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Background

• The inherent characteristics of Internet of things (IoT) such as low computation power of

IoT nodes and transmission reliability of IoT links demand a new paradigm for efficient

data processing and dissemination.

• This is especially true for disaster situations with high possibility of communication

breakdowns.

• In the traditional IoT framework, these data are transmitted to a remote central cloud

platform through the Internet to be processed.

• Drawback: There is an issue where the big data transmission process consumes

enormous energy, time, cost, and bandwidth.

I. Introduction

1



Problem Statement

• Edge computing is introduced to process and analyze the valuable information from the

raw sensor data at the network edge in real-time.

• The evolution of edge computing technology has driven the smart applications towards

the use of artificial intelligence (AI).

• The fusion technology of AI and IoT is referred to as artificial intelligence of things (AIoT).

• Drawback: The limited processing capacity constraints of IoT devices present a

challenge to integrate AI into AIoT applications.

I. Introduction
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Artificial Intelligence of Things (AIoT)

• Several existing works [8]–[10] explored the potential of AIoT for situational awareness

and disaster recovery operations.

• The authors in [11] demonstrated how sequence model could predict the flow rates in

downstream gauging station based on the flow rate in upstream station.

• The study in [12] utilized signals from fire detection system to predict the potential of

house fire and alert the appropriate authorities using IoT networks.

• Drawback: These works utilized only machine learning. When using more advanced

deep learning (DL) algorithms such as convolutional neural networks (CNN), the

computational power of IoT device could become a burden.

II. Related Work
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Disaster Classification and Victim Detection

• When disaster events happen, an efficient rescue operation requires the detected

disaster type and number of victims.

• Literature on disaster classification often surrounds the dataset since the robustness of

disaster monitoring is tightly correlated with the quality and quantity of training data.

• There are five major datasets for disaster classification, which are Artificial Intelligence for

Disaster Response (AIDR) [20], Damage Multimodal Dataset (DMD) [21], Damage

Assessment Dataset (DAD) [22], CrisisMMD [23] dataset, and Crisis Image Benchmark

Datasets (CrisisIBD) [24].

• Drawback: For victim detection task, there is a lack of a proper benchmark dataset

possibly due to privacy concerns.

II. Related Work
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Multi-task Learning

• Drawback: There are limited works in disaster response domain that address multiple

tasks together.

• Research work in [28] was the first to address the need of MTL model for (i) disaster

classification, (ii) informativeness, (iii) humanitarian categories, and (iv) damage severity

assessment on a given input image.

• On the other hand, our previous work [6] is the first to propose a MTL model for joint

disaster classification and victim detection, as shown in Figure 1.

II. Related Work

Figure 1: Proposed multi-task learning model.
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NerveNet

• NerveNet is a resilient network developed by Japan's National Institute of Information and

Communications Technology (NICT).

• NerveNet is a specially developed mesh network for the regional area to provide reliable

network access and a stable, resilient information-sharing platform in emergencies, even

if the base station is destroyed in a disaster.

• NerveNet has the feature of database synchronisation. It uses a hearsay daemon to

synchronize the database of every node within the NerveNet network.

• We utilize NerveNet to increase the transmission reliability of AIoT.

II. Related Work
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III. AIOT IMPLEMENTATION

System Diagram

12 dbm (15 dbm)
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III. AIOT IMPLEMENTATION

Figure 2: (b) NerveNet monitoring node (front view). (c) NerveNet monitoring node (rear view). (d) 
NerveNet base station node.

(b) (c) (d)

Testbed
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III. AIOT IMPLEMENTATION
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III. AIOT IMPLEMENTATION

Working Flow
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IV. PERFORMANCE EVALUATION

Disaster Monitoring (Frames per second)

2 FPS
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IV. PERFORMANCE EVALUATION

Disaster Monitoring (Power Consumption)

Figure 5: Power Measurement. (a) Idle time. (b) Execution time.

(a) (b)

1.23 W 
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IV. PERFORMANCE EVALUATION

NerveNet Database Synchronization (Text)
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IV. PERFORMANCE EVALUATION

NerveNet Database Synchronization (Image)
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IV. PERFORMANCE EVALUATION

NerveNet Synchronization Latency

Figure 7: Synchronization Latency with respect to node 210. (a) Text. (b) Image.

(a) (b)

The size of total synchronized images is 647168 bytes. 
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• In this paper, we have proposed a AIoT-based disaster monitoring using NerveNet

wireless mesh network.

• To reduce the heavy workload of AI inference, we utilized OpenVINO to accelerate the

process so that it can be executed on low-powered Raspberry Pi device.

• As for the data robustness, we invoked the feature of data synchronization to disseminate

the data among NerveNet nodes.

• The effectiveness of the solution has been demonstrated via a testbed implementation.

• In future, we plan to test the framework in a LoRa based mesh network.

V. Conclusions
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