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ABSTRACT Disaster classification and victim detection are two important tasks in enabling efficient 
rescue operations. In this paper, we propose a multi-task learning (MTL) model which accomplishes these 
two tasks simultaneously. The idea is to attach one pruned head model to another backbone network. We 
mathematically pinpoint the optimal branching location and the depth of the pruned head model. Apart 
from the decoupled task training capability, the MTL model offers lesser memory requirements (12.8 MB 
saving) and better disaster classification accuracy (1-2% gain), while preserving the same detection 
performance (0.694 of average precision (AP)), as compared to the traditional method. Such advantages of 
flexibility, speed and accuracy facilitate the large-scale deployment of Internet of Things (IoT) applications, 
where we explore the potential of federated learning (FL) and active learning (AL). Given the high 
ambiguity within disaster images, a modified version of AL-based technique is introduced. For realistic 
implementation, production-ready OpenFL and OpenVINO tools are adopted to update the global FL model 
and to optimize the trained model, respectively. Experiment results are promising: the FL-based techniques 
are comparable to or better than their centralized learning (CL) counterparts. Also, our application 
portability is demonstrated via different hardware such as CPU and Raspberry Pi. 

INDEX TERMS Disaster Classification, Victim Detection, Convolution Neural Network (CNN), Hard 
Parameter Sharing, Representation Similarity Analysis, Multi-Task Learning, Federated Learning, 
Uncertainty Sampling, Optimal Branching, OpenVINO

I. INTRODUCTION 
Annually, natural disasters inflict damages, monetary costs, 
injuries, and deaths. For instance, the 2021 Fukushima 
earthquake inflicted 187 casualties, while causing significant 
damage across Japan [1]. Given that the first 72 hours after a 
disaster are critical for rescuing survivors [2], disaster 
detection plays a vital role in facilitating search and rescue 
efforts. The successfulness of these operations heavily relies 
on the reported activity of disasters and number of victims. 

Deep learning (DL) can extract the aforementioned 
features through a convolutional neural network (CNN). 
Disaster classification task can be readily trained by utilizing 

CNN architectures such as VGG16 [3] and MobileNet [4]. 
Whereas for victim counting, it falls into the class of object 
detection task, which can be addressed by the popular CNN 
models such as You Only Look Once (YOLO) [5] and 
Single-Shot Detector (SSD) [6]. In the literature on disaster 
detection, these two tasks are generally studied in isolation. 
How to design a joint disaster classification and victim 
detection CNN model is a topic worthy of investigation. 

Training a disaster detection model in practice presents 
another technical hurdle. Existing works commonly assume 
that the abundant labelled dataset is available at a centralized 
server with high-performance graphical processing units 



 

VOLUME XX, 2017 9 

(GPUs) [7]. These assumptions do not hold in a large-scale 
disaster monitoring environment, especially with a massive 
deployment of relatively low powered Internet of Things 
(IoT) devices. Within an IoT, all connected devices are able 
to collect and exchange data. However, such flexibility is 
accompanied with several challenges such as the scarcity of 
labelled dataset, data privacy concerns and prohibitive cost of 
transmitting data as training samples. Federated learning (FL) 
is an emerging paradigm that can help to build an accurate 
global CNN model via a collaborative training among edge 
IoT devices, without sharing the confidential and bandwidth-
hungry data. 

A few recent works such as [8-9] have demonstrated the 
promising performance of disaster classification via FL. 
However, training-level evaluation results do not necessarily 
translate into good inference performance. For actual model 
deployment in production environment, the legitimate judges 
of CNN model quality are IoT local devices, serving as 
monitoring nodes. Given the heterogeneity of IoT system, the 
portability and acceleration of inference process are crucial 
towards scalable disaster monitoring frameworks. 

In this paper, we optimize the CNN performance at both 
training and inference stages. The starting point is the design 
of an efficient multi-task learning (MTL) model that 
simultaneously performs disaster classification and victim 
detection. The training burden is relieved by active learning 
(AL), which allows the training algorithm to interactively 
query and label informative data from the pool of unlabelled 
dataset in each local IoT device.  

Once the model is trained, we aim to minimize the 
processing time while maximizing classification and 
detection performance at the inference phase. Indeed, this 
stage must be designed and analyzed correctly in order to 
achieve a robust model working in production environment. 
To this end, we first accelerate the inference process and port 
the optimized model on different Intel platforms via the Intel 
OpenVINO toolkit [10]. It is comprehensive toolkit which 
fine-tunes and optimizes DL inference performance on target 
low-powered devices. Note that the optimized model 
facilitates edge computing, which is one of goals of the 
ASEAN IVO project titled “Context-Aware Disaster 
Mitigation using Mobile Edge Computing and Wireless 
Mesh Network”. 

Experiment results are encouraging: the FL-based disaster 
detection techniques are comparable to or better than their 
centralized learning (CL) counterparts. Our application 
portability is demonstrated via different hardware such as 
CPU and Raspberry Pi. Under the same hardware, the 
optimized model achieves 151% of frames per second (FPS) 
gain over the original MTL model, while having higher 
accuracy and slightly lower AP. 

A preliminary version of this article appeared at the IEEE 
UEMCON 2021 [12]. While sharing the same basic solution 
concept, this version includes a substantial amount of new 
material, including a discussion on how optimal branching 

can be determined by quantitative analysis instead of 
empirical approach, an extended framework with the aid of 
AL and FL, and new results for deployment in production 
environment. The main contributions of this work are 
summarized as follows: 
1. Existing studies focus on solving single-task issue of 

disaster classification [13,16,27-29] and victim detection 
[18–21, 31–33] separately. In contrast, we introduce a 
MTL model by attaching a disaster classification head 
model to the backbone of a victim detection model. 
Different from existing MTL works [34-38], we employ 
an efficient mathematical analysis to pinpoint the 
optimal branching location and to prune the head model. 

2. The framework design decouples training of two tasks. 
Solutions can be found in a per-task fashion before 
merging them into one unified model, which has smaller 
size than a combination of two separate single-task 
models. Such lightweight network architecture facilitates 
both bandwidth-sensitive FL training and cost-limited 
inference. On top of being lightweight, the proposed 
model can even produce better classification-related 
accuracy while preserving the same detection-related 
AP. 

3. Most AL methods advocate uncertainty sampling, which 
selects the most uncertain samples from the unlabeled 
data pool to label [22]. Such strategy is ill-suited for 
disaster dataset, where samples from different classes 
exhibit high similarity. To enable efficient AL-based FL, 
we introduce a simple heuristic by combining both 
uncertainty and diversity samplings.   

4. The correctness of the post-training optimization results, 
especially for model accuracy, is very crucial for actual 
deployment. The majority of the research in [23–26] 
tries to accelerate the inference process without detailing 
the degree of accuracy loss. In contrast, our 
measurement outputs are based on open-source and 
production-ready frameworks to ensure reusability, 
interoperability, and scalability. 

