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Abstract: Federated learning (FL) is a technique that allows multiple clients to collaboratively train
a global model without sharing their sensitive and bandwidth-hungry data. This paper presents
a joint early client termination and local epoch adjustment for FL. We consider the challenges of
heterogeneous Internet of Things (IoT) environments including non-independent and identically
distributed (non-IID) data as well as diverse computing and communication capabilities. The goal is
to strike the best tradeoff among three conflicting objectives, namely global model accuracy, training
latency and communication cost. We first leverage the balanced-MixUp technique to mitigate the
influence of non-IID data on the FL convergence rate. A weighted sum optimization problem is
then formulated and solved via our proposed FL double deep reinforcement learning (FedDdrl)
framework, which outputs a dual action. The former indicates whether a participating FL client
is dropped, whereas the latter specifies how long each remaining client needs to complete its local
training task. Simulation results show that FedDdrl outperforms the existing FL scheme in terms of
overall tradeoff. Specifically, FedDdrl achieves higher model accuracy by about 4% while incurring
30% less latency and communication costs.

Keywords: federated learning; client selection; local epoch adjustment; deep reinforcement learning;
Internet of Things

1. Introduction

In the Internet of Things (IoT), each device can collect massive amounts of data
(i.e., measurements and location information) [1]. It is estimated that IoT devices will
generate over 90 zettabytes of data globally by 2025 [2]. These data can be uploaded to a
centralized server, where a new model can be retrained or fine-tuned using the collected
dataset. This method is called centralized learning (CL) since the data must be centralized
at one location for model training. However, privacy concerns make it inconvenient for
devices to share potentially sensitive data with a centralized server (or any other party). For
example, medical images may contain sensitive and private information about patients [3],
which prohibits the collection of such data from multiple healthcare institutions for CL.
Additionally, uploading bandwidth-hungry data requires a high communication cost,
which is not feasible for most IoT devices with network resource constraints [1,4]. In fact,
the data collected by IoT devices could be larger than the model size [4], especially when
dealing with image data.

Federated learning (FL) has emerged as one of the promising candidates to address
this challenge. FL is a technique that trains an algorithm across multiple edge devices
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holding individual local datasets without sharing or exchanging them. First, each IoT
device (client) uses its locally collected data to train a local model. After training, each
IoT device uploads its locally trained models to an FL server for aggregation. A new
global model is generated, which is trained using data from all participating clients without
actually sharing the sensitive and bandwidth-hungry data. Thus, FL addresses data privacy
concerns by training a global model in distributed environments. FL has since been applied
in various applications, ranging from mobile keyboard prediction [5] to natural disaster
classification [6,7] and medical image segmentation [3]. Using FL, Google trained its mobile
keyboard prediction using 600 million sentences from a surprising amount of 1.5 million
clients [5]. In addition, Intel released its production-ready and open-source FL (OpenFL)
framework [8]. OpenFL is used in the Federated Tumor Segmentation (FeTS) initiative,
which is a program participated in by 56 clinical sites around the globe to train tumor
segmentation models via FL. Experiments show that FL models can reach 99% of CL model
without sharing the sensitive data [3]. These large-scale real-life applications proved the
huge economic value of FL.

FL coupled with the IoT has huge potential for real-world application. For instance,
research works [9–11] combined FL with industrial IoT (IIoT), creating an industrial-grade
hierarchical FL framework. Hierarchical FL is a three-layer architecture FL framework
composed of clients, edge servers and a cloud server. Regular FL is performed between
the edge server and its corresponding client device. Upon model aggregation at the edge
servers, the aggregated models are then uploaded to the cloud for global model aggregation.
Experiments show hierarchical FL to be superior to a regular FL, with lower training latency
and better convergence [12]. This is because the model aggregation at the client edge before
global model aggregation can significantly reduce the training divergence. Due to the
robustness of hierarchical FL, it has also been exploited to empower digital twins [10,13].
In this study, we only focus on regular FL, which is the fundamental building block for any
sophisticated FL framework.

Despite huge potential, FL still faces several challenges from practical implementation:
(1) model convergence in the presence of a non-independent and identically distributed
(non-IID) dataset, (2) computing efficiency and (3) communication efficiency [14,15]. First,
data is usually not uniformly distributed across IoT devices. Realistically, each IoT device
has a unique data distribution and can be considered non-IID, whereas the global popula-
tion (if the data is centralized) would be IID. According to [16], the earth mover’s distance
(EMD) between the local client data distribution and the global population is the main
reason the FL model diverges from the global optima solution. This is also termed weight
divergence between FL and CL models, which greatly reduces the convergence rate of FL
models [16]. Additionally, the heterogeneity of computing and communication resources
in IoT networks hinders resource utilization efficiency. In most studies, except [17,18], the
local epoch number is set to be the same for all client devices disregarding their computing
constraints. As a result, devices with stronger computing power often have to wait for the
straggler devices to complete their training, which drastically increases the overall training
latency. Moreover, some clients may not have access to high-speed networks, making local
model uploading slow or unrealistic.

Many previous studies aimed to tackle the three challenges from different viewpoints.
However, optimizing one of the objectives might deteriorate the other objectives [14]. Deep
reinforcement learning (DRL) has recently been exploited for FL resource optimization.
However, to the best of our knowledge, none of the DRL-based FL frameworks allows
dynamic local epoch adjustment. Past studies [9,10,14,19–21] only exploited DRL to select
clients that fulfil the resource constraints without introducing a tuning mechanism to adjust
the local training epoch for clients with limited computing power.

To this end, we present federated double deep reinforcement learning (FedDdrl).
FedDdrl exploits the double DRL (DDRL) framework, which uses two DRL agents to find
the optimal client selection and local epoch adjustment policies. Our objective was to
maximize the global model’s accuracy while minimizing the FL system’s training latency
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and communication cost. We first formulated the FL protocol as a Markov Decision Process
(MDP). We then adopted two DRLs based on Value Decomposition Networks (VDNs) as
the policy networks. To speed up the convergence speed, we adopted the recently proposed
balanced-MixUp [22] augmentation technique to mitigate weight divergence. Simulation
results showed that our FedDdrl algorithm improved model accuracy with lower training
latency and communication cost. Note that FL facilitates edge computing, which is one
of the goals of the ASEAN IVO project titled “Context-Aware Disaster Mitigation using
Mobile Edge Computing and Wireless Mesh Network”.

We summarize our contributions as follows.

1. We modeled the FL system as an MDP. Then, we proposed to use a DDRL frame-
work for adaptive early client termination and local epoch adjustment, to maximize
the global model accuracy while minimizing the training latency and communica-
tion costs.

2. We demonstrated our proposed algorithm in a non-IID setting on MNIST, CIFAR-10
and CrisisIBD datasets. We showed that our solution could outperform existing
methods in terms of global model accuracy with shorter training latency and lower
communication costs.

3. We explored the influence of balanced-MixUp in the FL system. In most settings,
balanced-MixUp could mitigate weight divergence and improve convergence speed.

The rest of the paper is organized as follows. Section 2 describes the related work.
Section 3 discusses the system model and problem formulation. Section 4 presents the pro-
posed solution. Section 5 shows the experimental setup, followed by the simulation results
and discussion. Section 6 concludes the paper and outlines future research directions.

2. Related Work

This section reviews existing works on FL and DRL-based FL to provide insights into
the current trend in FL. Then, we discuss the limitation of each algorithm. Lastly, we also
elaborate on the weight divergence problem in FL, which is a common problem faced by
all FL algorithms.

