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Anomaly detection has emerged as a popular technique for detecting malicious activities in local area networks (LANs). Various
aspects of LAN anomaly detection have been widely studied. Nonetheless, the privacy concern about individual users or their
relationship in LAN has not been thoroughly explored in the prior work. In some realistic cases, the anomaly detection analysis
needs to be carried out by an external party, located outside the LAN.)us, it is important for the LAN admin to release LAN data
to this party in a private way in order to protect privacy of LAN users; at the same time, the released data must also preserve the
utility of being able to detect anomalies.)is paper investigates the possibility of privately releasing ARP data that can later be used
to identify anomalies in LAN. We present four approaches, namely, näıve, histogram-based, naı̈ve-δ, and histogram-based-δ and
show that they satisfy different levels of differential privacy—a rigorous and provable notion for quantifying privacy loss in a
system. Our real-world experimental results confirm practical feasibility of our approaches. With a proper privacy budget, all of
our approaches preserve more than 75% utility of detecting anomalies in the released data.

1. Introduction

Security of local area networks (LANs) has been getting
more attention in the last few decades. Traditional LAN
defense mechanisms based on a firewall are no longer
effective in preventing malware infection since malware
can simply circumvent the firewall or infect the network
through other means [2, 3]. A prominent example is the
recent emergence of ransomware that can infect LAN
devices via phishing attacks; these attacks remain effective
even if the LAN’s firewall is active and configured cor-
rectly [4, 5]. In addition, with the rise of the Internet-of-
things (IoT), the so-called “smart” devices have become
widely popular and, at the same time, are also extremely
vulnerable to malware attacks [6]. )ese devices may be
infected from the outside world and introduce malware to
the LAN.

To overcome this challenge, several anomaly detection
techniques have been proposed to detect malicious activities
in LAN. Among those, techniques based on the Address
Resolution Protocol (ARP) are shown to be promising in
detecting anomalous activities in LAN without requiring a
change to existing devices [7, 8], making it suitable to the
current IoT networks.

Despite this success, there still remains a severe privacy
concern to LAN users, which has not been thoroughly ex-
plored in the previous work. Often times, the anomaly de-
tection must be performed by an entity outside LAN [9–11] or
third-party software [12, 13]. )us, it is equally important to
ensure privacy of the data exposed to this external and po-
tentially malicious entity. For instance, a LAN admin in an
enterprise may choose to outsource an anomaly detection
analysis to an external widely-popular service, e.g., Microsoft’s
Anomaly Detector [12], or the admin simply wants to release
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some features of network data for transparency or academic
purposes. In either case, it would require the LAN admin to
output network data (which is an input to the anomaly de-
tection algorithm) to an untrusted party. Doing so may lead to
having such party learn privacy-sensitive information about
the LAN users. For example, it may directly disclose personally
identifiable information (PII), e.g., IP/MAC addresses, which
can be used to uncover the identity of LAN users. It may also
cause an indirect information leakage by revealing information
about access patterns (e.g., the time of the day that a specific
user is online) or relationship between users [14].

While it is possible to simply erase all users’ sensitive
information from the output data, this kind of technique does
not provide strong and provable privacy guarantees. A mo-
tivated adversary may still be able to deanonymize users
through other means, e.g., performing a side-channel analysis
[15] or correlating the remaining network traces with the
physical world data [16]. )erefore, there is a need for a
technique with rigorous privacy guarantees, while preserving
the utility of detecting anomalies in the LAN environment.

Contributions: to this end, the goal of this paper is to
investigate the possibility of privately publishing ARP data
that can later be used to identify anomalies in LAN. Our
work presents the following contributions:

(i) Privacy Notions for ARP Publication. We identify
four concrete privacy notions in the context of ARP-
data publication. Each notion is defined over a dif-
ferent type of information that needs to be privacy-
protected as well as the probability that this pro-
tection holds. Specifically, they are derived from the
widely-known differential privacy [17] notion, which
allows us to mathematically prove whether a specific
algorithm adheres to any of these notions. We argue
that this is a necessary and essential step towards
designing, implementing and deploying any privacy-
preserving approach into the real world. Without it,
it is doubtful whether any meaningful guarantee can
be obtained from our approaches.

(ii) Releasing ARP for Anomaly Detection with Various
Degrees of Privacy. We present four approaches ca-
pable of privately releasing ARP data that still pre-
serves the utility of detecting LAN anomalies. Our
approach provides a wide range of privacy-preserving
degrees, making them suitable to different scenarios:

(a) )e first approach requires small additive per-
turbations to the input ARP data in exchange for
privacy protection of user relationship

(b) )e second approach perturbs the input data by
a relatively higher amount but it can attain a
stronger privacy protection guarantee for each
individual LAN device/user

(c) )e third and fourth are variants of the first two
approaches that require even smaller data per-
turbations; however, they sacrifice some small
probability that the privacy guarantee will not
hold, making them an appropriate option for
scenarios where data utility needs to bemaximized

(iii) Practicality via Real-World Deployment. We dem-
onstrate practicality of our approaches by imple-
menting and deploying them as part of a large-scale
real-world project, called ASEAN-Wide Cyber-Se-
curity Research Testbed Project (https://www.nict.
go.jp/en/asean_ivo/ASEAN_IVO_2020_Project03.
html). Overall, the aim of this project is three-fold:
(1) to capture network data from multiple LANs
across the ASEAN region, (2) to determine malware
behaviors based on the captured data, and (3) to
make the captured data sharable in the public do-
main. Our work fits perfectly in this project as it
fulfills the third goal by providing a privacy-pre-
serving mechanism for releasing captured ARP
data.

(iv) Evaluation on Real-World Dataset. We evaluate our
approaches on a real-world ARP dataset captured
from 3 LANs over 30 weeks.)e experimental result
shows feasibility of our approaches as they intro-
duce only low error values (< 10 in the root-mean-
square error) to the original data. In addition, we
assess utility of the released data by testing it on the
existing LAN anomaly detector [7]. )e result is
promising as our approaches can achieve 75%
anomaly detection rate.

Organization: the rest of the paper is organized as fol-
lows: Section 2 overviews existing work related to LAN
anomaly detection and differential privacy. )e background
in Address Resolution Protocol and differential privacy are
discussed in Section 3. Section 4 describes the system and
adversarial models targeted in this work. Section 5 presents
privacy notions in the context of releasing ARP data. Sec-
tions 6 and 7 present four approaches and prove that they
satisfy privacy notions defined in the previous section.
Experiments are carried out and reported in Section 8.
Several issues are discussed in Section 9. Finally, the paper
concludes in Section 10.