The rest of the paper is organized as follows. Section II 
describes the related work. Section III presents the proposed 
solution. Section IV discusses the experimental setup, 
followed by results and discussions. Section VI concludes the 
paper and outlines future research directions. 
 
II. RELATED WORK 
To give the readers a big picture of the works in this broad 
area, this section reviews related works on disaster 
classification and victim detection, MTL, FL and AL, 
followed by inference optimization. 
 
A. DISASTER CLASSIFICATION & VICTIM DETECTION 
The performance of disaster monitoring is tightly connected 
with the quality and quantity of dataset. The authors in [15] 
collected and filtered tweet messages that people post during 
disasters into one dataset, known as Artificial Intelligence for 
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Disaster Response (AIDR). Similar work can be found in 
[14], where a large multimodal dataset collected from Twitter 
during different natural disasters, known as CrisisMMD was 
released. To facilitate benchmarking purpose, the authors in 
[16] consolidated the aforementioned datasets into a dataset 
called Crisis Image Benchmarks Dataset (CrisisIBD), which 
will be served as input dataset in this paper. 

Inspired by the richness of dataset information, various 
disaster classification methods have been devised. The work 
in [28] analyzed the aerial images for flood magnitude 
assessment. However, the assessment is limited to only 
single disaster type. By focusing on four natural disasters,  
the authors in [27] proposed a damage assessment method 
which outperforms traditional machine learning approach. 
The work in [16] also investigate multi-disaster 
classifications by harnessing the power of several existing 
CNN models such as VGG16 and MobileNet. However, 
these CNNs are directly used without any modification for 
further improvement. Differently, we prune the MobileNetv2 
network in such a way that it can be attached to another CNN 
backbone network and yet performs better than the original 
version. Another CNN framework was adopted in [13], 
where multiple pre-trained unimodal CNNs that extract 
textual and visual features independently are combined and 
fed into a final classifier for disaster damage identification. 
The results in [13, 16, 27, 28] however, did not discuss the 
inference speed aspect, which is critical for real-time disaster 
response. Besides that, the aforementioned works focus on 
single-task domain. 

In [29], the authors presented a cross-domain dataset, 
called FloodNet, which incorporates tasks of image 
classification, sematic segmentation and visual question 
answering. These tasks are accomplished by executing three 
separate models. Such approach (hereafter referred to as 
conventional approach), however, requires high memory 
footprint and computational resources. 

Unlike the previous works [13, 15, 27, 29] which focus on 
single-task classification, the same authors in [16] extended 
their work to a multi-task classification model [17], which 
targets on (i) disaster types, (ii) informativeness, (iii) 
humanitarian, and (iv) damage severity assessment. 
However, the solution is limited to the image-classification 
domain, without considering the victim detection.  

Another pool of literature is exploring the potential of IoT 
technologies in detecting victims. Unmanned aerial vehicle 
(UAV) has emerged as one of the effective IoT solutions for 
dealing with a broad affected area [30]. In [18], the authors 
leveraged a MobileNet-SSD model to detect victims of 
natural disaster through Raspberry Pi camera installed on a 
drone. The work in [19] investigated similar problem by 
considering a thermal camera. Results show that their victim 
detection from aerial thermal view can achieve up to AP of 
82.49 %. The studies in [20] and [21] shifted their focus from 
aerial view to burning building and flood scenes, 
respectively. Apart from the aforementioned image-based 

victim detection, the authors in [31] proposed an integrated 
audio-visual human search system, in order to boost the 
system performance. The works in [32], [33] took another 
divergent approach by locating mobile terminals based on 
radio frequency (RF) signal. However, this method is 
effective only when user equipment and victims are in the 
proximity of each other. Furthermore, none of the above 
works [18–21, 31–33] consider a multitask system that 
concurrently strives for two coupled goals. 

From the literature survey, it is observed that disaster 
classification and victim detection are generally studied in 
isolation. In contrast, our work aims to develop a MTL 
model which executes these two tasks simultaneously. 

B. MULTI-TASK LEARNING (MTL) 
MTL is to perform more tasks using one model, without the 
need of using a separate model for each task. In the context 
of object detection, MTL can be categorized into three types. 
In the first category, the number of head models represents 
the total tasks needed to perform. If the head models share a 
backbone, it is called hard parameter sharing. Whereas for 
soft parameter sharing, each task has its own backbone. 
Examples of using hard parameter sharing can be found in 
[34–35]. In self-driving car application, the work in [34] 
added another head model for lane lines detection to the joint 
segmentation and detection model. The scheme in [35] 
adopted four head models for (i) citrus detection and (ii) 
segmentation, as well as (iii) maturity and (iv) quality 
classification on the citrus detection. On the other hand, the 
authors in [36] resorted to the soft parameter sharing 
approach, for achieving joint detection and segmentation.  

Secondly, multi-tasking is made possible with minimal 
modifications on the original detector model. It was 
demonstrated in [37] for the application of joint vehicle 
classification and distance estimation. The idea is to make the 
distance prediction a classification task and subsequently 
merge it with the task of vehicle classification in order to 
form a unified task. Thirdly, some models improve their 
main tasks based on several auxiliary tasks. For example, 
[38] defined three auxiliary tasks, namely (i) closeness 
labelling, (ii) multi-object labelling and (iii) foreground 
labelling, in order to refine the learning process of the object 
detection model.  

The successes of the aforementioned MTL solutions are 
proven via a centralized data availability. Such assumption 
does not hold in a large-scale disaster monitoring scenario. 
How effectively MTL can be trained from distributed 
datasets at local devices is still largely missing. Also, 
majority of these works adopt empirical approach to 
determine the best branching settings by performing transfer 
learning on different combinations and subsequently 
selecting the optimal one. Such approach requires intensive 
computation due to the additional training on each 
combination to evaluate the transfer learning performance.  
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This paper aims to cast some light on these aspects by 
utilizing FL and smarter branching selection strategy. 

C. FEDERATED LEARNING (FL) & ACTIVE LEARNING 
(AL) 
In FL, only the model weights have to be transferred across 
the network for aggregation, which is more efficient as 
compared to sharing the entire dataset. Such FL benefits are 
exploited in a wide variety of applications ranging from 
healthcare [39], wireless communications [40], through 
vehicular edge computing [41], to manufacturing [42]. In the 
context of disaster detection, the work in [9] proposed a FL 
and autonomous UAVs for hazardous zone detection. The 
CNN-LSTM model weights trained within each UAV are 
transmitted to a central server for global model aggregation. 
Despite promising results, the FL usage has been limited by 
single-task models adopted in these previous works.  

The scheme in [8] also considered FL based single-task 
disaster classification, with additional concern regarding the 
annotation burden for each local training. Armed with AL, 
the authors reported that the proposed AL-based FL 
framework performs equally well under two strategies 
namely uncertainty sampling and query by committee. Our 
work distinguishes itself by offering more insights into the 
properties of disaster dataset. For dataset samples that are 
close to classification boundary, uncertainty sampling may 
always choose similar samples without diversity [43]. 
Furthermore, most of the aforementioned works such as [8–
9] do not use production-ready tools for FL implementation. 