2.1. Federated Learning and Deep Reinforcement Learning

Some of the commonly used FL algorithms include FedAvg [4], FedProx [23] and
FedNova [17]. FedAvg was the first practical implementation of FL. In each communication
round, the server sends the global model to N randomly selected clients. Each client trains
the model using its local dataset. Then, each client uploads its locally trained model to
the server, where the server averages the received local models’ weights as the new global
model. It has since become the de facto approach for FL and is widely used in various
applications [3,5–7]. FedProx presents a reparameterization of FedAvg by introducing an
additional L2 regularization term in the local objective function. The regularization term
limits the distance between the local and global models, preventing local updates from
diverging from global optima. A hyperparameter µ controls the weight of the regularization
term. Overall, the modification can be easily performed on the existing FedAvg algorithm
while improving model accuracy on non-IID datasets. However, it introduces additional
computing overhead, leading to longer training latency. On the other hand, FedNova
improves FedAvg in the aggregation stage. It allows each n ∈ N client to conduct a
different number of local steps. This allows clients with higher computing resources to
conduct more training while waiting for others to complete training. To ensure that the
global updates are not biased, each local update is normalized and scaled according to
the number of local steps conducted before they are averaged into the new global model.
FedNova introduces negligible computation overhead compared to FedAvg while handling
computing resources heterogeneity in FL systems. However, all the above algorithms are
limited to handling statistical heterogeneity (non-IID dataset) and computing resources
heterogeneity. Other heuristic algorithms have been proposed to optimize client selection
in FL systems with heterogeneous network and/or energy resources [24,25]. However,
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heuristic solutions could only deliver sub-optimal performance since they often rely on
qualitative analysis without exploring the optimal performance [14].

DRL has been widely applied to solve optimization problems involving complex
sequential decision-making, such as playing Atari games [26], multiplayer games [27] and
chess [28]. Since an FL procedure can be modelled as an MDP, it can also be optimized
using DRL. FAVOR is one of the first research works to optimize FL using DRL [21]. They
observed an implicit connection between the distribution of a local client dataset and
the model weights trained on those data. Using the model weights collected from each
participating client, a DRL agent can learn to select suitable clients for the next round of
training. After proving DRL success in FL optimization, multiple studies [9,10,14,19,20,29]
have exploited DRL in FL resource allocation problems. For instance, [9,10,14,19] used DRL
to jointly optimize computing and network resources in an FL framework while retaining
the global model’s accuracy. These studies employed a DRL-based client selection policy
or early client termination policy. Such a policy is responsible for selecting the best subset
of clients for each round of training by optimizing the tradeoff between model accuracy
and resource allocation. On the other hand, [29] optimized only the network resources by
quantizing the model weights before uploading them to the FL server. However, none of
the DRL-based FL frameworks described above allow dynamic local epoch adjustment.
These frameworks fixed the same local epochs for all clients, disregarding their computing
cost and training latency. With dynamic local epoch adjustment, clients with higher
computing resources can conduct more training epochs. On the contrary, clients with
limited computing power can train with fewer epochs.

Table 1 summarizes the key features of the aforementioned FL and DRL-based FL
algorithms. In short, we noticed an ongoing trend of utilizing DRL to optimize the com-
puting and network resources in the FL framework. Most of them relied only on client
selection or early client termination techniques. As a result, such a method often rejects
clients with limited computing power to prevent these devices from dragging the overall
FL training latency. Even when such devices are selected, those with stronger computing
power will finish training earlier and remain idle while waiting for the slower ones to
complete training. However, these devices may contain crucial training data that is essential
for FL convergence. Ideally, these devices should participate in FL training but with a
lower local training epoch and vice versa. To the best of our knowledge, no DRL-based
FL algorithms adopt DRL for automated local epoch adjustment. On the other hand,
existing FL algorithms such as FedNova rely on manual adjustment to set devices with
stronger computing power with a higher local epoch. Hence, an exciting potential exists
for incorporating DRL-based dynamic local epoch adjustments for automated calibration.

Table 1. Features of existing FL and DRL-based FL algorithms.

Method Resource Optimization Client
Selection

Local Epoch
Adjustment

FedAvg [4] - Random Fixed

FedProx [23] - Random Fixed

FedNova [17] Computing Random Flexible

FAVOR [21] Computing DRL Agent Fixed

TP-DDPG [9] Computing + Communication DRL Agent Fixed

Research work [10] Computing + Communication DRL Agent Fixed

FedMarl [14] Computing + Communication DRL Agent Fixed

Research work [19] Computing + Communication DRL Agent Fixed

Research work [20] Computing + Communication Random Fixed

Research work [29] Communication Random Fixed

Proposed FedDdrl Computing + Communication DRL Agent DRL Agent
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2.2. Weight Divergence in Federated Learning

Weight divergence is the difference between FL model weights wFL
t and CL model

weights wCL
t . An ideal level of weight divergence in FL could exploit the rich decentralized

data, resulting in a better performance. For instance, FL outperforms its CL counterpart
in various applications, including drug discovery [30], disaster classification [7] and au-
tonomous driving object detection [31]. However, in extreme non-IID cases where the local
client data distribution pk is far from the global data distribution p, the highly diverged
local weight updates could lead to bad aggregated solutions which are far from the global
optimum solution. This is especially true in IoT networks, where each IoT device has a
unique data distribution and can be considered non-IID [1]. According to [16], the main
source of weight divergence is the earth mover’s distance (EMD) between pk and p, de-
noted as ∑nc

i=1 ‖ pk(y = i)− p(y = i) ‖, where nc denotes the total number of classes. In
general, weight divergence is inevitable since pk and p are almost guaranteed to be different
in a real-life setting. Figure 1 shows an example of weight divergence between FedAvg and
CL models.
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Figure 1. Weight divergence between wFL
t and wCL

t is inevitable even if both models have the same
initialization weights.

Generally, only a fraction of the total clients is selected for training per communication
round, t, to reduce the total communication cost in FL. Let C denote the total number of
participating clients per round. When C is low, it is difficult to ensure the sampled data
resemble the global data distribution. This also leads to high EMD between pk and p,
which again contributes to the divergence of wFL

t from wCL
t . Let At be the accuracy of the

global model at communication round t ∈ T. Figure 2 shows the accuracy curve of FedAvg
models trained on a non-IID CIFAR-10 dataset using C = 5 and C = 10. First, the average
accuracy of the global model after t = 15 communication round was 62.73% and 72.79% for
C = 5 and C = 10, respectively. Additionally, the fluctuation and standard deviation of the
accuracy curve were higher when C = 5 as compared to C = 10. It is shown that FedAvg
(or FL in general) had inferior performance when the number of participating clients per
round is low.

Recent studies have contributed various solutions to mitigate weight divergence.
For instance, the FedProx [23] mentioned earlier adds a regularization term to the local
subproblem to prevent the local updates from diverging away from the global FL model.
This method, in turn, hopes to ensure the aggregated global FL model weights wFL

t are close
to wCL

t . Albeit effective, FedProx requires higher computing costs and a longer training
time [32]. On the other hand, [16] proposed partial global sharing of local data to reduce
EMD between client data distribution and the global populations. However, this induces
high communication costs for data sharing and raises privacy concerns.
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Meanwhile, methods that employ adaptive client selection or early client termination
(i.e., FedMarl) aim to tackle weight divergence via careful client selection. For each commu-
nication round, FedMarl will only select a subset of the C clients for training. Ideally, only
the selected clients are useful for training, while the rest are not. Effectively, this means that
C is not constant for each communication round t. However, a lower C may lead to less
steady convergence based on Figure 2. Thus, FedMarl is expected to handle the careful
dropping of clients considering the EMD between global and local populations while taking
care of other optimizing objectives, such as the training latency and communication cost of
each client. Dropping the wrong clients may lead to large weight divergence, as shown in
Figure 3.
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Figure 3. Ineffective client dropping by FedMarl will lead to large weight divergence. Client
3 (denoted by peach) is dropped from training at communication round T − 2. This causes the
aggregated FL weights wFL

t (denoted by green) to converge toward Client 1 and 2 while diverging
away from the wCL

t .