2. Related Work

2.1. Differential Privacy in Anomaly Detection. To the
best of our knowledge, there has been no prior work that
proposes a release mechanism for ARP data with differential
privacy guarantees while retaining the utility of anomaly
detection in the LAN setting.)e closest related work can be
found in [18], where the authors employ PINQ differential
privacy framework [19] to detect network-wide traffic
anomalies. )e main difference between our work and the
work in [18] lies in the type and magnitude of the released
data as well as the privacy guarantee. )e work in [18] aims
to privately release link-level traffic volumes of ISP whose
overall value tends to be much larger than noise introduced
by any differentially-private release mechanism. On the
other hand, our work operates on more restricted input
(ARP-degree) which generally contains a much smaller
value, making it more noise-sensitive than ISP’s traffic
volume. Reducing this sensitivity poses a main challenge
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addressed in this work. Further, the work in [18] provides no
privacy protection guarantee for individual network users.
Achieving this guarantee is nontrivial, as discussed in
Section 6.2.

Besides the work in [18], several existing work focuses on
providing anomaly detection with differential privacy guar-
antees in non-networked settings, e.g., web browsing [20],
social network [21], health care [22], or syndrome surveillance
[23]. Due to the difference in the target setting, the afore-
mentioned techniques are not directly applicable to our work.

2.2. LAN Anomaly Detection. )ere are a number of
existing research that aims to detect anomalies in LAN without
providing privacy protection. Zhang et al. [24] present an
approach based on honeypot to detect malicious LAN activ-
ities. Yeo et al. [25] propose a framework to monitor a network
traffic and detect anomalies in the Wireless LAN (WLAN)
environment via the IEEE 802.11 MAC protocol. Nonetheless,
this approach is specific to WLAN and thus cannot be directly
applied to the wired LAN setting. Our approaches are based on
ARP requests, making them suitable for both wired and
wireless LAN environments.

Several prior works focus on detecting LAN anomalies
based on ARP-related data. Whyte et al. [26] propose an
anomaly detection approach that distinguishes anomalous
activities through statistical analyses of ARP traffic. Yasami
et al. [8] propose to model normal ARP traffic behaviors
using Hidden Markov Model. Farahmand et al. [27] detect
LAN anomalies based on four features: traffic rate, bursti-
ness, dark space, and sequential scan. Matsufuji et al. [7]
present an anomaly detection algorithm based on the degree
of destination of ARP requests.

3. Background

3.1. Address Resolution Protocol (ARP). In a nutshell,
ARP is a request-response protocol that provides a mapping
between dynamic IP addresses and permanent link-layer
addresses (also known as MAC addresses), allowing one
computer to discover a MAC address of another from its IP
address. )is protocol is essential in a LAN environment
since it enables communication between any two computers
within the same subnetwork as follows:

In LAN, when one computer needs to connect with
another, it uses ARP to broadcast a request asking for the
MAC address associated with the IP address of the desti-
nation computer. )erefore, an ARP request contains the
requester’s IP andMAC addresses as well as the destination’s
IP address. Upon receiving the ARP request, every computer
checks whether the received IP address matches with one of
its network interfaces. If it does, it unicasts an ARP response
back to the requester along with its IP and MAC addresses.
At the end of this process, the requester successfully retrieves
the destination’s MAC address and can use this information
to construct Ethernet frames for transmitting subsequent
data to the target computer.

Similar to other network protocols, ARP involves using
sensitive data that has previously been shown to be directly

(e.g., IP address) or indirectly (e.g., traffic volume [16])
linkable to the identity of network users. Hence, this privacy
concern must be taken into account when designing an
approach for releasing ARP data.

3.2. Differential Privacy (DP). Consider a setting in which
there are n users who send individual data to a trusted
curator. )e curator then applies an algorithm M and
outputs these results to an untrusted party. In a strong
notion of privacy, the data of an individual must be kept
private from strong adversaries–even ones who get a hand
on the data of the other users.

)e differential privacy (DP) is a viewpoint of this notion
given in a seminal paper by Dwork, McSherry, Nissim, and
Smith [17]. First, we say that two databases X and X′ are
neighboring if they differ by exactly one database entry. )e
differential privacy is then satisfied if changing X to X′ does
not change the probability of observing an output of M by
very much. With differential privacy, presence of a single
entry will not affect the published output by much.
)erefore, outputs from a differentially-private algorithm
cannot be used to infer about any single entry from the input
dataset.

Definition 1 (differential privacy). An algorithmM: X⟶ Y

satisfies (ε, δ)-differential privacy ((ε, δ)-DP) if, for every pair of
neighboring datasets X and X′ and every subset S ∈Y,

P(M(X) ∈ S)≤ e
ε
P M X′(  ∈ S(  + δ, (1)

where ε is referred as a privacy budget. We will refer to
(ε, 0)-DP as ε-DP. Intuitively, smaller values of ε and δ lead
to a stronger privacy guarantee. Conversely, higher values of
ε and δ imply a weaker guarantee with possibly better utility/
accuracy of the released data.

A related notion of differential privacy is the concen-
trated differential privacy, which aims to control the mo-
ments of the privacy loss variable:
f(Y) � P(M(X) � Y)/P(M(X′) � Y), where Y is dis-
tributed as M(X).

Definition 2 (Rényi divergence). Let P and P′ be probability
densities. )e Rényi divergence of order λ ∈ (1,∞) between
P and P′ is defined as

Dλ P‖ P′(  �
1

λ − 1
log P(y)

λ
P′(y)

1− λdy

�
1

λ − 1
log Ey∼P

P(y)
λ− 1

P′(y)
λ−1

⎡⎣ ⎤⎦.

(2)

Definition 3 (concentrated differential privacy [28]). An
algorithm M: X⟶ Y satisfies ρ-zero-concentrated dif-
ferential privacy (ρ-zCDP) if, for every pair of neighboring
datasets X and X′ and everyλ ∈ (1,∞),

Dλ M(X)‖M X′( ( ≤ λρ. (3)
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One useful property of the differential privacy is that it is
preserved under post-processing.

Proposition 1 (postprocessing [29]). For any (ε, δ)-DP
(ρ-zCDP) algorithm M: X⟶Y and arbitrary random
function f: Y⟶Z, the algorithm f°M is also (ε, δ)-DP
(ρ-zCDP).