D. INFERENCE OPTIMIZATION 
Efficient execution of a CNN model is undoubtedly another 
important criterion for implementing production-ready DL 
solutions. This is especially true for deploying heterogeneous 
IoT devices of different hardware constraints. How to enable 
fast inference on low-powered embedded platforms remains 
an open research question. Intel OpenVINO toolkit emerges 
as an extremely useful tool of choice since it optimizes DL 
models across Intel hardware while minimizing the inference 
time [11]. A large portion of the studies discussed above 
quite commonly neglect this design aspect and demonstrates 
their DL solutions based on expensive GPU resources.  

By recognizing the importance of inference optimization, a 
plethora of works utilized OpenVINO on various use cases 
such as license plate detection [23], person re-identification 
system [24] and face recognition [25]. Work that explicitly 
optimizes OpenVINO model for disaster scenario was found 
in [26]. However, all these research tries to accelerate the 
inference process without detailing the degree of accuracy 
loss. An allied question is: How much accuracy and AP we 
need to sacrifice while pursuing faster inference? In contrast, 
our measurement outputs are based on OpenVINO DL 
Workbench [11], which is an open-source and production-
ready framework to ensure reusability, interoperability, and 
scalability. 

III. PROPOSED APPROACH 
Fig. 1 displays the overview of the proposed disaster 
detection framework. In the federated network, there are 𝐾 
devices communicating with a server. Each IoT device can 
locally train its model for Task 1: Disaster Classification or 
Task 2: Victim Detection, or in combination of both. Note 
that even within the same device, both tasks are trained 
individually for the following rationales. Firstly, it allows 
fine-tuning of specific tasks, depending on target 
performance requirements. Secondly, not all clients have 
gathered both task information. Thirdly, some devices are not  
powerful enough to train both tasks.  

The overall procedures are illustrated in Fig. 1(b). Firstly, 
the local training for Task 1 or/and Task 2 are executed. 
Secondly, the local model weights are transmitted to the 

(a) 

(b) 

FIGURE 1. Overview of the proposed disaster detection framework. 
(a) Communications between server and devices. (b) Interaction 
from training to inference. 
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server for model aggregation. Thirdly, the global fine-tuned 
model is sent back to each device for another round of 
training. This process repeats until convergence. Fourthly, 
both individual trained models are merged into a single 
unified model. Fifthly, the multi-task model is optimized in a 
device agnostic manner. Lastly, the optimized model is 
executed on device 𝑘 by setting the inference engine mode 
compatible with their own hardware. 

A. MTL MODEL 
Since hard parameter sharing is the most frequently used 
approach in MTL [45], our design follows this setting by 
branching a disaster classification head model from the 
backbone of a selected object detection model. 

In this work, we select MobileNetv2 [46] and YOLOv3 as 
the model for Task 1 and Task 2, respectively. MobileNetv2 
is one of the lightweight network architectures, which is 
suitable for real-time disaster classification. Whereas for 

YOLOv3, it is one of the most widely used object detector 
[47], thanks to its superiority in achieving the trade-off 
between accuracy and speed [48]. Note that our proposed 
branching strategy is not limited to only these two CNNs and 
can be expectably applicable to other CNNs such as 
YOLOv7 [49]. 

Fig. 2 (a) depicts the “conventional approach” where the 
same image serves as an input to two separate models, which 
undergo transfer learning for accomplishing Task 1 and Task 
2, respectively. Specifically, Task 1 adopts a pre-trained 
model on ImageNet and finetunes all 𝑁௢௥௜ blocks for disaster 
classification. This original model is denoted as 𝜃1,௢௥௜, which 
consists of one convolution layer, seven inverted residual 
blocks (IRBs), one pointwise convolution layer followed by a 
global average pooling, and one more pointwise convolution 
layer for the classification. 

On the other hand, Task 2 initially extracts all weights 
learned from the MS-COCO pre-trained model. Then, the 

(a) 

(b) 

(c) 

FIGURE 2. Network architecture of Task 1 and Task 2. (a) Conventional model. (b) Task 1 splitting. (c) Proposed model. 

Convolution (Conv) 
Pointwise (PW) 

Trainable Blocks 

Frozen Blocks 
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backbone known as DarkNet-53 and Feature Pyramid 
Network (FPN) are kept frozen. FPN takes three feature 
maps from the 82nd, 94th and 106th of DarkNet-53 as its 
inputs. Correspondingly, there are three head models which 
detect object at different scales.  To detect victim, the 
weights belonging to three head models are fine-tuned. Given 
that an object detector will likely predict more than one 
bounding box for the same object, we apply the non-
maximum suppression (NMS) technique for removing 
redundant object. Here, we denote Task 2 model as 𝜃2. 

To merge these two CNNs into one unified model, the 
following questions arise. Questions: How do we split 𝜃1,௢௥௜ 
into one base model 𝜃1,௕௔௦௘  and one head model 𝜃1,௛௘௔ௗ , as 
shown in Fig. 2 (b)? Where do we attach 𝜃ଵ,௛௘௔ௗ  among three 
different depth of the shared DarkNet-53?  Fig. 2 (c) provides 
the answers, where the optimized head model 𝜃ଵ,௛௘௔ௗ

∗  
consists of two IRBs, followed by the remaining blocks, and 
𝜃ଵ,௛௘௔ௗ

∗  is branched from the 94th location. Another question 
arising is: How do we decide these optimal settings with 
quantitative analysis? Hence, it is important to investigate the 
relationship between Task 1 and Task 2.  

The study in [50] demonstrates that representation 
similarity analysis (RSA) can measure the task similarity 
using the learned representations, without any subsequent 
training. Their results show that a higher score of task 
similarity leads to better model selection strategy for transfer 
learning. Here, we adopt the RSA to decide the optimal 
branching location. We enumerate the steps to compute the 
similarity score for a different merging combinations of Task 
1 and Task 2 in the following paragraph.  

Firstly, a subset of images is randomly selected from 
CrisisIBD as the conditions for dissimilarity computation. 
We can acquire the representation or feature map of each 
image at any layers of a CNN by forward passing the image 
until the target layer. The dissimilarity score of a pair of 
images can be expressed as 1 −  𝜌, where 𝜌 is the Pearson’s 
correlation coefficient of the feature maps of the two images. 
𝜌 is formulated as follows: 

 

𝜌(𝒙, 𝒚) =  
∑ (𝑥௜ −  𝑥̅)(𝑦௜ −  𝑦ത)ே

௜ୀ1

ඥ∑ (𝑥௜ −  𝑥̅)2ே
௜ୀ1 ඥ∑ (𝑦௜ −  𝑦ത)2ே

௜ୀ1

                   (1)  

 
where 𝑁 represents the feature map size. Then, a 
representation dissimilarity matrix (RDM) is populated by 
the dissimilarity scores for all pair of images in the subset. 
This process is repeated six times for different CNN 
frameworks, as shown in Fig. 3 (a). 