3. System Model and Problem Formulation

In this section, we present the system model for our FL system and discuss the problem
formulation. Our commonly used symbols are listed in Table 2 for ease of reference.



Sensors 2023, 23, 2494 7 of 26

Table 2. List of key variables defined in the system model.

Notation Definition

t Index of communication round
K The total number of client devices (IoT devices)
N The total number of client devices selected at each communication round
n Index of selected IoT devices at communication round t

Hb
t,n Model broadcasting latency from server to client n

Hp
t,n Probing training latency for client n

Hm
t,n Metadata uploading latency from client n to server

Hu
t,n Model uploading latency from client n to server

Ht Complete training latency for communication round t
Bt

n Communication cost of client n
Bt Total communication cost for communication round t
At Accuracy of the global model at communication round t

∆At Global model’s accuracy improvement
φt Client selection matrix at communication round t
Et Local epoch count matrix at communication round t

3.1. System Model

We considered an FL system with K number of client devices. At communication
round t ∈ T, N number of clients were randomly selected from the K number of clients.
Each communication round consisted of four phases, which are: (1) model broadcasting,
(2) probing training, (3) client dropping and (4) completion of training.

1. Model broadcasting: If t = 1, the FL server will initialize a global model, whereas at
t ≥ 2, the FL server will collect the client models trained at round t− 1 and aggregate
them into a new global model. Then, the FL server will broadcast the global model to
N randomly selected clients.

2. Probing training: Each selected client n ∈ N will perform one epoch of local training
called probing training. The purpose of probing training is to acquire the metadata of
each client. The metadata consist of the client’s states, which will be fed to the DRL
agents for adaptive early client termination and local epoch adjustment. The details of
the client states will be defined later together with the specification of the DRL agents.
After probing training, each client will upload its metadata to the server and proceed
to the next phase.

3. Early client termination: Based on the collected client states, the DRL agents at
the FL server will drop non-essential clients to reduce total latency Ht and total
communication cost Bt for round t. The decision made by DRL agents will be sent to
each client.

4. Completion of training: Only the remaining C clients that are not dropped by the DRL
agent will resume training. Each client n will complete the remaining local training
until Et

n epochs are reached. Each locally trained model will be uploaded to the FL
server for model aggregation.

Let Hp
t,n denote the probing training latency for client n ∈ N at round t ∈ T. Let Hc

t,n
be the complete local training latency for client n at round t, while Hu

t,n denotes the time
taken for client n to upload its local model to the FL server. Let φt

n ∈ {0, 1} denote if client
n is selected by the DRL agent to complete full local training. The total processing latency
Ht and the total communication cost Bt at communication round t can be expressed by
Equations (1) and (2):

Ht = max
1≤n≤N

(
Hc

t,n + Hu
t,n
)
at

n (1)

Bt =
N

∑
n=1

Bt
nφt

n (2)
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Figure 4 depicts the system model for the proposed FL protocol. Note that the model
broadcasting latency Hb

t,n was not included into Ht since it is not part of the FL optimization
problem. Additionally, the time latency to upload client metadata to the server, Hm

t,n, was
ignored. This is because the metadata file size was only 278 bytes, while even a lightweight
MobileNetV2 file is 24.5 megabytes. Thus, Hm

t,n is negligible since Hm
t,n � Hu

t,n.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 27 
 

 

latency 𝐻௧ and the total communication cost 𝐵௧ at communication round 𝑡 can be ex-
pressed by Equations (1) and (2): 𝐻௧ = 𝑚𝑎𝑥ଵஸ௡ஸே൫𝐻௧,௡௖ + 𝐻௧,௡௨ ൯ 𝑎௡௧  (1)

𝐵௧ =  ෍ 𝐵௡௧𝜙௡௧ே
௡ୀଵ  (2)

Figure 4 depicts the system model for the proposed FL protocol. Note that the model 
broadcasting latency 𝐻௧,௡௕  was not included into 𝐻௧ since it is not part of the FL optimi-
zation problem. Additionally, the time latency to upload client metadata to the server, 𝐻௧,௡௠ , was ignored. This is because the metadata file size was only 278 bytes, while even a 
lightweight MobileNetV2 file is 24.5 megabytes. Thus, 𝐻௧,௡௠  is negligible since 𝐻௧,௡௠ ≪ 𝐻௧,௡௨ . 

 
Figure 4. The proposed FL protocol’s system model consists of four phases in each communication 
round: (1) model broadcasting, (2) probing training, (3) early client termination and (4) completion 
of training. 

3.2. Problem Formulation 
Our objective was to maximize the cumulative 𝐴௧ improvement while minimizing 

the 𝐻௧  and 𝐵௧ . Let 𝝓௧ = [𝜙௡௧ ] and 𝑬௧ = [𝐸௡௧ ] be a 𝑇 × 𝑁  matrix for client termination 
and local epoch adjustment decided by the DRL agents, respectively. We formulated the 
problem as a weighted sum optimization problem, as formulated below: 

max𝝓೟,𝑬೟  𝔼 ൥෍ 𝑤ଵ[𝑈(𝐴௧) − 𝑈(𝐴௧ିଵ)] − (𝑤ଶ𝐵௧ + 𝑤ଷ𝐻௧)்
௧ୀଵ ൩ (3)

where 𝑤ଵ, 𝑤ଶ and 𝑤ଷ are the weights to control the importance of each objective. To en-
sure 𝐴௧ can improve even if it is small near the end of the FL process, a utility function 
denoted as 𝑈(∙) was used to reshape the 𝐴௧ of the global model. In FedMarl, 𝑈(𝐴௧) is 
defined in Equation (4): 𝑈(𝐴௧) =  201 + 𝑒଴.ଷହ(ଵି஺೟) − 10 (4)

One problem with the original 𝑈(𝐴௧) is that it only tells us the transformed value of 𝐴௧ . The entire 𝑤ଵ[𝑈(𝐴௧) − 𝑈(𝐴௧ିଵ)] can be reparametrized into a single 𝑤ଵ𝑈(∆𝐴௧) ex-
pression, which could directly tell us the gain/penalty for ∆𝐴௧. First, the 𝑈(𝐴௧) equation 

Figure 4. The proposed FL protocol’s system model consists of four phases in each communication
round: (1) model broadcasting, (2) probing training, (3) early client termination and (4) completion
of training.