There may be some certain situations in which we want
to apply multiple DP algorithms, e.g., releasing continual or
time-series data. In this case, the resulting algorithm is also
differentially private. However, every new DP algorithm
comes with a cost of privacy loss, as stated in the following
proposition.

Proposition 2 (composition [29]). For any (ε, δ)-DP
(ρ-zCDP) algorithmsAi: X⟶Yi for i ∈ [k], the algorithm
A[k]: X⟶ 

k
i�1 Yk defined by A[k](X) � (A1(X), . . . ,

Ak(X)) is (kε, kδ) -DP (kρ-zCDP).
To introduce one of the most ubiquitous ε-DP algo-

rithms, we start with the ℓ1-sensitivity of a randomized al-
gorithmM: X⟶ Rk, which is the maximum ℓ1 change in
the output as a result of modifying a single datum. We
denote this sensitivity as ΔM, and formally define it as:

ΔM � max
neighborX,X′

M(X) − M X′( 
����

����1. (4)

Theorem 1 (Laplace mechanism [29]). Let M: X⟶ Rk

be an algorithm with sensitivity ΔM and Yi be a noise gen-
erated by sampling from a Laplace distribution at scale
� ΔM/ε, i.e., Yi ∼ Laplace(ΔM/ε), then the randomized al-
gorithm A defined by

A(X) � M(X) + Y1, . . . , Yk( , (5)

is ε-DP.
In addition to the Laplace mechanism, the Gaussian

mechanism is also commonly used to provide ρ-zCDP:

Theorem 2 (Gaussian mechanism [28]). Let M: X⟶ Rk

be an algorithm with sensitivity ΔM and Yi be a noise gen-
erated by sampling from a Gaussian distribution at scale
ΔM/

��
2ρ


, i.e., Yi ∼ N(0, (ΔM)2/2ρ), then the randomized

algorithm A defined by

A(X) � M(X) + Y1, . . . , Yk( , (6)

is ρ-zCDP.
In view of Proposition 2, a composition of N Laplace

mechanisms at scale NΔM/ε � O(N) is ε -DP, while that of
N Gaussian mechanisms at scale ΔM

�����
N/2ρ


� O(

��
N

√
) is

ρ-zCDP. We see that, for successive use of a DP mechanism,
the Gaussian mechanism gives comparatively smaller noise
than the Laplace mechanism. )e following lemma shows
how the two definitions of differential privacy are related.

Lemma 1 (see [28]). Any ρ-zCDP algorithm is also an
(ε, δ)-DP algorithm for any given δ〉0 and

ε � ρ + 2
��������

ρ log
1
δ

 



. (7)

Conversely, for any given ε and δ〉0, any ρ-zCDP al-
gorithm where

ρ �

���������

log
1
δ

  + ε


−

������

log
1
δ

 



 

2

, (8)

is also an (ε, δ)-DP algorithm.

4. System and Adversarial Models

Figure 1 illustrates the system model considered in this work.
We consider a system in which an entity, called Admin,
possesses a LAN consisting of nUsers (i.e., computing de-
vices). In addition, Admin introduces a monitoring device to
this LAN in order to observe ARP requests of all Users. We
denoteVjk to be aggregate ARP requests originated fromUser
k, measured and accumulated at the jth interval.

In this work, we assume the time interval to be in a unit
of “a week,” since this time scale allows us to use data
collected from a long period of time without losing toomuch
privacy budget from the composition (Proposition 2). Vj is
denoted the result after appending all ARP requests of all
User-s generated in week j, i.e. Vj � Vj1, Vj2, . . . , Vjn .

As shown in Figure 1, our system starts by having the
monitoring node (periodically) send aggregate ARP
requests—V � V1, . . . , V t—to Admin, corresponding to
step ➊ in Figure 1. Admin is interested in learning whether
the LAN as a whole has had any anomalous activities for the
last t weeks in a private way. )us, in step❷, he proceeds to
apply a certain algorithm Algo with the goal of hiding
sensitive information from the input V and then releases the
output D to an external entity Analyst in step ❸. In step ❹,
Analyst in turn performs an anomaly detection analysis on
D and returns the result O back to Admin.O containsOi that
allows Admin to identify whether the LAN contains an
anomaly at week i. We summarize notation used throughout
the paper in Table 1

4.1.AdversarialModel. Analyst is assumed to be honest-but-
curious, i.e., he always honestly applies an anomaly detection
algorithm on any given input data and returns the correct
output to Admin. However, during the process, he may
attempt to learn sensitive information about Users or their
relationship, and use it for his own benefits.

4.2. Goal and Scope. In this work, we focus on addressing
privacy concerns in the aforementioned system, where data
from LAN is exposed to an external party. Hence, we do not
consider other LAN settings capable of handling and pro-
cessing this data locally, e.g., LANs in a large corporate with
its own internal anomaly detection tool.

)e goal of this work is to design approaches that can be
appropriately used as the algorithm Algo in step ❷ of
Figure 1. In other words, our approaches must allow the

4 Security and Communication Networks



process of releasing ARP data with some levels of provable
privacy guarantees. Besides privacy, utility of the privatized/
released data for anomaly detection is also important. We
must ensure that the privatized value does not change by a
significant amount, compared to the non-privatized coun-
terpart; otherwise, it will not be useful in detecting
anomalies.

5. DP Notions for ARP-Request Data

In this section, we describe 4 variants of differential privacy
notions related to our system model. )e summary of DP
notions discussed throughout this Section is shown in
Table 2.

To understand privacy (i.e., what concrete information
needs to be private and hidden from Analyst) in our target
scenario, we first describe the characteristic of ARP-request
data. Figure 2 illustrates an example of a LAN that consists of
3 Users producing 4 ARP requests over a specific time in-
terval. We define the (ARP-request) “degree” of User k as the
number of Users that receives ARP requests from User k. In
this example, the degrees of User 1, 2, and 3 are 2, 2, and 0,
respectively.

Using this model, we can view Vj—aggregate ARP-re-
quest data at week j—as a directed graph, where User can be
represented by a node; whereas an arrow (or a directed edge)

2

3

Compute:
D: = Algo (V)

[Scope of this work]

D = {D1, . . ., Dt}
1 V = {V1, . . ., Vt}

4 O = {O1, . . ., Ot}

Analyst
Admin

LAN

User

Monitoring
Device

Figure 1: System model considered in this work.

Table 1: Notation.