Secondly, the similarity between the RDMs of two CNNs 
can be computed with the Spearman’s correlation (𝑟௦) 
between the upper or lower triangular part of the RDMs, as 
shown in (2): 

 

𝑟௦ = 1 −  
6 ∑ 𝑑௜

ெ
௜ୀ1

𝑀(𝑀2 − 1)
                                   (2) 

where 𝑑௜ denotes the difference between the ranks of 𝑖௧௛ 
elements of the lower triangular part of the two RDMs in Fig. 
3 (b), and 𝑀 is the number of elements in the lower 
triangular part of the RDM. This procedure is repeated nine 
times for various combinations of two CNNs, as shown in 
Fig. 3 (b). Intuitively, the combination pair with the highest 
𝑟௦ yield the best multitasking performance, which will be 
validated in Section IV.  

The unified model in Fig. 2 (c) deserves further 
elaboration. The frozen model weights from 𝜃2,௕௔௖௞௕௢௡௘  and 
𝜃2,ி௉ே  allows the training process of Task 1 𝜃ଵ,௛௘௔ௗ

∗  and Task 
2 𝜃2,ℎ௘௔ௗ  to be decoupled. This indicates that solutions can be 
found in a per-task fashion before merging them into one 
unified model. Such lightweight network architecture 
facilitates both bandwidth-sensitive FL training and cost-
limited inference. On top of being lightweight, the proposed 
model can even produce better classification-related accuracy 
while preserving the same detection-related AP. This is 
accomplished by transferring feature representations from 
denser network 𝜃2,௕௔௖௞௕௢௡௘  to learn Task 1.  

Overall, the benefits of using the model are flexibility, 
speed, and accuracy. The training procedures of Task 1 and 
Task 2 are described in Algorithm 1 and Algorithm 2, 
respectively. 

 ACTIVE LEARNING (AL) 
There exist two pool-based strategies, namely uncertainty 
sampling and query by committee. We choose the former 
since it is one of the most popular approaches [22] and 
consumes lesser computational power [51]. The category of 

*Repeat with all combinations of 𝜃1,௕௔௦௘ (where 𝑁ூோ஻=1, 2, 3) and 
𝜃2,௕௔௖௞௕௢௡௘ (82nd, 94th and 106th Layer) 

*CNN will be 𝜃1,௕௔௦௘ (where 𝑁ூோ஻=1, 2, 3) and 𝜃2,௕௔௖௞௕௢௡௘ (82nd, 94th 
and 106th Layer) 

(a) 

(b) 

FIGURE 3. RSA approach to quantify the similarity score between 
Task 1 and Task 2. (a) RDM computation. (b) 𝒓𝒔 computation. 
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Algorithm 1 Training Strategy for Task 1 

Input: Labeled Dataset, ℒ 
 Number of Epoch, 𝒩௧ଵ 

Learning rate, 𝛼 

Task 1 Head Model, 𝜃ଵ,௛௘௔ௗ
∗  

Categorical Cross-Entropy Loss Function, ℐ஼஼ா   

Output: Trained Task 1 Head Model, 𝜃ଵ,௛௘௔ௗ
∗

 

01 ℒ is divided into mini batches of data, 𝑙 
02 Obtain and freeze pre-trained 𝜃2,௕௔௖௞௕௢௡௘  (until 94th Layer) 
03 // Train Task 1 Head Model, 𝜃ଵ,௛௘௔ௗ

∗  
04 for 𝑡 = 1: 𝒩௧ଵ do 
05  for 𝑙 in ℒ do 
06  // Use 𝜃2,௕௔௖௞௕௢௡௘  to extract 𝑙’s feature maps, 𝒇 
07  𝑓 ← 𝜃2,௕௔௖௞௕௢௡௘(𝑙)  
08  // Compute gradients and update model 
09  ∇ ←  ഃ

ഃೣ
 ℐ஼஼ா(𝜃ଵ,௛௘௔ௗ

∗ , 𝑓)  

10  𝜃ଵ,௛௘௔ௗ
∗ ௧ାଵ  ←  𝜃ଵ,௛௘௔ௗ

∗ ௧  −  𝛼 ∇  
11  end for 
12 end for 

 
Algorithm 2 Training Strategy for Task 2 

Input: Labeled Dataset, ℒ 
 Number of Epoch, 𝒩௧ଶ 

Mini Batch Gradient Accumulation Round, ℬ 

Learning Rate, 𝛼 

Task 2 Head Model, 𝜃2,head 

YOLOv3 Loss Function, ℐ௒ଷ  
Output: Trained Task 2 Head Model, 𝜃2,ℎ௘௔ௗ  

01 ℒ is divided into mini batches of data, 𝑙 
02 Obtain and freeze both pre-trained 𝜃2,௕௔௖௞௕௢௡௘  and 𝜃2,ி௉ே  
03 // Train Task 2 Head Model, 𝜃2,ℎ௘௔ௗ  
04 for 𝑡 = 1: 𝒩௧ଶ do 
05  Counter:  𝑐 ←  0 
06  Accumulated Gradients: ∇௔௖௖௨௠௨௟௔௧௘  ←  0 
07  for 𝑙 in ℒ do 
08  // Compute & accumulate gradients 
09  ∇ ←  ഃ

ഃೣ
 ℐ௒ଷ(𝜃ଶ,௛௘௔ௗ

௧ , 𝑙)  

10  ∇௔௖௖௨௠௨௟௔௧௘  ←  ∇௔௖௖௨௠௨௟௔௧௘  +  ∇  
11  // Update model 
12  if 𝑐 mod ℬ = 0 then 
13  ∇௔௖௖௨௠௨௟௔௧௘  ←  ∇௔௖௖௨௠௨௟௔௧௘  / ℬ  
14  𝜃ଶ,௛௘௔ௗ

௧ାଵ  ←  𝜃ଶ,௛௘௔ௗ
௧  −  𝛼 ∇  

15  ∇௔௖௖௨௠௨௟௔௧௘  ←  0   
16  end if 
17  // Increase 𝛼 after 10 epochs of warm up training 
18  if 𝑡 mod 10 =  0 then 
19  𝛼 ←  𝛼 × 10  
20  end if 
21  end for 
22 end for 

 
uncertainty sampling can be further divided into three 
subgroups namely least confidence, entropy sampling, and 

margin sampling. Here, we focus on only the third technique 
since these three methods perform equally well in a disaster 
classification scenario [8]. 

Fig. 4 visualizes the t-SNE results for the test images from 
CrisisIBD [16]. From the figure, it is observed that most of 
the images, regardless of the classes, are clustered near to the 
centre. These samples, labelled as “hard”, would always be 
prioritized by margin sampling in terms of selection. Table 1 
illustrates some sample images from the CrisisIBD [16] with 
high ambiguity.  

