for
efficient task taxonomy & transfer learning,” Proc. IEEE Comput.
Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp.
12379–12388, Jun. 2019, doi: 10.1109/CVPR.2019.01267.

[51] N. Grimova and M. Macas, “Query-By-Committee Framework Used
for Semi-Automatic Sleep Stages Classification,” Proc. 2019, Vol.
31, Page 80, vol. 31, no. 1, p. 80, Nov. 2019, doi:
10.3390/PROCEEDINGS2019031080.

[52] S. Wang et al., “Adaptive Federated Learning in Resource
Constrained Edge Computing Systems,” IEEE J. Sel. Areas
Commun., vol. 37, no. 6, pp. 1205–1221, Jun. 2019, doi:
10.1109/JSAC.2019.2904348.

[53] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra,
“Federated Learning with Non-IID Data,” Jun. 2018, doi:
10.48550/arxiv.1806.00582.

[54] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V.
Smith, “Federated Optimization in Heterogeneous Networks,” Dec.
2018, doi: 10.48550/arxiv.1812.06127.

[55] G. A. Reina et al., “OpenFL: An open-source framework for
Federated Learning,” CoRR, vol. abs/2105.0, 2021, [Online].
Available: https://arxiv.org/abs/2105.06413.

[56] M. J. Sheller, G. A. Reina, B. Edwards, J. Martin, and S. Bakas,
“Multi-institutional deep learning modeling without sharing patient
data: A feasibility study on brain tumor segmentation,” Lect. Notes
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 11383 LNCS, pp. 92–104, 2019, doi:
10.1007/978-3-030-11723-8_9.

[57] M. J. Sheller et al., “Federated learning in medicine: facilitating
multi-institutional collaborations without sharing patient data,” Sci.
Reports 2020 101, vol. 10, no. 1, pp. 1–12, Jul. 2020, doi:
10.1038/s41598-020-69250-1.

[58] M. Hamzah, “Auto-Annotate: Automatically annotate your entire
image directory by a single command,” GitHub repository. Github,
2020, [Online]. Available: https://github.com/mdhmz1/Auto-
Annotate.

[59] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual Explanations from Deep Networks via
Gradient-Based Localization,” Proc. IEEE Int. Conf. Comput. Vis.,
vol. 2017-October, pp. 618–626, Dec. 2017, doi:
10.1109/ICCV.2017.74.

[60] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” 36th Int. Conf. Mach. Learn.
ICML 2019, vol. 2019-June, pp. 10691–10700, May 2019, doi:
10.48550/arxiv.1905.11946.

[61] R. Chaganti, V. Ravi, and T. D. Pham, “Image-based malware
representation approach with EfficientNet convolutional neural
networks for effective malware classification,” J. Inf. Secur. Appl.,
vol. 69, p. 103306, Sep. 2022, doi: 10.1016/J.JISA.2022.103306.

[62] A. S. Winoto, M. Kristianus, and C. Premachandra, “Small and Slim
Deep Convolutional Neural Network for Mobile Device,” IEEE
Access, vol. 8, pp. 125210–125222, 2020, doi:
10.1109/ACCESS.2020.3005161.

[63] M. Asad, A. Moustafa, and T. Ito, "Federated Learning Versus
Classical Machine Learning: A Convergence Comparison," Jul.
2021, doi: 10.48550/arxiv.2107.10976.

[64] L. Libutti, F. Igual, L. Piñuel, L. C. De Giusti, and M. Naiouf,
“Benchmarking Performance and Power of USB Accelerators for
Inference with MLPerf,” in Proc. 2nd Workshop on Accelerated
Mach. Learning (AccML), pp. 1–15, 2020.

VOLUME XX, 2017 9

YI JIE WONG received the B.Eng. degree
(Hons.) in biomedical engineering from the
Universiti Tunku Abdul Rahman, Sungai Long,
Malaysia, in 2022. He is currently pursuing the
Ph.D. degree in digital technology with
specialization of reinforcement learning-based
federated learning with Universiti Tunku Abdul
Rahman. His research interests include the
Internet of Things (IoT), machine learning,
federated learning, deep reinforcement learning,
and resource allocation optimization.

MAU-LUEN THAM received his Bachelor of
Engineering and Doctor of Philosophy in the
field of Telecommunication Engineering from
University of Malaya. He is currently an
Assistant Professor with Universiti Tunku Abdul
Rahman. His research interests include IoT,
machine learning/deep learning/deep
reinforcement learning and beyond-5G
communications. He has been a principal
investigator (PI) and co-investigator of more than
15 research and development projects. This

includes 5 international grants, two of which are simultaneously led by
him as the PI/Co-PI under the support of ASEAN IVO and British
Council. He has published 2 IEEE Transactions papers as a principal
author.

BAN-HOE KWAN has obtained his degree for
Bachelor of Engineering (Electrical), Master of
Engineering Science and PhD in Engineering
from University of Malaya (UM). He is currently
working at Universiti Tunku Abdul Rahman
(UTAR) as an Assistant Professor. His research
interests include image processing, artificial
intelligence, medical signal processing, Internet
of Things and robotics.

MORRIS EZRA received his B. Eng degree
from Bharathiar University, India, his M.E
degree from Anna University, India and his Ph.D
degree from Multimedia University, Malaysia.
He joined Karunya Institute of Technology as a
lecturer in 1993, before moving to Malaysia in
1998. In 2008 he joined as assistant professor
with University Tunku Abdul Rahman (UTAR),
Kuala Lumpur Malaysia and became an associate
professor in 2014. His research area includes
digital signal processing, wireless adhoc

networks, optimization using PSO, GA/IGA and mobile communication.
He has published over 40 papers in international journals and conferences.

YASUNORI OWADA (Member, IEEE)
received the Ph.D. degree from Niigata
University. He is currently a Senior Researcher
with the Resilient ICT Research Center, National
Institute of Information and Communications
Technology (NICT). He has been engaged in the
research and development of resilient, distributed
wireless, and mobile access network system
called NerveNet at NICT, since 2010. He was
previously the President of Space-time
Engineering Japan Inc., from 2008 to 2010, and

an Assistant Professor with Niigata University, from 2007 to 2008. He was
awarded with Prizes for Science and Technology, FY2019 the
Commendation for Science and Technology by the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan.