Differential Privacy (DP) Notation
ε Privacy budget
δ Probability of failing DP guarantees
ΔM Sensitivity of algorithm M

Laplace(b) Laplace distribution with mean 0 and scale b

N(μ, σ2) Normal distribution with mean μ and standard deviation σ
System notation
n Number of LAN user s
t Number of data collection intervals
Vjk User k’s ARP requests aggregate at interval j

Vj � Vj1, . . . , Vjn  Aggregate ARP requests of all LAN user s at interval j

V � V1, . . . , Vt  Aggregate ARP requests of all LAN user s from interval 1 to t

D � D1, . . . , Dt  Output after applying privacy-preserving algorithm
O � O1, . . . , Ot  Anomaly detection output

Table 2: Summary of DP notions for ARP-request data.

Notion Definition # Protected info. Protection prob.
(ε, δ)-Edge-DP 4 ARP requests 1-δ
ε-Edge-DP 5 ARP requests 1
(ε, δ)-Node-DP 6 Users 1-δ
ε-Node-DP 7 Users 1

User 1 User 2 User 3

Figure 2: Illustration of a LAN with 3 User-s and 4 ARP requests
(represented by arrows).
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from node s to node r indicates ARP request(s) generated by
User s and sent to User r in the same time interval. )e
degree of User k is then equivalent to the number of directed
edges originating from User k.

As a directed graph, Vj can not directly represent a
database entry, required by Definition 1. )us, the afore-
mentioned notion of differential privacy does not accurately
capture the privacy guarantee in our scenario. Fortunately,
there was prior work focusing on expressing differential
privacy of a graph database. Specifically, the work in [30]
presents notions of differential privacy between graphs by
first defining two types of neighboring graphs: two graphs
are edge-neighboring if they differ by a single edge. Likewise,
they are node-neighboring if they differ by a single node.

We now proceed to present two notions of privacy in
edge-neighboring graphs:

Definition 4 ((ε, δ)-edge-DP). Let G be the set of graphs
between Users. An algorithm M: G⟶ Y satisfies
(ε, δ)-edge-differential privacy or (ε, δ)-edge-DP if, for every
pair of edge-neighboring graphs G and G′ and every subset
S⊆Y,

P(M(G) ∈ S)≤ e
ε
P M G′(  ∈ S(  + δ. (9)

Definition 5 (ε-edge-DP). An algorithm satisfies ε-edge-
differential privacy (ε-edge-DP) if and only if it satisfies
(ε, 0)-edge-DP.

Since an edge in our system refers to ARP requests
between a pair of Users, Definitions 4 and 5 provide privacy
protection for these ARP requests. )is means that an al-
gorithm satisfying ε-edge-DP/ (ε, δ)-edge-DP is guaranteed
to reveal no information about all ARP requests exchanged
between any pair of Users, resulting in hiding the ARP re-
lationship of all Users. )is, for example, could hide the
source of infection in LAN as it is common for malware to
utilize ARP as the first step to discover and infect other LAN
User-s.

Nonetheless, the guarantee provided by these definitions
is not strong enough to protect privacy of individual Users.
To achieve this stronger guarantee, we adopt the following
notions:

Definition 6 ((ε, δ)-node-DP). Let G be the set of graphs
between Users. An algorithm M: G⟶ Y satisfies
(ε, δ)-node-differential privacy or (ε, δ)-node-DP if, for
every pair of node-neighboring graphs G and G′ and every
subset S⊆Y,

P(M(G) ∈ S)≤ e
ε
P M G′(  ∈ S(  + δ. (10)

Definition 7 (ε-node-DP). An algorithm satisfies ε-node-
differential privacy (ε-node-DP) if and only if it satisfies
(ε, 0)-node-DP.

Indeed, by removing a node we also have to remove all of
its edges. One then has that ε-node-DP is stronger than
ε-edge-DP. In our scenario, an algorithm satisfying ε-node-

DP/ (ε, δ)-node-DP prevents information leakage about
presence or absence of any individual User.

Remark 1. Recall δ represents an upper bound of the
probability that an algorithm fails to satisfy the ε-DP notion.
As an example, an algorithm satisfying (ε, δ)-node-DP has at
most δ probability that will leak some information about an
individual node in a graph. To make (ε, δ)-edge/node-DP
notions meaningful in practice, one must minimize this
failure probability by ensuring that δ is negligible in terms of
number of data points (#p) considered in the DP notion
[29]. One way to achieve this is to set δ to: δ � δ′/#p for some
small δ′.

In (ε, δ)-node-DP notion, #p is the number of nodes;
whereas, in (ε, δ)-edge-DP, #p corresponds to the number of
possible directed edges ≈ (#nodes)2. )us, it is easy to see
that δ in (ε, δ)-edge-DP must be set smaller than that in
(ε, δ)-node-DP in order to attain the negligible probability.

6. Releasing ARP-Request Data with ε-Edge/
Node-DP

In this section, we present two approaches, called naı̈ve and
histogram-based; the former guarantees ε-edge-DP while the
latter is proven to satisfy the ε-node-DP notion. Later in
Section 7, we describe variants of these approaches that
satisfy the more relaxed (ε, δ)-edge/node-DP notions.

6.1. Naı̈ve Approach. )e naı̈ve approach is described in
Algorithm 1.

In the rest of this section, we discuss non-trivial details of
this approach and show that it indeed satisfies ε-edge DP.

Theorem 3.  e naı̈ve approach as described in Algorithm 1
is ε-edge-DP.

Proof. Let Vj ∈ G be the directed graph of ARP requests in
week j. Let M be the algorithm that computes the weekly
total degrees and Dj � M(Vj) (line 2 of Algorithm 1), which
also corresponds to the total number of edges in Vj. To
preserve ε-edge-DP of each User’s ARP requests, one can
simply use the Laplace mechanism. To do so, we need to find
an upper bound of the sensitivity ΔM. Let Vj

′ be an edge-
neighboring graph of Vj in week j and Dj

′ � M(Vj
′) . )en,

ΔM � |Dj − Dj
′|≤ 1 and we have the following Laplace

mechanism A′ (line 2-3) guarantee the ε/t-node DP:

A′ Vj  � M Vj  + Yj, (11)

where Yj ∼ Laplace(t/ε) (line 3).
Algorithm 1 can then be represented as

A(V) � P A′ V1( , . . . ,A′ Vt( ( , (12)

where P is a postprocessing function (line 4-5) that: (i)
precludes a negative output by thresholding it to 0, and (ii)
rounds a nonnegative privatized value into the closest in-
teger in order to prevent the floating point attack [31].
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By Proposition 1 and 2, we can conclude that this al-
gorithm is tε/t-edge-DP or ε-edge-DP.