A better strategy is to incorporate diversity into the query 
process [43]. To this end, we design a simple heuristic by 
combining both uncertainty and diversity samplings. Apart 
from the hard samples, our modified sampling process as 
shown in Algorithm 3 considers two additional categories 
namely “easy” and “moderately-hard (mod)”. These samples 
represent those that are far away from the centre and have 
clear classification boundaries. Specifically, for each round 
of query selection in Phase 2, all available unlabelled 
samples are ranked in terms of uncertainty and sorted in a 
descending order. Hard, moderately-hard and easy samples 
are then picked according to the lines 9, 10, 11 of Algorithm 
3. These selected samples are removed from the unlabelled 
dataset pool and the process repeats until the communication 
epoch 𝒩௔ is reached.  

TABLE 1. Examples of high-similarity images in CrisisIBD [16]. 
Sample Image Predicted Class Actual Class 

 

 

 

Flood 

 

 

Hurricane 

 

 

 

Not Disaster  

 

 

Hurricane 

FIGURE 4. t-SNE results for the test dataset. Bold color 
corresponds to 33 % of hard samples. 
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Algorithm 3 The Proposed Active Learning Process 

Input: Initial Model, 𝜃ଵ,௛௘௔ௗ
∗  

  Number of Active Learning Epoch, 𝒩௔ 
  Small Labeled Dataset (seed), ℒ଴ 
  Unlabeled Dataset, 𝒰௧  

  Uncertainty Function, ℱ௨௡௖  
  Query Batch Size, ൫𝒦௘௔௦௬ , 𝒦௠௢ௗ , 𝒦௛௔௥ௗ  ൯ 
Output: Labeled Dataset, ℒ௧  

01 Each Client executes: 
02 // Phase 1: Warm Up the Model 
03 𝜃ଵ,௛௘௔ௗ

∗଴  ← train 𝜃ଵ,௛௘௔ௗ
∗  for 5 epochs using ℒ଴ 

04 for 𝑡 = 1: 𝒩௔ do 
05  // Phase 2: Query Selection 
06  𝒬 ← ℱ௨௡௖(𝒰௧, 𝜃௧); Rank the uncertainty of each data 

point in 𝒰௧ 
07  Arrange 𝒬 in descending order based on uncertainty 
08  𝒬௧ 

௘௔௦௬
 ←  ൛𝒰௧ ,௜  | 𝔦 ∈ argbtmK൫𝒬, 𝒦௘௔௦௬  ൯ൟ; Pick the  

                                           unc 
  last corresponding 𝒦௘௔௦௬ samples from 𝒬 

09  𝒬௧
௠௢ௗ  ←  ൛𝒰௧ ,௜  | 𝔦 ∈ argmidK(𝒬, 𝒦௠௢ௗ  )}; Pick the 

                                           unc 
  corresponding (1 +   |𝒰௧| 2⁄  𝑡𝑜 𝒦௠௢ௗ + |𝒰௧| 2⁄ )  

samples from 𝒬 
10  𝒬௧

௛௔௥ௗ  ←  ൛𝒰௧ ,௜  | 𝔦 ∈ argtopK(𝒬, 𝒦௛௔௥ௗ )}; Pick the  
                                           unc 

  first corresponding 𝒦௛௔௥ௗ samples from 𝒬 

11  𝒬௧ = 𝒬௧ 
௘௔௦௬

  ∪  𝒬௧
௠௢ௗ   ∪  𝒬௧ 

௛௔௥ௗ 
12  // Phase 3: Sample Annotation 
13  𝒴௧  ← annotate 𝒬௧ 
14  ℒ௧  ←  ℒ௧ିଵ ∪ { (𝒳, 𝒴) | 𝒳 ∈  𝒬௧ , 𝒴 ∈  𝒴௧} 
15  // Phase 4: Update Model 
16  𝜃ଵ,௛௘௔ௗ

∗௧ାଵ  ← fine-tuning 𝜃ଵ,௛௘௔ௗ
∗௧  using ℒ௧ 

17  𝒰௧ାଵ  ← 𝒰௧ \ 𝒬௧  
18  if |𝒰௧ାଵ|  =  0 
19   break 
20 end for 
21 return ℒ௧ାଵ 

 
 FEDERATED LEARNING (FL) 

To minimize the effort of implementation, we choose the 
simple Federated Averaging (FedAvg) algorithm as in [52-
54]. FedAvg combines the model parameters collected from 
each local device via averaging. Algorithm 4 describes the 
overall process. Firstly, a FL server is initialized with a 
global model. Secondly, it will share the global copy with a 
group of selected clients participating in the local model 
training. Thirdly, the trained model parameters are collected 
and averaged at the FL server. Lastly, this process repeats 
until it reaches the threshold of 𝒩௘. The entire FL framework 
is implemented using the OpenFL [55]. It is a Python 3 open-
source FL framework that supports many real world 
applications such as medical imaging [39, 56-57].  
 
D. INFERENCE OPTIMIZATION 
Once the individual head models for Task 1 and Task 2 are 
trained, they are merged into a unified model. Given the 
heterogeneity of IoT devices, it is favourable to accelerate the  

Algorithm 4 Train Task 1 or Task 2 using Federated Learning 

Input: Initial Model, 𝜃ଵ,௛௘௔ௗ
∗  or 𝜃2,head 

 Number of Communication Round, 𝒩௖ 
 Total Number of Clients, 𝐾 
Output: Trained Model, 𝜃ଵ,௛௘௔ௗ

∗  or 𝜃2,௛௘௔ௗ  

1 If Task 1, set 𝜃 = 𝜃ଵ,௛௘௔ௗ
∗ ; else, set 𝜃 = 𝜃2,௛௘௔ௗ  

2 Server executes: 
3 Initialize a global model, 𝜃௚௟௢௕௔௟  
4 for 𝑡 = 1: 𝒩௖ do 
5  Operations on the server side: 
6  // Select a fraction of Clients, C 
7  m ← max (𝐶 ∙ 𝐾 , 1) 
8  𝑆௧  ← {random set of m clients} 
9  // Train each selected client, 𝜃௞ 
10  for each client 𝑘 ∈  𝑆௧ in parallel do 
11  𝜃𝒕ା𝟏

𝒈𝒍𝒐𝒃𝒂𝒍
 ← ClientUpdate(𝜃𝒕

𝒈𝒍𝒐𝒃𝒂𝒍) 
12  end for 
13  𝜃𝒕ା𝟏

𝒈𝒍𝒐𝒃𝒂𝒍
 ←  ∑௞ ୀ ଵ

௄  ೙ೖ
೙

𝜃௧ାଵ
௞  

14 end for 
15 ClientUpdate(𝜃௚௟௢௕௔௟): 
16  // Train the client model using local dataset 
17  𝜃 ← 𝜃௚௟௢௕௔௟  
18  update 𝜃 using any preferred strategy 
19  return 𝜃 
 
inference in such a way that the same optimized model can 
be executed across different hardware. OpenVINO is a 
promising candidate to meet these portability requirements. It 
calibrates the model for execution on several hardware types 
including Intel CPU, Intel Integrated GPU, Intel FPGA, and 
Intel Movidius Neural Compute Stick 2 (NCS2). Overall, 
OpenVINO involves two major steps as follows. 
1. Model Optimizer: It converts the trained model into an 

OpenVINO format, known as intermediate 
representation (IR). IR consists of two files (*.xml + 
*.bin). The former and the latter contain the network 
topology and model weights, respectively. 