3.2. Problem Formulation

Our objective was to maximize the cumulative At improvement while minimizing the
Ht and Bt. Let φt =

[
φt

n
]

and Et =
[
Et

n
]

be a T × N matrix for client termination and local
epoch adjustment decided by the DRL agents, respectively. We formulated the problem as
a weighted sum optimization problem, as formulated below:

max
φt ,Et

E
[

T

∑
t=1

w1[U(At)−U(At−1)]− (w2Bt + w3Ht)

]
(3)

where w1, w2 and w3 are the weights to control the importance of each objective. To ensure
At can improve even if it is small near the end of the FL process, a utility function denoted
as U(·) was used to reshape the At of the global model. In FedMarl, U(At) is defined in
Equation (4):

U(At) =
20

1 + e0.35(1−At)
− 10 (4)

One problem with the original U(At) is that it only tells us the transformed value
of At. The entire w1[U(At)−U(At−1)] can be reparametrized into a single w1U(∆At)
expression, which could directly tell us the gain/penalty for ∆At. First, the U(At) equation
is simplified in the given range 0 ≤ At ≤ 1 since At is bounded between 0 and 100%. In
this range, U(At) can be approximated as a straight line, as shown in Figure 5.
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To approximate U(At) as a straight line in the given range, the gradient and y-intercept
of the graph are required. The gradient is denoted as U′(At), which is the first derivative
of the U(At) function. U′(At) can be written as in Equation (5):

U′(At) =
7e0.35(1−At)(

1 + e0.35(1−At)
)2 (5)

The mean of the gradient, U′(At), within the range can be formulated as in Equation (6):

U′(At)

= 1
1−0

∫ 1
0 U′(At)dt

=
∫ 1

0
7e0.35(1−At)

(1+e0.35(1−At))
2 dt

= 1.732

(6)

The y-intercept of U(At), denoted as U(At = 0), can be written as:

U(At = 0)
= 20

1+e0.35(1−0) − 10
= −1.732

(7)

Hence, U(At) can be simplified into:

(At)

= U′(At) At + U(At = 0)
= 1.732 At − 1.732

(8)
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Thus, U(∆At) can be defined as:

U(∆At)
∼= U(At)−U(At−1)
= (1.732 At − 1.732)− (1.732 At−1 − 1.732)
= 1.732( At − At−1)
= 1.732 ∆At

(9)

U(∆At) is more analyzable than U(At)−U(At−1) since the two expressions have
been collapsed into one equation. At this end, we can define our optimization problem as:

max
φt ,Et

E
[

T

∑
t=1

w1U(∆At)− (w2Bt + w3Ht)

]
(10a)

s.t. w1, w2, w3 > 0
(10b)

E
(

w3

T

∑
t=1

Ht

)
> Ω1E

(
w2

T

∑
t=1

Bt

)
(10c)

w1U(∆At = 0.01) > Ω2E(w2Bt + w3Ht) (10d)

E
(

w1

T

∑
t=1

U(∆At)

)
> Ω3

(
w2

T

∑
t=1

Bt + w3

T

∑
t=1

Ht

)
(10e)

where (10b–e) are the constraints for our optimization problem. Constraint (10b) is to
make sure the sign of U(∆At), Bt and Ht are not inverted. Meanwhile, constraint (10c) is
to control the ratio of ∑T

t=1 Bt to ∑T
t=1 Ht. Furthermore, constraint (10d) is to make sure

w1U(∆At) gain will not be outweighed (w2Bt + w3Ht) penalties when ∆At is as small as
0.01. Lastly, constraint (10e) makes sure ∑T

t=1 w1U(∆At) is at least Ω3 greater than the
penalty terms. Note that (10c-e) are additional constraints that are not imposed on the
original FedMarl optimization problem.

In FedMarl, the w1, w2 and w3 are treated as hyperparameters. FL engineers have
to manually adjust the weightage of each objective until the desired outcome is achieved.
However, the weightage w1, w2 and w3 does not directly translate to the weightage of each
objective ∑T

t=1 U(∆At), ∑T
t=1 Bt and ∑T

t=1 Ht. For instance, the ratio of w2Bt to w3Ht does
not directly equate to the ratio of w2 ∑T

t=1 Bt to w3 ∑T
t=1 Ht. This is because the values of Ht

and Bt are instantaneous and stochastic, which means that the ratio of w3Ht to w2Bt at two
different t is most likely different. On the other hand, E

(
∑T

t=1 Ht

)
and E

(
w2 ∑T

t=1 Bt

)
are

more consistent. Taking the ratio of these two components is more reliable.
We can find the best w1, w2 and w3 by setting the desired Ω1, Ω2 and Ω3. We set

Ω1 = 0.2, Ω2 = 0.3 and Ω3 = 1.0. We needed to run one iteration of FL using FedAvg
to get the traces value of ∆At, Bt and Ht for t ∈ T since these values are dependant on
the target IoT environment setup. Based on the traces value, we could follow Algorithm
1 to acquire the suitable w1, w2 and w3. In our experiment setup, we found the desired
hyperparameters to be (w1 = 2.9, w2 = 0.1 and w3 = 0.2).
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Algorithm 1 Search for the best w1, w2 and w3

1. Input: Set Ω1 = 0.2, Ω2 = 0.3, Ω3 = 1.0
2. Output: The best w1, w2, w3

3:
Run one complete iteration of FedAvg with T = 15 communication rounds and record the
traces value of ∆At, Bt and Ht for t ∈ T.

4:
Initialize an empty set cache = {} to store all ((w1, w2, w3), R) that satisfied constraints
(10c-e)R is the weighted-sum optimization goal w1U(∆At)− (w2Bt + w3Ht)

5: for w1 = 0, 0.1, . . . 3.0 do
6: for w2 = 0, 0.1, . . . 1.0 do
7: for w3 = 0, 0.1, . . . 1.0 do

8:
Compute E

[
w1

T
∑

t=1
U(∆At)

]
, E
[

w2
T
∑

t=1
Bt

]
, E
[

w3
T
∑

t=1
Ht

]
,

E(w2Bt + w3Ht) based on the recorded traces value, where
we assume E(x) , x

9: if (10c-e) are satisfied:

10:

Compute

R =
T
∑

t=1
w1U(∆At)− (w2Bt + w3Ht)

from the traces value
11: Record ((w1, w2, w3), R) in cache
12: end if
13: end for
14: end for
15. end for

16:
From cache, find out which combination of (w1, w2, w3) results in the smallest R. This can be
treated as finding the worse-case max E[R].

17: returnw1, w2, w3

4. Proposed Method

We propose FedDdrl, which exploits two DRL policy networks for FL optimization.
Specifically, we adopted VDNs as the DRL policy networks for FedDdrl. We elaborate in
detail on how we formulated the problem as MDP, including the design of state space,
action space and reward of the algorithm. In addition, we also exploited the recently
proposed balanced-MixUp to mitigate the impact of weight divergence and speed up the
FL convergence speed.

4.1. Deep Reinforcement Learning for Federated Learning Optimization

The proposed optimization problem in Equation (10a–e) is a 0–1 Multidimensional
Knapsack Problem (MKP). The items to be put in knapsacks are the client devices n with
complete training latency Hc

t,n, model uploading latency Hu
t,n, communication cost Bt

n and
data size Dn. The total capacity of the knapsack equals the total communication cost
Bt = ∑N

n Bt
nat

n, where at
n is the binary indicator of item (client) n. When at

n is set to 1, item
(client) n is selected. Otherwise, at

n is set to 0. The total weight of the knapsack has a lower
bound which has to fulfil the minimum requirement of accuracy constraint(10d). Our goal
is to select a subset of clients C (1 < C ≤ N) for complete training in each communication
round to maximize the total accuracy gain ∑T

t=1 ∆At while minimizing the total latency
∑T

t=1 Ht and total communication cost ∑T
t=1 Bt of the entire FL training. Thus, the proposed

optimization is NP-hard.
To solve problem (10), our FedDdrl algorithm adopted a double DRL framework for

our optimization problem. Specifically, we formulated the DRL policy network for both
tasks using a multi-agent reinforcement learning (MARL) approach. In particular, VDN has
proven itself in the recent literature [33] to be a promising candidate for MARL problems. A
VDN network consists of N agents, in which each agent n ∈ N uses a deep neural network
(DNN) parametrized with θ to implement the Q-function Qθ

n(s, a) = E[Rt
∣∣s = st

n, a = at
n] .

At each timestep t, each agent n observes its states st
n and selects the optimal action at

n
with the maximum Q-value. Let st =

{
st

n
}

and at =
{

at
n
}

represent the states and actions
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collected from all agents n ∈ N at timestep t, respectively. The joint Q-function Qtot(·)
for the multi-agent VDN system can be represented by the elementwise summation of
all the individual Q-functions, where Qtot(st, at) = ∑n Qθ

n
(
st

n, at
n
)
. In FedDdrl, we set

each agent in both VDN as a simple two-layer multi-layer perceptron (MLP), which is
cheap to implement. All MLPs in each VDN share their weights to prevent the lazy
agent problem [33].