To prevent excessive information loss, one needs the
Laplace noise to be smaller than Dj, i.e., t/ε〈E[Dj] or
ε〉t/E[Dj]. )is can be achieved in realistic settings, e.g., ε �

2 in our experiment (Section 8) where t � 30 and the lower
quartile of Dj is 20.

On the other hand, a similar analysis for the ε-node-DP
results in much bigger Laplace noises; consider two node-
neighboring directed graphs Vj, Vj

′ of n Users. )e degrees
Dj, Dj
′ defined as above satisfy |Dj − Dj

′|≤ n, which cannot
be improved further. )us, in order to employ the Laplace
mechanism, the noises have to be sampled from
Laplace(tn/ε). In contrast to the edge-DP regime, the scale of
the noise comes with a factor of n. As a result, for a large
number of Users, it is no longer feasible to preserve both
privacy and utility at the same time.

6.2. Histogram-Based Approach. As seen in the previous
subsection, the naı̈ve approach cannot be used to satisfy
ε-node-DP in practice due to its high sensitivity, leading to
too strong additive noises which in turn significantly lower
utility of the released data. Instead, we propose a second
approach utilizing a histogram that helps reduce the ε-node-
DP sensitivity to a reasonable amount.

Our histogram-based approach is shown in Algorithm 2.
)e rationale behind this approach is to transform the
degree data in such a way that its sensitivity is minimized
when any User is removed from Vj. Naturally, a histogram is
a good fit for this approach since it provides a way to
partition data into disjoint groups/bins, where each bin in
this case represents a range of degrees. )us, this approach
first computes the degrees of each User in a specific week and
uses this degree data to construct a histogram, as shown in
line 2 of Algorithm 2. )is histogram data minimizes the
ε-node-DP sensitivity because removing a User from the
histogram data affects only one bin, i.e., the one this User
belongs, and it only decreases its bin count by one; other
histogram bins are unaffected by this change. We then can
apply the Laplace mechanism on each bin (line 3), threshold
and round the resulting value to the closest integer (line 5-6)
and finally return this noisy histogram as an output.

We now formally show that the histogram-based ap-
proach satisfies ε-node-DP.

Theorem 4.  e histogram-based approach as described in
Algorithm 2 is ε-node-DP.

Proof. Let Vj and Vj
′ be node-neighboring directed graph at

time j, i.e., Vj
′ can be obtained from Vj by adding or removing

a single node. Let M: G⟶ Rk be the algorithm that
computes the histogram of the degrees, i.e., the entries of
M(Vj) and M(Vj

′) are the count of nodes by their degrees.
)en M(Vj) and M(Vj

′) differ by one in the entry corre-
sponding to the degree of User j, who only exists in eitherVj or
Vj
′. )erefore, ΔM � |M(V) − M(Vj

′)|≤ 1.
Observe that line 2-7 of Algorithm 2 can be written as a

randomized algorithm A′: G⟶ Rk defined by

A′ Vj  � P M Vj  + Y1, . . . , Yk(  , (13)

where Yi ∼ Laplace(t/ε) and P corresponds to the threshold-
then-round function computed on all bin counts (line 5-6). It
follows from )eorem 1 and Proposition 1 that A′ is
ε/t-node-DP.

)en, we can define Algorithm 2 as a randomized al-
gorithm A as follows:

A(V) � A′ V1( , . . . ,A′ Vt( ( . (14)

By Proposition 2, we have that the histogram-based
approach (described in Algorithm 2) is tε/t-node-DP or
ε-node-DP. □

7. ReleasingARP-RequestDatawith(ε, δ)-Edge/
Node-DP

)e approaches in the previous section require adding a
noise proportional to t, which may not scale well in practice
when t is large. We explore an alternative by instead
adopting the Gaussian Mechanism in order to reduce ad-
ditive noise from O(t) to O(

�
t

√
). We call these variants,

naı̈ve-δ and histogram-based-δ, which guarantee (ε, δ)-edge-
DP and (ε, δ)-node-DP, respectively.

7.1. Naı̈ve-δ Approach. In conjunction with the naı̈ve ap-
proach (Algorithm 1) which gives a strong privacy guarantee
by adding considerably large amount of noises, we develop
here another approach that adds less noises, but provides a
weaker (ε, δ)-edge DP guarantee. )e algorithm is described

Input: V � V1, V2, . . . , Vt ,
t,
ε
Output: D � D1, D2, . . . , Dt 

(1) for j � 1 to t do
(2) Dj⟵ Sum(Degree(Vj))

(3) Dj⟵Dj + Laplace(t/ε)
(4) if Dj > 0 then Dj← int(Dj)

(5) else Dj⟵ 0
(6) end

ALGORITHM 1: Naı̈ve Approach.
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in Algorithm 3. Similar to Algorithm 1, we round the noisy
outputs to the nearest integers to protect the data from
floating point attacks. In the rest of this section, we discuss
nontrivial details of this approach and show that it indeed
satisfies (ε, δ)-edge DP.

Theorem 5.  e naı̈ve-δ approach as described in Algo-
rithm 3 is (ε, δ)-edge-DP.

Proof. Let Vj ∈ G be the directed graph of ARP requests
in week j. Let M be the algorithm that computes the
weekly total degrees and Dj � M(Vj) (line 3 of Algo-
rithm 3). As in the proof of )eorem 3, the edge-sensi-
tivity ΔM satisfies ΔM ≤ 1. Observe that line 3-6 of
Algorithm 3 can be written as a randomized algorithm
A′: G⟶ Rk defined by

A′ Vj  � P M Vj  + Y1, . . . , Yk(  , (15)

where Yi ∼ N(0, t/2ρ) and P corresponds to the threshold-
then-round function computed on all bin counts (line 5-6). It
follows from )eorem 2 and Proposition 1 that A′ is
ρ/t-zCDP.

)en, we can define Algorithm 3 as a randomized al-
gorithm A as follows:

A(V) � A′ V1( , . . . ,A′ Vt( ( . (16)

By Proposition 2, we have that the Algorithm 3 is
tρ/t-zCDP or ρ-zCDP. Using Lemma 1 and recalling the
definition of ρ in line 1 of Algorithm 3, we conclude that this
algorithm is also (ε, δ)-edge-DP. □

7.2. Histogram-Based-δ Approach. We aim to construct an
(ε, δ)-node-DP with less noises compared to the ε-node-DP
algorithm in Section 6.2. We still rely on a histogram-based
approach as it has small sensitivity upon adding/removing a
node. Our histogram-based-δ approach is described in
Algorithm 4.