2. Inference Engine: It is a C++ library with a set of C++ 
classes to infer input data (images) and obtain a result. 
The C++ library provides an API to read the IR, set the 
input and output formats, and execute the model on 
target devices. 

IV. EXPERIMENT, RESULTS AND DISCUSSIONS 
 DATASETS 

The datasets used in Task 1 and Task 2 are listed in Tables 2 
and 3, respectively. All images are extracted from CrisisIBD 
[16]. For Task 1 dataset, those events related to road 
accident, plane crash, explosion, and war are classified as 
“other disaster”. For Task 2 dataset, additional annotation 
efforts are required since there is a lack of publicly available 
victim detection datasets. Specifically, we identify those 
images containing victims from [16] and generate bounding 
boxes via a combination of automatic [58] and manual 
annotations.  



 

VOLUME XX, 2017 9 

TABLE 2. Data split for disaster types. 
 

Class Label Train Validation              Test 

Fire 1270 121 280 

Hurricane 1444 175 352 

Flood 2336 266 599 

Earthquake 2058 207 404 

Landslide 940 123 268 

Other Disaster 1132 143 302 

Not Disaster 3666 435 990 

Total 12846 1470 3195 

 
TABLE 3. Data split for victim detection. 

 

Class Labels  Count 

Train  5994 

Validation  634 

Test  1448 

Total  8076 

 
 EXPERIMENTAL SETUP 

Fig. 5 depicts the experiment with following setup.  
1. Training phase: A maximum of three FL clients (𝐾=3) 

can be instantiated by OpenFL. A workstation consists 
of an Intel core i7 processor with 2.30GHz, 64 GB of 
DDR4 RAM memory and NVIDIA RTX 2070 SUPER. 
The workstation hosts two FL clients whereas the 
remaining client is executed at an Intel NUC with an 
Intel core i7 processor with 4.70GHz and 64 GB of 
DDR4 RAM memory. This yields a sum of one 
Tensorflow GPU and two Tensorflow CPU operators. 
During the FL training, these two hardware are 
connected via Wi-Fi and model weights are shared for 

each communication epoch. Clearly, the local training 
completion time differs for each FL client and model 
aggregation can be initiated once all participating FL 
clients finish their tasks. Without loss of generality, we 
made the following assumptions: 

 All FL clients always participate in each round  
 All FL clients train Task 1 and Task 2 
 The workstation concurrently acts as the FL 

server 
2. Inference phase: We calibrate the model to a variety of 

IR format, ranging from single-precision floating-point 
(FP32), through half-precision floating-point (FP16) to 
unsigned integer value (INT8). Obviously, the lower the 
quantization bits, the higher the throughput capacity. 
These models are benchmarked over three hardware: 
CPU 1, NCS2 and Raspberry Pi 4 (RP4) via OpenVINO 
DL Workbench. NCS2 is a dedicated hardware 
accelerator for inference with ultra-low power 
consumption. The great power savings, however, is 
accompanied by two limitations: (i) it can run only FP16 
mode and (ii) it does not support the NMS feature.  

 
 TRAINING STAGE 

𝜃ଵ,௛௘௔ௗ
∗  is trained using the Cosine Decay strategy. Different 

from Task 2, we train FL model of Task 1 in combination 
with offline AL technique, as proposed in Algorithm 3. This 
implies that the FL phase will only commence after the 
completion of AL at each client. We do not use the online 
AL mode in order to bypass the time-consuming round-by-
round sample selection in FL [8].  

For Task 2, we adopt the gradient accumulation strategy to 
facilitate the training at edge level. The hyperparameter for 
both Task 1 and Task 2 are tabulated in Table 4.  

TABLE 4. Important hyperparameter for Task 1 and Task 2. 
 

Parameters Values 

 
 
 
 
 
 
 

Task  
1 

Max AL round, 𝒩௔ 32 

AL Seed, |ℒ଴| 700 

Size of AL Labeled Dataset in Each Client, |ℒ௧| 2716 

Query Batch Size, (𝒦௘௔௦௬, 𝒦௠௢ௗ , 𝒦௛௔௥ௗ)  21 

Number of epoch, 𝒩௧ଵ 40 

Number of Communication Round, 𝒩௖ 40 

Batch Size 32 

Initial Learning Rate, 𝛼 5 x 10-3 

Size of Local Dataset in Each Client (2-Client Setup) 6423 

Size of Local Dataset in Each Client (3-Client Setup) 4282 

 

 

Task  
2 

Number of epochs, 𝒩௧ଶ 20 

Mini Batch Size 8 

Mini Batch Gradient Accumulation Round, ℬ 8 

Initial Learning Rate, 𝛼 5 x 10-3 

Size of Local Dataset in Each Client (2-Client Setup) 2997 

Size of Local Dataset in Each Client (3-Client Setup) 1998 FIGURE 5. Experimental setup. 
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 RESULTS AND DISCUSSIONS 

1) RSA SIMILARITY  
Firstly, we validate our hypothesis that the optimized head 
model 𝜃ଵ,௛௘௔

∗  consists of two IRBs, followed by the 
remaining blocks, and its optimal branching location is at the 
94th location of 𝜃2,backbone. To do so, we select 200 images 
from CrisisIBD and use equation (2) to compute the 𝑟௦ for 
each possible combination of 𝜃1,௕௔௦௘ (where 𝑁ூோ஻ = 1, 2, 3) 
and 𝜃2,௕௔௖௞௕௢௡௘ (82nd, 94th and 106th Layer), as shown in 
Table 5. It can be observed that all the 𝑟௦ score at 82nd layer 
has the lowest value. This makes sense as the feature maps 
produced at this level are considerably too low-level. On the 
other hand, the highest score can be identified at 94th layer, 
instead of 106th layer. One possible reason is that the feature 
maps generated by this deepest layer are highly specialized 
for victim detection.  

These explanations are justified by using Grad-CAM [59] 
to visualize the activation maps as shown in Fig. 6. We limit 
our analysis to 𝑁ூோ஻ = 2 since this configuration gives the 
best result in Table 5. A direct inspection suggests that 
among all three layers, 𝜃2,backbone (94th Layer) at Fig. 6 (b) 
yields the highest similarity with 𝜃1,௛௘௔ௗ  (𝑁ூோ஻ = 2) at Fig. 6 
(d). This indicates that 𝜃2,backbone at this layer still preserves 
the meaningful semantic background knowledge needed for 
disaster scene classification. 