As illustrated in Figure 6, the first VDN network takes the client states st (which will be
detailed later) to obtain the optimal client termination matrix φt. The second VDN network
takes the same client states st to obtain the optimal local training epoch per client Et.
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4.1.1. Early Client Termination

Inspired by the work of FedMarl [14], the first VDN network was employed to learn
the optimal policy for early client termination matrix φt at round t. We reformulated the
problem as an MDP with the following state, action and reward to train a VDN network
with N = 10 agents.

1. State st State st =
{

st
n
}

consisted of the client states for each VDN agent. Each agent
n consisted of six components: (i) the probing loss Lt

n, (ii) probing training latencies
Hp

t,n, (iii) model uploading latencies Hu
t,n, (iv) communication cost from client to server

Bt
n, (v) local training dataset size |Dn| and (vi) current communication round index t.

The state vector for agent c can be written as Equation (11):

st
n =

[
Lt

n, Hp
t,n, Hu

t,n, Bt
n, |Dn|, t

]
(11)

It is noteworthy that since each agent in the VDN only has access to its own local ob-
servation instead of the full observed environment, the policy has to incorporate past
agent observations from history [33]. Thus, the historical values of probing latencies
Hp

t,n =
[

Hp
t−∆Tp ,n, . . . , Hp

t,n

]
and model uploading latencies

Hu
t,n =

[
Hu

t−∆Tu−1,n, . . . , Hu
t−1,n

]
were included in the state vector to mitigate the

limitation of local observation. Note that ∆Tp and ∆Tu are the sizes of the historical
information of probing latencies and model uploading latencies, respectively.
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2. Action φt: Action φt =
{

φt
n
}

comprised the client termination decision for each VDN
agent. The action space for client termination was φt

n = {0, 1}, where 0 indicates the
termination of the client and 1 indicates the client is selected for complete training.

3. Reward r1
t : A vanilla reward for VDN 1, denoted as r1

t , can be adopted from the FL
optimization problem as described in Equation (12):

r1
t = w1U(∆At)− (w2Bt + w3Ht) (12)

where the system is rewarded with accuracy improvement ∆At and penalties for
Bt and Ht. However, Equation (12) has one obvious limitation. When ∆At → 0 ,
the lim

∆At→0
w1U(∆At) = 0, regardless of the magnitude of w1. If w1U(∆At)→ 0 , the

reward r1
t ≈ −

(
w2Bt + w3Ht

)
. This causes the optimization problem to diverge from

improving accuracy with the constraint of Bt and Ht to merely the reduction of Bt
and Ht. To show the severeness of this problem, we trained the VDN agents using
the r1

t as defined by Equation (12). Let E[w1U(∆At)] and E[w2Bt + w3Ht] denote
the expected values of accuracy improvement ∆At and penalties (w2Bt + w3Ht),
respectively. For MNIST dataset, the expected values of both components for the last
R = 5 communication rounds can be computed in Equations (13) and (14):

E[w1U(∆At)]|t={T−R, T−R−1, ...T}

= 1
5

T
∑

t=T−5
w1U(∆At)

= 0.0273

(13)

E[w2Bt + w3Ht]|t={T−R, T−R−1, ...T}

= 1
5

T
∑

t=T−5
(w2Bt + w3Ht)

= 0.279

(14)

It is observed that E[w1U(∆At)]� E[w2Bt + w3Ht] for the last five communication
rounds. This is because as training approach the end, the accuracy improvement is
often smaller compared to the earlier stage. Consequently, the VDN agents start to
terminate more clients from complete training, giving way to the reduction of Bt and
Ht. To make sure the agents are motivated to learn even when ∆At → 0 , we can
introduce a bias term b to r1

t . Let b = 3
10 E[w2Bt + w3Ht]. Hence, the reward function

r1
t can be reformulated as shown in Equation (15):

r1
t =

{
rt + b, ∆At > 0

rt, ∆At ≤ 0
, rt = w1U(∆At)− (w2Bt + w3Ht) (15)

Note that we only added the bias term b to the reward rt when ∆At > 0 since it is
intended to encourage accuracy improvement. We did not subtract the bias term b
from the reward rt when ∆At ≤ 0 since the penalty terms are sufficient to penalize
the inferior actions.

4.1.2. Local Epoch Adjustments

The second DRL network was employed to learn the optimal policy for local epoch
adjustments Et at round t. A VDN algorithm with N = 10 agents can be formulated by
defining the state, action and reward as follows:

1. State st: The second VDN shared the same state in Equation (11) since both VDNs
required the same local observation for decision making.

2. Action Et: Action Et =
{

Et
n
}

comprises the local epoch counts for each VDN agent.
The action space is Et

n = {3, 5, 7}. This action aims to exploit client devices with
stronger computation power for more training epochs and vice versa.
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3. Reward r2
t : We adopted Equation (15) as the starting point for the reward function for

VDN 2. However, the communication cost Bt was not part of the optimizing objectives
of VDN 2 since local epoch adjustment is only bounded by the Ht constraint. Hence,
the reward function r2

t for this VDN networks can ignore the Bt penalty. As such, the
r2

t can be defined in Equation (16):

r2
t =

{
rt + b, ∆At > 0

rt, ∆At ≤ 0
, where rt = w1U(∆At)− w3Ht (16)

where we used the same bias term b from (15) for the simplicity’s sake.

As the training converges, VDN 1 will deliver the optimal client selection, and VDN
2 will impart the optimal local epoch number for each client. The overall algorithm for
solving the problem in Equation (10a–e) is summarized in Algorithm 2.

Algorithm 2 FedDdrl Algorithm

1: Input: Initialize VDN 1 Q1
tot and its target network Q1

tot
′

for client selection
φt policy
Initialize VDN 2 Q2

tot and its target network Q2
tot
′

for local epoch
adjustment Et policy

2: Output: Trained Q1
tot and Q2

tot networks
3: Set ε = 1.0
4: for Episode nep = 1, 2, . . . , Nep do
5: Reset the FL environment
6: Initialize a global model w0
7: for communication round t = 1, 2, . . . , T do
8: Randomly select N clients from all K clients
9: Broadcast the global model wt to each selected client
10: for each client n ∈ N in parallel do

11: wn
t ← wt ; Copy the global model as

each client model

12: Update the client model wn
t using the

local training dataset Dn
13: Upload client states st

n to the FL server
14: end for

15: Each agent n in VDN 1 selects the optimal action φ∗t,n= argmax Q1
n
(
st

n, φt
n
)

with a (1− ε) ×
100% probability, else randomly output actions

16: Each agent n in VDN 2 selects the optimal action E∗t,n= argmax Q2
n
(
st

n, Et
n
)

with a (1− ε) ×
100% probability, else randomly output actions

17: Send action φ∗t,n and E∗t,n to each client n ∈ N
18: for each client n ∈ N in parallel do
19: if φ∗t,n = 1:

20:

Continue
updating wn

t
using Dn until
E∗t,n is reached

21: Return
updated wn

t
22: end if
23: end for
24: Aggregate global model wt+1 ← ∑N

i=1
|Di |

∑N
i=1 |Di |

wn
t where i ∈

{
n
∣∣φ∗t,n = 1

}
25: Reward r1

t and r2
t are given to Q1

tot and Q2
tot based on ∆At, Bt, Ht

26: st =
{

st
n
}

, φt =
{

φt
n
}

, Et =
{

Et
n
}

27: Store transitions 1
[
st, φt, r1

t
]

for Q1
tot into memory buffer 1

28: Store transitions 2
[
st, Et, r2

t
]

for Q2
tot into memory buffer 2

29: Sample mini-batches with size nb from memory buffer to train Q1
tot, Q2

tot and Q1
tot
′
, Q2

tot
′

30: Decay ε gradually from 1.0 to 0.1
31: end for
32: end for

4.2. Balanced-MixUp to Mitigate Weight Divergence

In this study, we focused on the non-IID label shift, where the client dataset is heavily
skewed to one of the label classes. The huge EMD between the client data distribution
pk and the global distribution p will contribute to weight divergence, deteriorating the
training efficiency of FL. Thus, the highly imbalanced client dataset has to be handled
wisely. MixUp [34] is a simple yet effective data augmentation technique that could shed
some light on this problem.
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MixUp extends the training data distribution by linearly interpolating between existing
data points, filling the underpopulated areas in the data space. It generates synthetic

training data
(

ˆ
x,

ˆ
y
)

by simply taking the weighted combination of two random data pairs,

(xi, yi) and
(

xj, yj
)
, as shown in Equations (17) and (18):

ˆ
x = λxi + (1− λ)xj (17)

ˆ
y = λyi + (1− λ)yj (18)

where λ ~ Beta(α, α), with α > 0. Despite its simplicity, MixUp has been proven to improve
model calibration and better generalization [35]. Thus, its application has expanded from
image and speech classification tasks [34] to other domains, including image segmenta-
tion [36] and natural language processing [37,38]. However, a vanilla MixUp works poorly
in highly imbalanced datasets [39]. In highly imbalanced datasets, MixUp would end up
sampling the data pairs (xi, yi) and

(
xj, yj

)
from the same class for most of the time since

the sampling is done randomly.
Some recent studies focused on solving the data imbalance problem for MixUp. In

Remix by [39], xi and xj are mixed in the same fashion as MixUp, but yi and yj are
mixed such that the minority class is assigned a higher weight. This method pushes
the decision boundaries away from the minority class, balancing the generalization error
between the majority and minority classes. Balanced-MixUp is another variation of MixUp,
where MixUp is combined with a data-resampling technique to achieve a balanced class
distribution [22]. Specifically, balanced-MixUp combines instance-based sampling and
class-based sampling for the majority and minority classes, respectively. This ensures that
each data pair (xi, yi) and

(
xj, yj

)
always consists of instances from both the majority and

minority classes.
We adopted balanced-MixUp as the augmentation into the formulation of our solution

to address the class imbalanced problem. To the best of our knowledge, we are the first
to integrate balanced-MixUp into FL for weight divergence mitigation. Let (xM, yM)
and (xm, ym) denote the instance pair sampled from the majority and minority classes,
respectively. Balanced-MixUp can be expressed as shown in Equations (19) and (20):

ˆ
x = λxM + (1− λ)xm (19)

ˆ
y = λyM + (1− λ)ym (20)

Balanced-MixUp guarantees that each data pair mixing consists of instances from both
the majority and minority class. Unlike the original balanced-MixUp where λ ~ Beta(1, α),
we adopted λ ~ Beta(α, α) and found it to work better in our study. The best α value may
be different depending on the datasets, which will be detailed in the results section.

5. Simulation Results

This study adopted TensorFlow as the deep learning platform. We adopted three
datasets for FL benchmarking: MNIST, CIFAR-10 and CrisisIBD [40]. First, MNIST is
a relatively simple task under most non-IID settings. It is mainly used to prove that a
novel FL algorithm is at least working. In contrast, CIFAR-10 is a challenging dataset
in non-IID settings, which is strongly encouraged to be included in FL benchmarking
experiments [32]. On the other hand, the CrisisIBD dataset is the benchmark dataset for
various real-world disaster-related image classification tasks. In this study, we adopted the
disaster classification dataset from the dataset (hereinafter referred to as CrisisIBD) as one
of our benchmark datasets. We adopted balanced-MixUp to augment all three datasets.
We found the best α value used by balanced-MixUp was 0.05, 0.4 and 0.2 for MNIST,
CIFAR-10 and CrisisIBD, respectively. We used all three datasets to train a lightweight
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MobileNetV2 [41], which aligned with our goal of developing the FL framework for low-
powered IoT devices. All clients adopted Bt

n = 1∀n, t, similar to the setting in [14].
In this study, we focused on the non-IID label shift as demonstrated in [14,21]. Similarly,

we divided each dataset into K clients. For each client, a fraction σ = 0.8 of the local training
dataset was sampled from one random label (which is the majority label), while the rest
of the training data were sampled uniformly from the remaining labels (which are the
minority labels). We compared our proposed method with FedAvg, FedProx and FedMarl.
The first two algorithms were shown to be robust baselines in non-IID label shift [32] and
are prebuilt in many existing FL frameworks, including Tensorflow Federated [42] and Intel
OpenFL [8]. On the other hand, FedMarl is one of the state-of-the-art FL algorithms [14].
Our FedDdrl aims to outperform all three of the algorithms. The hyperparameters are
listed in Table 3.

Table 3. List of hyperparameters.

Parameters Values

Number of agents in each VDN network, N 10
Total number of clients, K 100

Local training dataset distribution, σ 0.8
Learning rate for VDN network 1 × 10−3

Target network update interval 5
Number of episodes, Nep 40

Number of clients selected for training in each round, C 10
Default number of local epochs (before adjustment by FedDdrl), Et 5

Number of communication rounds, T 15
Batch size to update VDN agents, Nb 32

Initial ε-greedy exploration value 1
Final ε-greedy exploration value 0.1

Replay memory size 300
VDN 1 agent (MLP) size 10 × 256 × 256 × 2
VDN 2 agent (MLP) size 10 × 256 × 256 × 3

Due to limited resources, we only had two hardware devices: (i) an Intel NUC with
an Intel core i7-10710U processor with 4.70 GHz and (ii) a workstation equipped with an
Intel core i7-10875H processor with 2.30 GHz and NVIDIA RTX 2070 SUPER. In total, this
yielded two TensorFlow CPU operators and one TensorFlow GPU operator. However, this
was far from enough to simulate a heterogeneous FL environment with K = 100 clients
if each operator only represents one client. Thus, we carefully devised our experimental
setup, as shown in Figure 7.

To simulate an FL environment with K = 100 clients (IoT devices) and C = 10 selected
clients (before early termination), we set up the experiment as shown below:

1. We created K = 100 client configurations, each consisting of the (i) client’s computing
latency per data, (ii) model upload latency and (iii) local dataset identity (ID) number.
To closely simulate the heterogeneity of resources in an IoT network as in [14], the com-
puting latency per data in each client configuration can be any of {0.25, 0.50, 0.75} sec-
onds, while the model upload latency can be any of {1.00, 1.25, 1.75, 2.00} seconds.

2. CPU 1, CPU 2 and GPU simulated three, three and four clients, respectively. The
simulated clients represent the C = 10 randomly selected clients from the total
K = 100 clients in each communication round t.

3. In each communication round t, 10 client configurations were randomly sampled out
from the configuration pools. The 10 simulated clients (in CPU 1, CPU 2 and GPU)
were configured according to the selected client configuration. This entire process
(3) is equivalent to the FL process of randomly selected 10 clients with unique local
datasets and resources.

4. After step (3), each simulated client proceeded with its training. If the FL algorithm
was FedAvg or FedProx, all 10 simulated clients underwent complete training of
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Et = 5 local epochs. On the contrary, if the FL algorithm was FedMarl or FedDdrl, only
the simulated clients that were not terminated by the FedMarl/FedDdrl completed
their local training based on E∗t,n= argmax Q2

n
(
st

n, Et
n
)

by VDN 2.
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5.1. Results and Ablation Study

We compared the performance of FedDdrl with other baselines in all three objectives
of the optimization problem, which are the (i) model accuracy, (ii) training latency and
(iii) communication efficiency.