Theorem 6.  e histogram-based-δ approach as described in
Algorithm 4 is (ε, δ)-node-DP.

Proof. Let Vj and Vj
′ be node-neighboring directed graph at

time j, i.e., Vj
′ can be obtained from Vj by adding or re-

moving a single node. Let M: G⟶ Rk be the algorithm
that computes the histogram of the degrees, i.e., the entries
of M(Vj) and M(Vj

′) are the count of nodes by their de-
grees. As in the proof of )eorem 4, the node-sensitivity ΔM
satisfies ΔM ≤ 1

Looking at Algorithm 4, we observe that line 3-7 can be
written as a randomized algorithmA′: G⟶ Rk defined by

A′ Vj  � P M Vj  + Y1, . . . , Yk(  , (17)

where Yi ∼ N(0, t/2ρ) and P corresponds to the threshold-
then-round function computed on all bin counts (line 6-7). It
follows from )eorem 2 and Proposition 1 that A′ is
ρ/t-node-DP.

)en, we can define Algorithm 4 as a randomized al-
gorithm A as follows:

A(V) � A′ V1( , . . . ,A′ Vt( ( . (18)

By Proposition 2, we have that the histogram-based
approach (described as in Algorithm 4) is tρ/t-zCDP or
ρ-zCDP. From the definition of ρ in line 1 of Algorithm 4, we
conclude using Lemma 1 that this algorithm is also
(ε, δ)-node-DP. □

8. Evaluation

In this section, we evaluate our approaches by deploying
them as part of a large-scale research project and reporting
their utility from a real-world dataset extracted from such
project.

8.1. Real-World Deployment

8.1.1. Background. ASEAN-Wide Cyber-Security Research
Testbed Project is a large-scale research project with col-
laboration betweenmultiple universities primarily located in
Southeast Asia including Prince of Songkla University,
)ailand (PSU), Universitas Brawijaya, Indonesia (UB),
University of Computer Studies Yangon, Myanmar (UCSY),
Institute of Technology of Cambodia, Cambodia (ITC),
University of Information Technology, Myanmar (UIT), and
)e University of Tokyo, Japan (UT). )e ultimate goal of

Input: V � V1, V2, . . . , V t, t, ε
Output: D � D1, D2, . . . , Dt 

(1) for j � 1 to t do
(2) Dj⟵Histogram(Degree(Vj))

(3) foreach bin ∈ Djdo
(4) bin · count⟵ bin · count + Laplace(t/ε)
(5) if bin · count> 0 then

bin · count⟵ int(bin · count)
(6) else bin · count⟵ 0
(7) end
(8) end

ALGORITHM 2: Histogram-based Approach.
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this project is to create a real-world public testbed of
malware behaviors captured in ASEAN countries.

Independent of our work, the first phase of this project
involves capturing, collecting and analyzing LAN data in
Southeast Asian countries. To achieve this task, a small
monitoring device, implemented atop of a raspberry-Pi 3B
in Figure 3, is introduced and placed into several LANs
across the ASEAN region. )is monitoring device observes
and captures the network traffic flowing within a LAN and
periodically outputs the captured data to our server, in
which such data is analyzed and a model of ASEANmalware
is eventually created.

8.1.2. Deployment. Our work plays an important role in the
second phase of this research project. It allows us to privately
share aggregate ARP data collected from the previous phase
with other project members as well as to the public domain.

Our approaches enable a release mechanism of ARP-
request data that still retains the utility of LAN anomaly
detection. To assess utility, we evaluated our approaches on a
subset of data captured and extracted from this research
project.

)e extracted dataset contains all ARP-request data
observed and collected from 3 real-world LANs over a 30-
week period. )ese LANs are located in: (1) )e University
of Tokyo, Japan (thus, its dataset is labeled as JPN), (2)
Prince of Songkla University–Phuket Campus, )ailand
(HKT) and (3) Prince of Songkla University–Hatyai

Campus, )ailand (HDY). Details about these monitored
LANs can be found in Table 3.

8.1.3. Parameter Selection. As we collected ARP requests
over a 30-week period, t � 30. )e naı̈ve approach involves
no other parameters. Meanwhile, the histogram-based ap-
proach consists of an additional set of parameters: the
number of bins and the width of each bin.

Intuitively, a larger number of bins leads to smaller bin
counts.

In such case, the noise injected by our approach would
become too large, severely decreasing utility of the released
data. To avoid this problem, we select the number of his-
togram bins to be relatively small – 3. Specifically, we choose
the first two bins to correspond to the number of Users
whose degrees are 1 and 2, respectively; the third bin
contains the number of User-s with degree ≥3.

Finally, the approaches in Section 7 consist of another
parameter δ. Recall from the Remark 1 in Section 5 that δ
must be negligible with respect to the number of data points
(#p). In other words:

δ � δ′/#p for some small δ′, (19)

In our target system, #p corresponds to n and n2 for the
node-DP and edge-DP notions, respectively; See Table 3 for
the number of Users (n) in each monitored LAN. Unless
stated otherwise, we use δ′ � 0.01 for all experiments.

Input: V � V1, V2, . . . , Vt , t, ε, δ
Output: D � D1, D2, . . . , Dt 

(1) ρ⟵ (
����������
log(1/δ) + ε


−

�������
log(1/δ)


)2

(2) for j � 1 to t do
(3) Dj⟵ Sum(Degree(Vj))

(4) Dj⟵Dj + N(0, t/2ρ)

(5) if Dj > 0 then Dj←int(Dj)

(6) else Dj⟵ 0
(7) end

ALGORITHM 3: Naı̈ve-δ Approach.

Input: V � V1, V2, . . . , Vt , t, ε, δ
Output: D � D1, D2, . . . , Dt 

(1) ρ⟵ (
����������
log(1/δ) + ε


−

�������
log(1/δ)


)2

(2) for j � 1 to t do
(3) Dj⟵Histogram(Degree(Vj))

(4) foreach bin ∈ Dj do
(5) bin · count⟵ bin · count + N(0, t/2ρ)

(6) if bin · count〉0 then
bin · count⟵ int(bin · count)

(7) else bin · count⟵ 0
(8) end
(9) end

ALGORITHM 4: Histogram-based-δ Approach.
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Nonetheless, the impact of different δ′ values on the utility is
also assessed in the next subsection.