To prove that higher task similarity leads to better 
branching selection, we first attach 𝜃1,௛௘௔ௗ  to 𝜃2,backbone for a 
total of nine combinations as shown in Table 5 and retrain 
𝜃1,௛௘௔ௗ  for Task 1. Then, the computed F1 score is displayed 
in Table 6. It can be observed that the performance of F1 
score is generally consistent with that of 𝑟௦, where both 
optimal points lie at the same location.  

TABLE 5. Similarity (𝒓𝒔) between each 𝜽1,𝒃𝒂𝒔𝒆 and 𝜽2,backbone. 

 
              𝜽2,backbone 
𝜽1,𝒃𝒂𝒔𝒆 

82nd Layer 94th Layer 106th Layer 

𝑵𝑰𝑹𝑩 = 1 0.195 0.343 0.393 

𝑵𝑰𝑹𝑩 = 2 0.366 0.490 0.487 

𝑵𝑰𝑹𝑩 = 3 0.338 0.408 0.422 

 

TABLE 6. F1 Score of 𝜽1,𝒉𝒆𝒂𝒅 on top of each 𝜽2,backbone after retraining. 

 
              𝜽2,backbone 
𝜽1,𝒉𝒆𝒂𝒅 

82nd Layer 94th Layer 106th Layer 

𝑵𝑰𝑹𝑩 = 1 0.755 0.761 0.764 
𝑵𝑰𝑹𝑩 = 2 0.769 0.792 0.782 
𝑵𝑰𝑹𝑩 = 3 0.759 0.765 0.759 

 

2) TASK 1: DISASTER CLASSIFICATION  
 The performance of the CL-trained 𝜃ଵ,௛௘௔ௗ

∗   is compared to 
the benchmarks provided by [17]. Note that their reported 
results stem from several single-task CNN models that are 
trained exclusively for Task 1. Also, for fair comparisons, we 
retrain the entire MobileNetv2 in our environment (labelled 
as MobileNetv2*). Table 7 compares the performance from 
four perspectives. 

 Among all models, the most closely related model is the 
MobileNetv2* since 𝜃ଵ,௛௘௔ௗ

∗  inherits similar network 
structure. Interestingly, the ability to distinguish disasters on 
top of a victim-detection model does not jeopardize the 
classification performance. In fact, it achieves 1-2% of 
performance gain, in terms of  accuracy, precision, recall and 
F1 score. The rationale behind this is that 𝜃2,௕௔௖௞௕௢௡௘ has a 
denser network than MobileNetv2* to learn Task 1. 
Quantitatively speaking, the total parameters of 𝜃2,௕௔௖௞௕௢௡௘  is 
6.6x more than that of 𝜃1,௕௔௦௘  (𝑁ூோ஻ = 2). 

A direct comparison from Table 7 suggests that 
EfficientNetb1 [60] will be always the best choice. However, 
another important factor in model selection is the 
computational efficiency, which is ignored in [17]. In fact, 
MobileNetv2 has less than doubled the parameters required 
by EfficientNetb1 [61]. Nevertheless, there exist some state-
of-the-art models with high accuracy and yet fast processing 
such as CustomNet [62]. We argue that our proposed 
branching strategy is also applicable to these models, 
provided that the task similarity between two merging 
candidate networks is good enough. Overall, our solution is 
considered robust given that it can handle two tasks.  

So far, 𝜃ଵ,௛௘௔ௗ
∗  as tabulated in Table 7 is a CL-trained 

model. In Table 8, we will use this as the benchmark 
(labelled as “CL (all data)”) with respect to the FL and AL-
FL performance. We also consider two scenarios (“CL (1/2 
data)” and “CL (1/3 data)”) where IoT devices individually 
train the model without sharing their model weights. As 
expected, the individual training of each device yields 
inferior results due to limited dataset.  
 

    (a)               (b) 

  

FIGURE 6. Grad-CAM visualization of activation maps.  (a) 
𝜽2,backbone (82nd Layer). (b) 𝜽2,backbone (94th Layer). (c) 𝜽2,backbone (106th 
Layer). (d) 𝜽1,𝒃𝒂𝒔𝒆 (𝑵𝑰𝑹𝑩 =  2). 

    (c)                (d) 
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TABLE 7. CL-Trained head model (𝜽𝟏,𝒉𝒆𝒂𝒅
∗ )  Vs. Benchmarks in [17]. 

MobileNetv2* was Retrained in the Same Environment as 𝜽𝟏,𝒉𝒆𝒂𝒅
∗  to 

Ensure Fair Comparisons. 
 

Backbone Accuracy Precision Recall F1 Score 

ResNet101 0.819 0.815 0.816 0.816 

AlexNet 0.755 0.753 0.753 0.753 

VGG16 0.803 0.797 0.798 0.798 

SqueezeNet 0.726 0.719 0.717 0.717 

InceptionNetv2 0.808 0.801 0.802 0.802 

MobileNetv2 0.793 0.788 0.793 0.789 

EfficientNetb1 0.838 0.834 0.838 0.835 

MobileNetv2* 0.776 0.787 0.776 0.781 

𝜃ଵ,௛௘௔ௗ
∗  0.792 0.796 0.792 0.792 

 

TABLE 8. Comparison between the disaster classification head models 
trained via CL, FL and AL-FL. Methods labelled with an Asterisk (*) are 
trained using 3 FL Clients. 

 
Method Accuracy Precision Recall F1 Score 

CL (all data) 0.792 0.796 0.792 0.792 

CL (1/2 data) 0.754 0.757 0.752 0.743 

CL (1/3 data) 0.732 0.739 0.727 0.721 

FL (2 clients) 0.800 0.805 0.794 0.793 

FL (3 clients) 0.796 0.800 0.790 0.788 

 AL-FL  
   hard* 

0.719 0.720 0.720 0.720 

AL-FL 
mod/hard* 

0.722 0.731 0.715 0.740 

AL-FL 
easy/mod/hard* 

0.767 0.774 0.759 0.758 

 
Surprisingly, it can be noticed that FL outperforms CL in 

both 2-client and 3-client settings. For instance, FL with 2-
client and 3-client outperform CL by 1.64% and 1.04% in F1 
score, respectively. This is a very encouraging result from a 
system design point of view and such performance trend is 
aligned with the findings in [44, 63]. 

Among all the AL-FL variations, the best performer is the 
proposed heuristic, which picks a combination of easy, mod, 
and hard samples. It approximates the CL model within 
4.31% F1 score gap while using 36.57% less labelled dataset.  

 

3) TASK 2: VICTIM DETECTION 
Since 𝜃2,head  is trained with a custom dataset, there is no 
benchmark to compare the results with. We consider similar 
settings as in Task 1, except for the AL approach. Table 9 
compares the results of 𝜃2,head trained on each setting. This 
time, it can be observed that the FL approach is weaker than 
the CL method for Task 2. The performance loss is likely 
attributed to the scarcity of training dataset [8]. In FL mode, 
Task 2 clients has a maximum of 2997 images, which is less 
than half of the 6423 images used in Task 1. Nevertheless,  

TABLE 9. Average precision (AP) comparison for Task 2. 
 