5.1.1. Model Accuracy

Table 4 shows the model accuracy trained using each FL setting after T = 15 commu-
nication rounds. We also conducted an ablation study showing how FedDdrl improves
beyond FedMarl.

Table 4. Model accuracy for each FL setting. Bolded indicates the best score, while underlined
indicates the second-best score.

Method MNIST
(K=100)

CIFAR-10
(K=100)

CrisisIBD
(K=98)

FedAvg 94.6% ± 2.1% 72.8% ± 3.9% 43.2% ± 5.5%

FedAvg with Balanced-MixUp 93.2% ± 2.0% 76.5% ± 1.7% 60.2% ± 1.5%

FedProx (µ = 0.01) 95.6% ± 0.5% 74.5% ± 0.2% 48.1% ± 2.9%

FedProx (µ = 0.01) with Balanced-MixUp 95.4% ± 0.7% 77.8% ± 0.5% 60.7% ± 2.0%

A: FedMarl (w1=1.0,
w2=0.1, w3=0.2) 91.5% ± 1.1% 65.5% ± 2.3% 42.4% ± 3.6%

B: A + Optimized (w1=2.9,
w2=0.1, w3=0.2) 93.2% ± 1.4% 71.7% ± 2.9% 44.4% ± 3.9%

C: B + Balanced-MixUp 93.3% ± 1.2% 75.0% ± 2.6% 63.3% ± 2.0%

D: C + Local Epoch
Adjustment (FedDdrl) 94.9% ± 1.1% 78.2% ± 2.4% 64.2% ± 1.4%

Setting A in Table 4 was our implementation of FedMarl with the original hyperpa-
rameters (w1 = 1.0, w2 = 0.1, w3 = 0.2). In Setting B, we proved that FedMarl performance
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could be improved using our hyperparameters (w1 = 2.9, w2 = 0.1, w3 = 0.2). However,
we found that its accuracy was still far behind both FedAvg and FedProx. This is because
MobileNetV2 is a lightweight model which is easy to overfit [41]. In FedAvg and FedProx,
the total number of clients selected for training is always C = 10 in each communica-
tion round t. During aggregation, there is a sufficient amount of client models overfitted
for different classes, which, when aggregated, can generate a regularization effect, thus
mitigating the weight divergence caused by overfitting. This is not the case for FedMarl,
which does not have a fixed C for each round. We argue that since the original FedMarl
was not tested on MobileNetV2, it was able to perform better than FedAvg and FedProx.
Applying balanced-MixUp could significantly mitigate this problem, as shown in Setting
C. The reasoning on how balanced-MixUp helps weight divergence mitigation is detailed
in Section 5.5.

Setting D was our FedDdrl, where we added another VDN for local epoch adjustment.
FedDdrl allows client devices to train for more epochs when required and vice versa. This
allows FedDdrl to converge faster than FedAvg and FedProx for most cases, even when
it is not utilizing all clients at each communication round. FedDdrl outperformed other
FL algorithms in both the challenging CIFAR-10 and CrisisIBD datasets, and it was the
second-best for MNIST. We suspect FedDdrl is slightly overengineered for an easy task like
MNIST. Nevertheless, it was still very robust considering that real-world data is often not as
simple as MNIST and is instead more challenging like the CIFAR-10 and CrisisIBD datasets.

5.1.2. Training Latency

Figure 8 shows the normalized training latency for each FL algorithm (with balanced-
MixUp) on all three datasets. Our FedDdrl outperformed all three other algorithms in all
datasets. This is promising since FedDdrl allows dynamic local adjustment. The FedDdrl
will sometimes increase the local epoch from five to seven. However, the extra training
latency is balanced when FedDdrl decreases the local epoch from five to three, especially in
the early communication round when the MobileNetV2 is still learning lower-level features.
FedMarl followed closely behind FedDdrl. This is mainly because both FedDdrl and
FedMarl can terminate clients with longer probing latencies. On the other hand, FedAvg
had a moderate performance in terms of training latency. It was not as fast as FedMarl
and FedDdrl, but it was still significantly faster than FedProx. As expected, FedProx had
the longest training latency compared to other FL algorithms, which is aligned with the
observation by [32]. This is mainly due to the extra computing cost required to compute
the L2 distance between the client and the global model. Hence, applying FedProx in
low-powered devices (i.e., IoT devices) with limited computation power is not feasible.
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5.1.3. Communication Efficiency

Figure 9 shows the normalized communication costs of all FL algorithms in the three
datasets. FedDdrl and FedMarl were significantly more efficient than FedAvg and FedProx
in total communication costs. There was no clear winner between FedDdrl and FedMarl
regarding communication efficiency. However, FedDdrl outperformed FedMarl in CIFAR-
10 and CrisisIBD datasets, which are significantly harder tasks compared to MNIST. Thus,
we argue that FedDdrl is the best algorithm. On the other hand, FedAvg and FedProx
have a fixed number of clients selected in each round. Since we assume Bt

n = 1∀n, t, both
algorithms have the same total communication costs.
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5.2. Strategy Learned by FedDdrl

In this section, we analyze the strategies learned by the FedDdrl algorithm to fully
utilized its computing resources while reducing communication costs. Figures 10 and 11
show the early client termination strategy learned by FedDdrl. Blue dots indicate that the
client was chosen for complete training, while red dots indicate early client termination.

First, FedDdrl generally picked lesser clients for complete training in the early phase
of FL training. From Figures 10 and 11, it is noticed that only three clients were selected for
complete training in the first two communication rounds t = {1, 2}. This is because DNNs
usually learn the low-complexity features before learning the higher-complexity features.
The former is more robust to noises [43] and can be learned with fewer data [14]. This
allows FedDdrl to reduce communication costs by terminating most clients from training
in the early phase, where the MobileNetV2 is still learning low-level features. Starting from
round t = 3 to t = 6, the number of clients that underwent complete training increased
from 6 to 10. This indicates that MobileNetV2 was beginning to learn higher-level features
that require more training data. For the remaining rounds, the number of selected clients
was roughly five. Second, FedDdrl preferred clients with a lower probing loss for complete
training, which is aligned with the findings in FedMarl [14]. Third, FedDdrl tended to pick
clients with shorter probing latency for complete training to reduce the total latency of
FL training.

As mentioned earlier, conventional FL training sets the same local epoch En
t for all

clients, disregarding their computing resources. Hence, one of the contributions of FedDdrl
is to learn the optimal strategy to adjust the local epoch count for each client dynamically.
In Figure 12, we plotted the local epoch count corresponding to each selected client from
the scenario in Figure 11. Bigger dots indicate that a higher local epoch count was assigned
for the corresponding clients. It was found that FedDdrl tended to set a lower epoch count
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(smaller dots) for clients with higher probing latency. This method could reduce the total
training latency since clients with limited computing power did not have to participate
in long training epochs. On the other hand, clients with lower probing latency tended
to have a higher epoch count. This strategy can fully utilize the computing resource of
clients with stronger computing power since they can continue training while waiting for
other clients to finish. However, this was not always the case, as shown in Figure 13. On
certain occasions, FedDdrl set a high epoch count for clients with long probing latency if
the data in these clients were crucial for FL convergence. In any case, FedDdrl was superior
to FedMarl, where the FedMarl could either select or terminate a client without the third
option of selecting the clients and dynamically tuning the local epoch.
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5.3. How FedDdrl Optimizes the Three Objectives Simultaneously

The objectives of FedDdrl are to (i) maximize the global model’s accuracy while
minimizing the (ii) FL system’s training latency and (iii) communication cost. First, VDN 1
will perform early client termination to terminate clients who are not essential for training.
By doing so, we can reduce the total communication cost. Additionally, VDN 1 prefers
clients with lower probing latency (which also translates to lower training latency). Thus,
VDN 1 plays a huge role in reducing both communication costs and training latency. Second,
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VDN 2 will dynamically adjust the local epoch count. Clients with limited computing
power only have to train with a lesser epoch, so they can finish training earlier. Meanwhile,
VDN 2 assigns a higher epoch count to clients with stronger computing power, so they can
continue training while waiting for the slower clients. Hence, VDN 2 reduces the training
latency and fully utilizes clients with stronger computing power.