8.2. Utility Assessment: RMSE

8.2.1. RMSE. In the context of differential privacy, one
common utility metric is defined as an error between the
released privatized values z∗ and the nonprivatized aggre-
gates z. We adopt a similar approach and select the root-
mean-square error (RMSE) as our first evaluation metric:

RMSE �

����������������

1
n



n

i�1
z
∗
[i] − z[i]( 

2




. (20)

where z[i] and z∗[i] represent the ith data point in z and z∗,
respectively. For the naı̈ve approach and its variant, z[i]

corresponds to the sum of all User’s ARP degrees observed
in week i, while z∗[i] refers to the privatized output on the
same ARP data. On the other hand, z[i] represents a his-
togram bin in the histogram-based and histogram-based-δ
approaches.

8.2.2. Impact of ε. Recall that ε refers to a privacy budget in
the DP notion and a lower value of ε implies stronger
privacy, while possibly sacrificing utility.

Figure 4 shows the impact of ε on the utility of the
proposed approaches. Unsurprisingly, we achieve lower
errors and thus better utility from a higher ε. For all 3
monitored LANs, ε � 5 seems to be a pragmatic choice in
order to maintain a low error (< 10) for all approaches.

Next, we show how much utility can be improved by
using the approaches in Section 7 instead of their coun-
terparts in Section 6. )e result, illustrated in Figure 5,
suggests that both naı̈ve-δ and histogram-based-δ

approaches enjoy higher utility (i.e., a utility gain) when
ε≤ 4. However, as the ε gets larger, this utility gain becomes
smaller; in fact, the naı̈ve-δ approach incurs a utility loss
when ε≥ 8 for all monitored LANs.)is result suggests using
the approaches in Section 7 only when one needs stronger
privacy, i.e., small ε.

Figure 5 also indicates the histogram-based-δ approach
significantly outperforms the näıve-δ approach in terms of
the utility gain. For ε≤ 4, the histogram-based-δ approach
provides ≥ 28% utility gain, while a smaller amount of utility
gain (≤ 20%) can be realized in the naı̈ve-δ approach.)is is
expected because the histogram-based-δ approach intro-
duces a smaller value of δ (see the Remark 1 in Section 5),
making the additive noise smaller and thus resulting in the
higher utility gain.

In addition, n also has a direct impact to δ and hence to
the overall utility. As seen in Figure 5, among all monitored
LANs, HDY has the highest number of Users and therefore
suffers the lowest utility gain.

8.2.3. Impact of δ′. We now assess the impact of δ′ on the
utility of our approaches. Figure 6 shows RMSE of the naı̈ve-
δ and histogram-based-δ approaches for different values of
δ′. As expected, increasing δ′ results in a decrease in RMSE
and thus improves the utility of our approaches. )is de-
crease is logarithmic as a function of δ′.

)e utility gain of the näıve-δ and histogram-based-δ
approaches with respect to their original counterparts is
illustrated in Figure 7. Our approaches benefit from the
higher utility gain when δ′ is larger. For most δ′ values, the
histogram-based-δ approach provides a positive utility gain
over the histogram-based approach. Meanwhile, a utility
gain can be achieved from the naı̈ve-δ approach when
δ′ ≥ 10− 3.

Figure 3: Monitoring device (raspberry-Pi 3B) deployed to a LAN.

Table 3: Details of monitored LANs.

Label
Location of LAN Collection period

Users (n)
University City Country Start date End date # Weeks (t)

JPN UT Tokyo Japan Aug 9, 2019 Mar 6, 2020 30 95
HKT PSU Phuket )ailand Nov 6, 2020 June 4, 2021 30 63
HDY PSU Hat Yai )ailand Oct 21, 2020 May 19, 2021 30 206
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Figure 4: RMSE with different ε values.
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Figure 5: Utility gain (in %) with respect to their ε-edge/node-DP counterparts.
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Figure 6: RMSE with different δ′ values where δ � δ′/(#p) and ε is fixed to 1.
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Figure 7: Utility gain (in %) with respect to their ε-edge/node-DP counterparts.
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)is experimental result suggests that both naı̈ve-δ and
histogram-based-δ approaches still provide a utility ad-
vantage over their original counterparts even for δ′ smaller
than 10− 2 (up to 10− 3 for the näıve-δ approach and 10− 6 for
the histogram-based-δ approach). In practice, one may
choose to opt for smaller δ′ if a stronger privacy guarantee is
needed.

8.3. Utility Assessment: Anomaly Detection Accuracy

8.3.1. Anomaly Detection Algorithm. In addition to low
errors, it is also essential that outputs produced by our
approaches can still be useful in identifying anomalous
activities in LAN. Hence, we further evaluate utility of our
approaches by assessing them via a LAN anomaly detector.
In this experiment, we consider our approaches to preserve
the utility of anomaly detection if the anomaly detector
classifies the privatized data the same way as the original
(nonprivatized) data.

For the anomaly detector, we choose an approach based
on exponentially weightedmoving average and variance [32]
proposed byMatsufuji et al. [7] since it is tailored specifically
for detecting LAN anomalies based on ARP data, which is
also the focus in this work. All parameter values are selected
based on the recommendation from [7].

It is worth noting that the anomaly detector in [7] only
supports input of type univariate time series. However, the
histogram-based approach and its variant produce a mul-
tivariate time series output (i.e., a time series of histograms),
and hence cannot be used directly as input to the anomaly
detector. To address this issue, we perform a simple
transformation that converts two consecutive histograms
into a single variable using the L1 distance function; the
result of this transformation is then given as input to the
anomaly detector. More formally, the transformation is
defined as

z
∗
[i] � ‖hist[i] − hist[i + 1]‖1 for i ∈ 1, . . . , t − 1{ }. (21)

8.3.2. Metrics. In this experiment, we evaluate utility of our
approaches using two metrics: true positive rate (TPR) and
F1 score. In particular, we consider z∗[i], a noisy data point
produced by our approach, to be a true positive (TP) if the
anomaly detector classifies both z∗[i] and z[i] as an
anomaly, where z[i] represents the original nonprivatized
counterpart. z∗[i] is a false positive (FP) if the anomaly
detector finds an anomaly in z∗[i] but not in z[i]. A true
negative (TN) and a false negative (FN) are also defined
similarly.

Based on these definitions, TPR and F1 metrics can be
formulated as

TPR �
TP

TP + FN
,

F1 �
TP

TP + 0.5(FP + FN)
.

(22)

A high value of TPR implies that a high percentage of
anomalies detected in the original data is also captured as an
anomaly in the privatized data. On the other hand, a high
value of F1 implies relatively small values of FP and FN
compared to TP.