Method Average Precision 

CL (all data) 0.694 

CL (1/2 data) 0.467 

CL (1/3 data) 0.400 

FL (2 clients) 0.590 

FL (3 clients) 0.542 

 
the FL approaches outperform their distributed learning 
counterparts by up to 35%. These results again highlight the 
importance of sharing model weights for better performance.  
 

4) BENEFITS OF USING PROPOSED MODEL IN FL 
ENVIRONMENT 
Table 10 compares the actual parameter size between 
conventional and proposed methods. It can be observed that 
the proposed model saves about 11.3% of the transmission 
payload for every communication round 𝒩௖ . To train a 
specific task in an FL environment, the total size of model 
weights 𝑤1 2⁄  needed to exchange with a FL server can be 
calculated as follows: 

 
𝑤1 2⁄ = 𝒩௖  × 𝐾 × 𝑠1 2⁄                            (3) 

 

5) INFERENCE RESULTS VIA DL WORKBENCH 
To ensure reusability, interoperability, and scalability, we 
measure the inference results via the DL workbench tool. 
Table 11 compares the speed in terms of FPS among three 
hardware as mentioned Fig. 5. 

As expected, the highest inference speed is attained by the 
powerful GPU mode. A direct deployment in the CPU 1 will 
drastically drop from 20.31 to 6.44 FPS. This unveils the 
need of using OpenVINO models. Under the same hardware 
and data format, the optimized model achieves 43% of FPS 
gain. The speed can be further boosted to 151 % by using 
INT8 IR model. For NCS2, the performance tradeoff is 
visible through the reported FPS value of 2.50. The FPS  
 

TABLE 10. Network model size comparison. 
  

Conventional 

Approach 

Proposed Method 

Network Structure 
  

𝜃1,௢௥௜ + 𝜃2 𝜃ଵ,௛௘௔ௗ
∗ + 𝜃2 

Full Model Size (MB)  27.6 + 247 = 274.6 14.8 + 247 = 261.8 

Trainable Network  𝜃1,௢௥௜ + 𝜃2,ℎ𝑒𝑎𝑑 𝜃ଵ,௛௘௔ௗ
∗ + 𝜃2,ℎ𝑒𝑎𝑑 

Task 1 Trainable Model 
Size, 𝑠ଵ (MB)  

27.6 14.8 

Task 2 Trainable Model 
Size, 𝑠ଶ (MB) 

 

84.0 84.0 
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stemming from plugging the NCS2 into less powerful RP4 
further drops to 1.8. However, this is acceptable since NCS2 
consumes power of only 1.5 W [64], which is important in 
establishing sustainable IoT solutions. To reveal more 
insight, we also convert the models in conventional approach 
into two separate OpenVINO models. A sequential execution 
of these two models on RP4 results in another FPS slowdown 
of 28%. 

At this point, it is important to determine how much is the 
accuracy and precision drop. Since the inference model is 
multi-tasking, Table 12 compares both classification 
(accuracy) and detection (AP) related metrics. At first glance, 
all the accuracy accrued by OpenVINO models surprisingly 
outperforms the original TensorFlow model. An in-depth 
analyse reveals that such trend conforms to the OpenVINO 
mechanism. In fact, the OpenVINO model optimizer uses 
20% of the test dataset during the model calibration. Similar 
performance trend can be observed for AP of Task 2. 
Overall, the MTL model performance is retained after 
optimization and such encouraging results will promote the 
IoT deployment. Note that we wrote a custom Python 3 NMS 
code to complement the OpenVINO IR Format without 
NMS. 

 Fig. 7 shows some examples of inference output of the 
multi-task model. 

 

TABLE 11. Model inference speed (FPS) before and after model 
optimization via OpenVINO toolkit. 
 

Hardware Framework Data Format FPS 

GPU TensorFlow GPU FP32 20.31 

CPU1 TensorFlow CPU FP32 6.55 

CPU1 
OpenVINO IR 

Format 
FP16 9.37 

NCS2 on CPU1 
OpenVINO IR 
Format without 

NMS 
FP16 2.50 

NCS2 on RP4 
OpenVINO IR 
Format without 

NMS 
FP16 1.80 

NCS2 on RP4 
(Conventional 

Approach) 

OpenVINO IR 
Format without 

NMS 
FP16 1.52 

CPU1 
OpenVINO IR 

Format 
INT8 16.46 

 
 

TABLE 12. Model accuracy and AP before and after model optimization 
via OpenVINO toolkit. 
 

Framework Data Format Accuracy AP 

TensorFlow 
(GPU/CPU1) 

FP32 0.792 0.694 

OpenVINO IR Format FP16 0.793 0.696 
OpenVINO IR Format 
without NMS + custom 

NMS 
FP16 0.793 0.696 

OpenVINO IR Format INT8 0.796 0.680 

 

V. CONCLUSION 
In this paper, we have devised a MTL model that performs 
joint disaster classification and victim detection. Our two 
merging CNN networks are MobileNetv2 and YOLOv3, 
which can be trained separately. Through rigorous 
mathematical analysis, we proved that optimal branching 
location and the number of IRBs are 94th layer and two, 
respectively. As compared to the conventional approach, the 
proposed model has lesser memory requirements and better 
classification-related results, while preserving the same 
detection-related performance. The first advantage would be 
very useful in IoT environment, where the data (e.g., network 
weights) are exchanged. We showed that AL and FL can 
complement each other to bring positive impact to the IoT 
scenario, where massive data is generated within different 
devices and requires exhaustive human annotation efforts. As 
a proof of concept, we implemented our solution onto 
different hardware by utilizing several open-source and 
production-ready tools. Even for the low-cost and low-
powered Raspberry Pi 4, the proposed method can still reach 
up to 1.8 FPS, which is 28% faster than the conventional 
method. 

Three potential directions have been identified as our 
future works. Firstly, the communication between each FL 
client and server is based on Wi-Fi technology, which has 
transmission distance limitation. An alternative of long-
distance wireless technology such as LoRa and NB-IOT can 
be considered. Secondly, the existing Wi-Fi implementation 
operates in star topology, which is vulnerable to disaster 

(a) 
  

(b) 
  FIGURE 7. Inference output of the multi-task model at different 

area. (a) Flood. (b) Earthquake. The joint disaster classification and 
victim count prediction are labeled at the top left corner of the input 
images.  
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damage. Therefore, we need to explore a disaster-resilient 
mesh network. Thirdly, the FL approach always requires all 
clients to train their own models for every communication 
round. In practice, some devices may have limited 
computational capacity, scarce dataset and poor channel 
conditions. Therefore, we need to select a subset of FL 
clients in each round more efficiently.  
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