Lastly, the global model’s accuracy must be retained. When VDN 1 performs client
termination, it is essentially reducing C. Intuitively, reducing C seems counter-productive
since it reduces the total number of clients participating in training for each communication
round t. Fewer clients translate to fewer training data. However, [44] showed that in a
non-IID setup, the convergence rate of FedAvg had a weak dependence on C. This makes
sense, as some clients may have local datasets with a huge EMD distance from the global
distribution. Training the FL model using these clients may hinder the convergence rate.
Additionally, [14] showed that using DRL in client selection (or early client termination)
can positively affect the convergence rate. This is because selecting useful clients (with
useful data) can improve the quality of the overall FL data, which is more crucial than
increasing the quantity of data.

In short, FedDdrl can reduce communication cost and training latency without sac-
rificing model accuracy via early client termination due to the weak correlation between
convergence rate and C.

5.4. Computational Complexity Analysis

FedDdrl is composed of a finite number of MLPs. In MLP, let L, n0 and ni denote
the layer numbers, the size of the input layer (which corresponds to the client state’s
size) and the number of neurons in i-th layer, respectively. During training mode, the
computational complexity for an MLP to update its weight in each step can be expressed
as O(Nb(n0n1 + ∑L−1

i=1 nini+1)) [45]. In total, it takes Nep × T steps for the FedDdrl al-
gorithm to finish training. Hence, the total training computational complexity of Fed-
Ddrl is O(NepTNb(n0n1 + ∑L−1

i=1 nini+1)). The high computation complexity of the MLP
can be performed offline using a powerful device (i.e., the FL server). In the online de-
ployment mode, the computational complexity in each step is dramatically reduced to
O(n0n1 + ∑L−1

i=1 nini+1). This is done by cutting off the training procedure, which requires
feedforward and backpropagation of Nb data points. Thus, the computational complexity
is retained at a favorable level.

5.5. Why Balanced-MixUp Helps in Federated Learning

Without loss of generality, we explored how balanced-MixUp mitigates weight diver-
gence in FL assuming the amount of training data for each class is uniform in the global
population. Under this setting, we can express the global distribution p(y = i) for all labels
i = {1, 2, 3, . . . , nc} as shown in Equation (21):

p(y = i) =
1
nc

(21)

In this study, a fraction σ of the local training dataset is sampled from one random label,
while the remaining 1− σ fraction is sampled uniformly from the remaining labels. Fol-
lowing this assumption, let i = 1 be the majority class in each client and i = {2, 3, . . . , nc}
be the minority classes (whichever i can be the majority class since the ordering does not
affect the approximation of client distribution). Without balanced-MixUp, we can express
the client dataset distribution pk(y = i) as Equation (22):

pk(y = i) =
{

σ, i = 1
1−σ
nc−1 , i = {2, 3, . . . , nc }

(22)
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Based on Equations (21) and (22), the EMD between local and global distribution for
FedAvg without balanced-MixUp, denoted as EMDori, can be written as Equation (23):

EMDori
= ∑nc

i=1 ‖ pk(y = i)− p(y = i) ‖
=‖ σ− 1

nc
‖ +(nc − 1) ‖ 1−σ

nc−1 −
1
nc
‖

(23)

On the other hand, the client dataset distribution with balanced-MixUp pk
MixUp(y = i)

can be expressed as shown in Equation (24):

pk
MixUp(y = i) =

{
E(λ), i = 1

1−E(λ)
nc−1 , i = {2, 3, . . . , nc }

(24)

where E(λ) is the expected value of λ ~ Beta(α, β). E(λ) can be written as Equation (25):

E(λ) = α

α + β
(25)

Based on Equations (21) and (24), the EMD between FedAvg with balanced-MixUp
denoted as EMDMixUp can be written as Equation (26):

EMDMixUp
=‖ ∑nc

i=1 pk
MixUp(y = i)− p(y = i) ‖

=‖ E(λ)− 1
nc
‖ +(nc − 1) ‖ 1−E(λ)

nc−1 −
1
nc
‖

(26)

Take our experiments using CIFAR-10 as example, where σ = 0.8, nc = 10, λ ~ Beta(0.4,
0.4) and E(λ) = 0.5. Based on Equations (23) and (26), the EMDori and EMDMixUp can
be computed as 0.777 and 0.444, respectively. This shows that balanced-MixUp could
significantly reduce the weight divergence caused by the EMD between pk and p.

The above proposition is aligned with our experiments. Table 5 shows the performance
of FedAvg with and without balanced-MixUp in different C. Balanced-MixUp provided
a drastic accuracy boost to FedAvg in all datasets. The accuracy improvement was as
high as 17.0% for the CrisisIBD dataset when C = 10. This shows that balanced-MixUp
can effectively mitigate the weight divergence caused by the EMD, especially when a
low number of clients participate in a communication round t. Note that for the MNIST
dataset (C = 10), the accuracy of FedAvg with balanced-MixUp was slightly poorer
than its counterpart, lagging behind by merely 1.4%. This is reasonable, as MNIST is
considered a simple task [32] in which FedAvg could perform similarly in certain non-IID
settings. Another notable observation is that FedAvg with balanced-MixUp significantly
outperformed its counterpart in both the challenging CIFAR-10 and CrisisIBD datasets.
The observation is consistent in both C = 5 and C = 10 experiments. This is encouraging
because it proves that balanced-MixUp is useful in mitigating non-IID label shifts, especially
for algorithms like FedMarl and FedDdrl which do not have a fixed value of C.

Table 5. Performance of FedAvg with and without Balanced-MixUp.

Method MNIST
(K=100)

CIFAR-10
(K=100)

CrisisIBD
(K=98)

C = 5

FedAvg 78.9% ± 9.3% 62.7% ± 2.9% 42.0% ± 3.4%

FedAvg with
Balanced-MixUp 88.1% ± 3.6% 69.4% ± 2.4% 52.9% ± 4.2%

C = 10

FedAvg 94.6% ± 2.1% 72.8% ± 3.9% 43.2% ± 5.5%

FedAvg with
Balanced-MixUp 93.2% ± 2.0% 76.5% ± 1.7% 60.2% ± 1.5%
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6. Conclusions

In this paper, we proposed a DDRL-based FL framework (FedDdrl) for adaptive
early client termination and local epoch adjustment. FedDdrl can terminate clients with
high probing latency to reduce total training latency and communication costs, and it can
automatically adjust the local epoch to fully utilize clients’ computing resources. We also
showed that balanced-MixUp is a useful augmentation technique to mitigate the impact of
weight divergence arising from non-IID label shifts in FL. The simulation results on MNIST,
CIFAR-10 and CrisisIBD confirmed that FedDdrl outperformed the comparison schemes
in terms of the model’s accuracy, training latency and communication costs of FL under
extreme non-IID settings. As a future work, we would explore the performance of FedDdrl
on other types of non-IID settings, such as feature distribution skew and quantity skew.
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