8.3.3. Results. Figures 8 and 9 show the utility of our ap-
proaches evaluated using TPR and F1 metrics, respectively.
First, we can see that ε does not affect utility of the naı̈ve and
naı̈ve-δ approaches as both approaches still provide almost
perfect utility scores in all monitored LANs.

On the other hand, the histogram-based and histogram-
based-δ approaches yield low utility for small ε. )e utility
scores then become higher as ε increases. For HKT, both
approaches achieve a reasonable score of > 0.75 with ε � 5.
Meanwhile, ε must be set to 6 in order to achieve the same
utility score in HDY. JPN requires the highest ε(� 12) in
order for the histogram-based-δ approach to perform
75%TPR.

Lastly, the results also confirm that the histogram-based-
δ approach significantly outperforms the naı̈ve-δ approach
in terms of utility. )us, we recommend to deploy the
histogram-based-δ approach over the histogram-based ap-
proach when one needs to publish ARP-request data with
user privacy protection (i.e., corresponding to the node-DP
notion); whereas, if edge-DP is sufficient, the naı̈ve approach
is a more reasonable choice over the näıve-δ approach as the
former provides a stronger privacy guarantee while both
approaches achieve the similar utility performance.

8.3.4. Comparison with RMSE. In most cases, the utility
results from TPR and F1 metrics are consistent with the
previous results measured using RMSE in Section 8.2. )at
is, a higher ε leads to higher utility with lower RMSE and
higher TPR and F1. On the other hand, an extremely low
value of ε (e.g., ε � 1) renders the output data useless as it can
no longer be used to reveal anomalies due to its low TPR/F1.
)ere is, however, one exception: the naı̈ve and naı̈ve-δ
approaches surprisingly can still attain high TPR and F1
utility despite low ε. )is indicates that such approaches are
more robust to additive noises than other approaches.

9. Discussion

9.1. ARP Fields. Our approaches take as input ARP-degree
data, which in turnmakes use of only 5 fields in ARP packets:
SHA, SPA, THA, TPA, and OPER. In this work, we choose
to discard the rest of the ARP fields (i.e., Hardware Type/
Length (HTYPE/HLEN) and Protocol Type/Length
(PTYPE/PLEN)) from our analysis. )is is because, in
practice, these discarded fields usually have fixed values that
contain neither sensitive information nor anything mean-
ingful to our approaches. For instance, since ARP is only
applicable to IPv4, the PLEN field is always set to the value of
4 indicating the size of an IPv4 address; or HTYPE usually
contains the value of 1 representing the ubiquitous Ethernet
hardware type. As these fields are generally constant for all
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ARP packets, their absence does not affect privacy or utility
to our approaches.

9.2. DP Mechanisms. In this work, we focus on releasing
ARP-degrees in differentially-private manners. Publishing
degrees has sensitivity of 1 (removing a user’s ARP request
alters the total ARP-degrees by 1), which is small compared
to the number of ARP requests sent by all users. )us we
choose the noise perturbation methods, namely the Laplace
and the Gaussian mechanism, to privatize the ARP-degrees.
Another well-known differential privacy mechanism is the
randomized response, whose standard deviation is
O(

��
N

√
/ε) [33], which is worse than the standard deviation

of the Laplace and Gaussian mechanism, which is O(1/ε).
)ere are also differential privacy mechanisms based on data
synthesis [34]. However, as anomaly detection algorithms
look for “spiking” behaviors at a particular time interval,
these data synthetic approaches, which try to replicate the
distribution of the data as a whole, will not be able to retain
the spikes as well as the perturbation mechanisms.

9.3. Time Interval. In our evaluation, we consider the time
interval for ARP-data collection to be in a unit of a week.
Albeit a bit long, this design choice is necessary as it allows us
to incorporate all data (which spans for 30 weeks) into our

analysis with higher utility rate and without losing too much
privacy budget.

To illustrate this point, we conduct a new experiment on
the JPN network where we aggregate and process ARP data
on a shorter period, i.e., every day instead of every week.
Compared to the original experiment, we have observed a
drastic decrease in the utility rate for all our approaches. As
an example, for the naı̈ve approach with ε � 4, the RMSE has
increased by a factor of 6 (from 10 to 60), while the TPR and
F1 score have reduced substantially from 1.0 to ≈ 0.6.

9.4. Utility Metrics. We evaluate our approaches using two
utility metrics: RMSE and Anomaly Detection Accuracy. We
select the former because it is one of the most common
metrics for measuring utility from a DP mechanism [35].
Intuitively, it tells us “how far apart the privatized data is
from the original data.” Since an anomalous activity appears
as an unusual value in the data, a privacy-preserving
mechanism with small RMSE would not perturb that value
by much, allowing such activity to be detected from the
privatized data. Besides RMSE, there are other similar
metrics with the same purpose, e.g., Mean Absolute Error.
Even though we do not include them in this work, we expect
the results from such metrics to be in line with our current
results.
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Figure 8: TPR result for different ε in all 3 monitored LANs.
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Figure 9: F1 result for different ε in all 3 monitored LANs.
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Nonetheless, the RMSE does not directly indicate the
“true” utility in this work since our end goal is to detect LAN
anomalies, not minimize error rates. To this end, we choose
to include Anomaly Detection Accuracy as our second
metric. )is metric realistically gives us an idea of how
effective our approaches are when performing on a real-
world LAN anomaly detector [7].

Finally, we do not consider other utility metrics that
target different types of data publication. For example,
Lp-Error [36] and Hausdorff Distance [37] are geared to-
wards measuring utility in location privacy protection. Also,
information-theoretic metrics [38] require the input to be
generated from a probability distribution, which is not the
case in this work.

10. Conclusion

)is paper presents four approaches to privately releasing
ARP-request data that can later be used for identifying
anomalies in LAN. We prove that the naı̈ve approach sat-
isfies edge-differential privacy, and thus provides privacy
protection on the user-relationship level. On the other hand,
the histogram-based approach can provide node-differential
privacy, thus leaking no information about a presence of
each individual user. We also propose two alternatives,
named naı̈ve-δ and histogram-based-δ, which require even
smaller additive noises than their original counterparts in
exchange for a small probability that the privacy guarantee
will not hold. Feasibility of our approaches is demonstrated
via real-world experiments in which we show that, with a
reasonable privacy budget value, our approaches yield low
errors (< 10 in RMSE) and also preserve more than 75%
utility of detecting LAN anomalies.
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